blob: 3b1793947b0e6f57235db7d2458a0055ce48b4ae [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <sstream>
#include <string>
#include "base/command_line.h"
#include "base/files/file_util.h"
#include "base/files/scoped_temp_dir.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/logging.h"
#include "base/no_destructor.h"
#include "base/process/process.h"
#include "base/run_loop.h"
#include "base/sanitizer_buildflags.h"
#include "base/strings/string_piece.h"
#include "base/strings/utf_string_conversions.h"
#include "base/test/bind.h"
#include "base/test/scoped_logging_settings.h"
#include "base/test/task_environment.h"
#include "build/build_config.h"
#include "build/chromeos_buildflags.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#if BUILDFLAG(IS_POSIX)
#include <signal.h>
#include <unistd.h>
#include "base/posix/eintr_wrapper.h"
#endif // BUILDFLAG(IS_POSIX)
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS) || BUILDFLAG(IS_ANDROID)
#include <ucontext.h>
#endif
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#include <excpt.h>
#endif // BUILDFLAG(IS_WIN)
#if BUILDFLAG(IS_FUCHSIA)
#include <lib/zx/channel.h>
#include <lib/zx/event.h>
#include <lib/zx/exception.h>
#include <lib/zx/thread.h>
#include <zircon/syscalls/debug.h>
#include <zircon/syscalls/exception.h>
#include <zircon/types.h>
#endif // BUILDFLAG(IS_FUCHSIA)
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace logging {
namespace {
using ::testing::Return;
using ::testing::_;
class LoggingTest : public testing::Test {
protected:
const ScopedLoggingSettings& scoped_logging_settings() {
return scoped_logging_settings_;
}
private:
base::test::SingleThreadTaskEnvironment task_environment_{
base::test::SingleThreadTaskEnvironment::MainThreadType::IO};
ScopedLoggingSettings scoped_logging_settings_;
};
class MockLogSource {
public:
MOCK_METHOD0(Log, const char*());
};
class MockLogAssertHandler {
public:
MOCK_METHOD4(
HandleLogAssert,
void(const char*, int, const base::StringPiece, const base::StringPiece));
};
TEST_F(LoggingTest, BasicLogging) {
MockLogSource mock_log_source;
// 4 base logs: LOG, LOG_IF, PLOG, and PLOG_IF
int expected_logs = 4;
// 4 verbose logs: VLOG, VLOG_IF, PVLOG, PVLOG_IF.
if (VLOG_IS_ON(0))
expected_logs += 4;
// 4 debug logs: DLOG, DLOG_IF, DPLOG, DPLOG_IF.
if (DCHECK_IS_ON())
expected_logs += 4;
// 4 verbose debug logs: DVLOG, DVLOG_IF, DVPLOG, DVPLOG_IF
if (VLOG_IS_ON(0) && DCHECK_IS_ON())
expected_logs += 4;
EXPECT_CALL(mock_log_source, Log())
.Times(expected_logs)
.WillRepeatedly(Return("log message"));
SetMinLogLevel(LOGGING_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_EQ(DCHECK_IS_ON(), DLOG_IS_ON(INFO));
#if BUILDFLAG(USE_RUNTIME_VLOG)
EXPECT_TRUE(VLOG_IS_ON(0));
#else
// VLOG defaults to off when not USE_RUNTIME_VLOG.
EXPECT_FALSE(VLOG_IS_ON(0));
#endif // BUILDFLAG(USE_RUNTIME_VLOG)
LOG(INFO) << mock_log_source.Log();
LOG_IF(INFO, true) << mock_log_source.Log();
PLOG(INFO) << mock_log_source.Log();
PLOG_IF(INFO, true) << mock_log_source.Log();
VLOG(0) << mock_log_source.Log();
VLOG_IF(0, true) << mock_log_source.Log();
VPLOG(0) << mock_log_source.Log();
VPLOG_IF(0, true) << mock_log_source.Log();
DLOG(INFO) << mock_log_source.Log();
DLOG_IF(INFO, true) << mock_log_source.Log();
DPLOG(INFO) << mock_log_source.Log();
DPLOG_IF(INFO, true) << mock_log_source.Log();
DVLOG(0) << mock_log_source.Log();
DVLOG_IF(0, true) << mock_log_source.Log();
DVPLOG(0) << mock_log_source.Log();
DVPLOG_IF(0, true) << mock_log_source.Log();
}
TEST_F(LoggingTest, LogIsOn) {
SetMinLogLevel(LOGGING_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_TRUE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOGGING_WARNING);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_TRUE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOGGING_ERROR);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOGGING_FATAL + 1);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(LOG_IS_ON(WARNING));
EXPECT_FALSE(LOG_IS_ON(ERROR));
// LOG_IS_ON(FATAL) should always be true.
EXPECT_TRUE(LOG_IS_ON(FATAL));
// If DCHECK_IS_ON() then DFATAL is FATAL.
EXPECT_EQ(DCHECK_IS_ON(), LOG_IS_ON(DFATAL));
}
TEST_F(LoggingTest, LoggingIsLazyBySeverity) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
SetMinLogLevel(LOGGING_WARNING);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(DLOG_IS_ON(INFO));
EXPECT_FALSE(VLOG_IS_ON(1));
LOG(INFO) << mock_log_source.Log();
LOG_IF(INFO, false) << mock_log_source.Log();
PLOG(INFO) << mock_log_source.Log();
PLOG_IF(INFO, false) << mock_log_source.Log();
VLOG(1) << mock_log_source.Log();
VLOG_IF(1, true) << mock_log_source.Log();
VPLOG(1) << mock_log_source.Log();
VPLOG_IF(1, true) << mock_log_source.Log();
DLOG(INFO) << mock_log_source.Log();
DLOG_IF(INFO, true) << mock_log_source.Log();
DPLOG(INFO) << mock_log_source.Log();
DPLOG_IF(INFO, true) << mock_log_source.Log();
DVLOG(1) << mock_log_source.Log();
DVLOG_IF(1, true) << mock_log_source.Log();
DVPLOG(1) << mock_log_source.Log();
DVPLOG_IF(1, true) << mock_log_source.Log();
}
TEST_F(LoggingTest, LoggingIsLazyByDestination) {
MockLogSource mock_log_source;
MockLogSource mock_log_source_error;
EXPECT_CALL(mock_log_source, Log()).Times(0);
// Severity >= ERROR is always printed to stderr.
EXPECT_CALL(mock_log_source_error, Log()).Times(1).
WillRepeatedly(Return("log message"));
LoggingSettings settings;
settings.logging_dest = LOG_NONE;
InitLogging(settings);
LOG(INFO) << mock_log_source.Log();
LOG(WARNING) << mock_log_source.Log();
LOG(ERROR) << mock_log_source_error.Log();
}
// Check that logging to stderr is gated on LOG_TO_STDERR.
TEST_F(LoggingTest, LogToStdErrFlag) {
LoggingSettings settings;
settings.logging_dest = LOG_NONE;
InitLogging(settings);
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
LOG(INFO) << mock_log_source.Log();
settings.logging_dest = LOG_TO_STDERR;
MockLogSource mock_log_source_stderr;
InitLogging(settings);
EXPECT_CALL(mock_log_source_stderr, Log()).Times(1).WillOnce(Return("foo"));
LOG(INFO) << mock_log_source_stderr.Log();
}
// Check that messages with severity ERROR or higher are always logged to
// stderr if no log-destinations are set, other than LOG_TO_FILE.
// This test is currently only POSIX-compatible.
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
namespace {
void TestForLogToStderr(int log_destinations,
bool* did_log_info,
bool* did_log_error) {
const char kInfoLogMessage[] = "This is an INFO level message";
const char kErrorLogMessage[] = "Here we have a message of level ERROR";
base::ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
// Set up logging.
LoggingSettings settings;
settings.logging_dest = log_destinations;
base::FilePath file_logs_path;
if (log_destinations & LOG_TO_FILE) {
file_logs_path = temp_dir.GetPath().Append("file.log");
settings.log_file_path = file_logs_path.value().c_str();
}
InitLogging(settings);
// Create a file and change stderr to write to that file, to easily check
// contents.
base::FilePath stderr_logs_path = temp_dir.GetPath().Append("stderr.log");
base::File stderr_logs = base::File(
stderr_logs_path,
base::File::FLAG_CREATE | base::File::FLAG_WRITE | base::File::FLAG_READ);
base::ScopedFD stderr_backup = base::ScopedFD(dup(STDERR_FILENO));
int dup_result = dup2(stderr_logs.GetPlatformFile(), STDERR_FILENO);
ASSERT_EQ(dup_result, STDERR_FILENO);
LOG(INFO) << kInfoLogMessage;
LOG(ERROR) << kErrorLogMessage;
// Restore the original stderr logging destination.
dup_result = dup2(stderr_backup.get(), STDERR_FILENO);
ASSERT_EQ(dup_result, STDERR_FILENO);
// Check which of the messages were written to stderr.
std::string written_logs;
ASSERT_TRUE(base::ReadFileToString(stderr_logs_path, &written_logs));
*did_log_info = written_logs.find(kInfoLogMessage) != std::string::npos;
*did_log_error = written_logs.find(kErrorLogMessage) != std::string::npos;
}
} // namespace
TEST_F(LoggingTest, AlwaysLogErrorsToStderr) {
bool did_log_info = false;
bool did_log_error = false;
// Fuchsia only logs to stderr when explicitly specified.
#if !BUILDFLAG(IS_FUCHSIA)
// When no destinations are specified, ERRORs should still log to stderr.
TestForLogToStderr(LOG_NONE, &did_log_info, &did_log_error);
EXPECT_FALSE(did_log_info);
EXPECT_TRUE(did_log_error);
// Logging only to a file should also log ERRORs to stderr as well.
TestForLogToStderr(LOG_TO_FILE, &did_log_info, &did_log_error);
EXPECT_FALSE(did_log_info);
EXPECT_TRUE(did_log_error);
#endif
// ERRORs should not be logged to stderr if any destination besides FILE is
// set.
TestForLogToStderr(LOG_TO_SYSTEM_DEBUG_LOG, &did_log_info, &did_log_error);
EXPECT_FALSE(did_log_info);
EXPECT_FALSE(did_log_error);
// Both ERRORs and INFO should be logged if LOG_TO_STDERR is set.
TestForLogToStderr(LOG_TO_STDERR, &did_log_info, &did_log_error);
EXPECT_TRUE(did_log_info);
EXPECT_TRUE(did_log_error);
}
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#if BUILDFLAG(IS_CHROMEOS_ASH)
TEST_F(LoggingTest, InitWithFileDescriptor) {
const char kErrorLogMessage[] = "something bad happened";
// Open a file to pass to the InitLogging.
base::ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
base::FilePath file_log_path = temp_dir.GetPath().Append("file.log");
FILE* log_file = fopen(file_log_path.value().c_str(), "w");
CHECK(log_file);
// Set up logging.
LoggingSettings settings;
settings.logging_dest = LOG_TO_FILE;
settings.log_file = log_file;
InitLogging(settings);
LOG(ERROR) << kErrorLogMessage;
// Check the message was written to the log file.
std::string written_logs;
ASSERT_TRUE(base::ReadFileToString(file_log_path, &written_logs));
ASSERT_NE(written_logs.find(kErrorLogMessage), std::string::npos);
}
TEST_F(LoggingTest, DuplicateLogFile) {
const char kErrorLogMessage1[] = "something really bad happened";
const char kErrorLogMessage2[] = "some other bad thing happened";
base::ScopedTempDir temp_dir;
ASSERT_TRUE(temp_dir.CreateUniqueTempDir());
base::FilePath file_log_path = temp_dir.GetPath().Append("file.log");
// Set up logging.
LoggingSettings settings;
settings.logging_dest = LOG_TO_FILE;
settings.log_file_path = file_log_path.value().c_str();
InitLogging(settings);
LOG(ERROR) << kErrorLogMessage1;
// Duplicate the log FILE, close the original (to make sure we actually
// duplicated it), and write to the duplicate.
FILE* log_file_dup = DuplicateLogFILE();
CHECK(log_file_dup);
CloseLogFile();
fprintf(log_file_dup, "%s\n", kErrorLogMessage2);
fflush(log_file_dup);
// Check the messages were written to the log file.
std::string written_logs;
ASSERT_TRUE(base::ReadFileToString(file_log_path, &written_logs));
ASSERT_NE(written_logs.find(kErrorLogMessage1), std::string::npos);
ASSERT_NE(written_logs.find(kErrorLogMessage2), std::string::npos);
fclose(log_file_dup);
}
#endif // BUILDFLAG(IS_CHROMEOS_ASH)
#if !CHECK_WILL_STREAM() && BUILDFLAG(IS_WIN)
NOINLINE void CheckContainingFunc(int death_location) {
CHECK(death_location != 1);
CHECK(death_location != 2);
CHECK(death_location != 3);
}
int GetCheckExceptionData(EXCEPTION_POINTERS* p, DWORD* code, void** addr) {
*code = p->ExceptionRecord->ExceptionCode;
*addr = p->ExceptionRecord->ExceptionAddress;
return EXCEPTION_EXECUTE_HANDLER;
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
DWORD code1 = 0;
DWORD code2 = 0;
DWORD code3 = 0;
void* addr1 = nullptr;
void* addr2 = nullptr;
void* addr3 = nullptr;
// Record the exception code and addresses.
__try {
CheckContainingFunc(1);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code1, &addr1)) {
}
__try {
CheckContainingFunc(2);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code2, &addr2)) {
}
__try {
CheckContainingFunc(3);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code3, &addr3)) {
}
// Ensure that the exception codes are correct (in particular, breakpoints,
// not access violations).
EXPECT_EQ(STATUS_BREAKPOINT, code1);
EXPECT_EQ(STATUS_BREAKPOINT, code2);
EXPECT_EQ(STATUS_BREAKPOINT, code3);
// Ensure that none of the CHECKs are colocated.
EXPECT_NE(addr1, addr2);
EXPECT_NE(addr1, addr3);
EXPECT_NE(addr2, addr3);
}
#elif BUILDFLAG(IS_FUCHSIA)
// CHECK causes a direct crash (without jumping to another function) only in
// official builds. Unfortunately, continuous test coverage on official builds
// is lower. Furthermore, since the Fuchsia implementation uses threads, it is
// not possible to rely on an implementation of CHECK that calls abort(), which
// takes down the whole process, preventing the thread exception handler from
// handling the exception. DO_CHECK here falls back on base::ImmediateCrash() in
// non-official builds, to catch regressions earlier in the CQ.
#if !CHECK_WILL_STREAM()
#define DO_CHECK CHECK
#else
#define DO_CHECK(cond) \
if (!(cond)) { \
base::ImmediateCrash(); \
}
#endif
struct thread_data_t {
// For signaling the thread ended properly.
zx::event event;
// For catching thread exceptions. Created by the crashing thread.
zx::channel channel;
// Location where the thread is expected to crash.
int death_location;
};
// Indicates the exception channel has been created successfully.
constexpr zx_signals_t kChannelReadySignal = ZX_USER_SIGNAL_0;
// Indicates an error setting up the crash thread.
constexpr zx_signals_t kCrashThreadErrorSignal = ZX_USER_SIGNAL_1;
void* CrashThread(void* arg) {
thread_data_t* data = (thread_data_t*)arg;
int death_location = data->death_location;
// Register the exception handler.
zx_status_t status =
zx::thread::self()->create_exception_channel(0, &data->channel);
if (status != ZX_OK) {
data->event.signal(0, kCrashThreadErrorSignal);
return nullptr;
}
data->event.signal(0, kChannelReadySignal);
DO_CHECK(death_location != 1);
DO_CHECK(death_location != 2);
DO_CHECK(death_location != 3);
// We should never reach this point, signal the thread incorrectly ended
// properly.
data->event.signal(0, kCrashThreadErrorSignal);
return nullptr;
}
// Helper function to call pthread_exit(nullptr).
_Noreturn __NO_SAFESTACK void exception_pthread_exit() {
pthread_exit(nullptr);
}
// Runs the CrashThread function in a separate thread.
void SpawnCrashThread(int death_location, uintptr_t* child_crash_addr) {
zx::event event;
zx_status_t status = zx::event::create(0, &event);
ASSERT_EQ(status, ZX_OK);
// Run the thread.
thread_data_t thread_data = {std::move(event), zx::channel(), death_location};
pthread_t thread;
int ret = pthread_create(&thread, nullptr, CrashThread, &thread_data);
ASSERT_EQ(ret, 0);
// Wait for the thread to set up its exception channel.
zx_signals_t signals = 0;
status =
thread_data.event.wait_one(kChannelReadySignal | kCrashThreadErrorSignal,
zx::time::infinite(), &signals);
ASSERT_EQ(status, ZX_OK);
ASSERT_EQ(signals, kChannelReadySignal);
// Wait for the exception and read it out of the channel.
status =
thread_data.channel.wait_one(ZX_CHANNEL_READABLE | ZX_CHANNEL_PEER_CLOSED,
zx::time::infinite(), &signals);
ASSERT_EQ(status, ZX_OK);
// Check the thread did crash and not terminate.
ASSERT_FALSE(signals & ZX_CHANNEL_PEER_CLOSED);
zx_exception_info_t exception_info;
zx::exception exception;
status = thread_data.channel.read(
0, &exception_info, exception.reset_and_get_address(),
sizeof(exception_info), 1, nullptr, nullptr);
ASSERT_EQ(status, ZX_OK);
// Get the crash address and point the thread towards exiting.
zx::thread zircon_thread;
status = exception.get_thread(&zircon_thread);
ASSERT_EQ(status, ZX_OK);
zx_thread_state_general_regs_t buffer;
status = zircon_thread.read_state(ZX_THREAD_STATE_GENERAL_REGS, &buffer,
sizeof(buffer));
ASSERT_EQ(status, ZX_OK);
#if defined(ARCH_CPU_X86_64)
*child_crash_addr = static_cast<uintptr_t>(buffer.rip);
buffer.rip = reinterpret_cast<uintptr_t>(exception_pthread_exit);
#elif defined(ARCH_CPU_ARM64)
*child_crash_addr = static_cast<uintptr_t>(buffer.pc);
buffer.pc = reinterpret_cast<uintptr_t>(exception_pthread_exit);
#else
#error Unsupported architecture
#endif
ASSERT_EQ(zircon_thread.write_state(ZX_THREAD_STATE_GENERAL_REGS, &buffer,
sizeof(buffer)),
ZX_OK);
// Clear the exception so the thread continues.
uint32_t state = ZX_EXCEPTION_STATE_HANDLED;
ASSERT_EQ(
exception.set_property(ZX_PROP_EXCEPTION_STATE, &state, sizeof(state)),
ZX_OK);
exception.reset();
// Join the exiting pthread.
ASSERT_EQ(pthread_join(thread, nullptr), 0);
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
uintptr_t child_crash_addr_1 = 0;
uintptr_t child_crash_addr_2 = 0;
uintptr_t child_crash_addr_3 = 0;
SpawnCrashThread(1, &child_crash_addr_1);
SpawnCrashThread(2, &child_crash_addr_2);
SpawnCrashThread(3, &child_crash_addr_3);
ASSERT_NE(0u, child_crash_addr_1);
ASSERT_NE(0u, child_crash_addr_2);
ASSERT_NE(0u, child_crash_addr_3);
ASSERT_NE(child_crash_addr_1, child_crash_addr_2);
ASSERT_NE(child_crash_addr_1, child_crash_addr_3);
ASSERT_NE(child_crash_addr_2, child_crash_addr_3);
}
#elif BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_NACL) && !BUILDFLAG(IS_IOS) && \
(defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
int g_child_crash_pipe;
void CheckCrashTestSighandler(int, siginfo_t* info, void* context_ptr) {
// Conversely to what clearly stated in "man 2 sigaction", some Linux kernels
// do NOT populate the |info->si_addr| in the case of a SIGTRAP. Hence we
// need the arch-specific boilerplate below, which is inspired by breakpad.
// At the same time, on OSX, ucontext.h is deprecated but si_addr works fine.
uintptr_t crash_addr = 0;
#if BUILDFLAG(IS_MAC)
crash_addr = reinterpret_cast<uintptr_t>(info->si_addr);
#else // OS_*
ucontext_t* context = reinterpret_cast<ucontext_t*>(context_ptr);
#if defined(ARCH_CPU_X86)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.gregs[REG_EIP]);
#elif defined(ARCH_CPU_X86_64)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.gregs[REG_RIP]);
#elif defined(ARCH_CPU_ARMEL)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.arm_pc);
#elif defined(ARCH_CPU_ARM64)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.pc);
#endif // ARCH_*
#endif // OS_*
HANDLE_EINTR(write(g_child_crash_pipe, &crash_addr, sizeof(uintptr_t)));
_exit(0);
}
// CHECK causes a direct crash (without jumping to another function) only in
// official builds. Unfortunately, continuous test coverage on official builds
// is lower. DO_CHECK here falls back on a home-brewed implementation in
// non-official builds, to catch regressions earlier in the CQ.
#if !CHECK_WILL_STREAM()
#define DO_CHECK CHECK
#else
#define DO_CHECK(cond) \
if (!(cond)) { \
base::ImmediateCrash(); \
}
#endif
void CrashChildMain(int death_location) {
struct sigaction act = {};
act.sa_sigaction = CheckCrashTestSighandler;
act.sa_flags = SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGTRAP, &act, nullptr));
ASSERT_EQ(0, sigaction(SIGBUS, &act, nullptr));
ASSERT_EQ(0, sigaction(SIGILL, &act, nullptr));
DO_CHECK(death_location != 1);
DO_CHECK(death_location != 2);
printf("\n");
DO_CHECK(death_location != 3);
// Should never reach this point.
const uintptr_t failed = 0;
HANDLE_EINTR(write(g_child_crash_pipe, &failed, sizeof(uintptr_t)));
}
void SpawnChildAndCrash(int death_location, uintptr_t* child_crash_addr) {
int pipefd[2];
ASSERT_EQ(0, pipe(pipefd));
int pid = fork();
ASSERT_GE(pid, 0);
if (pid == 0) { // child process.
close(pipefd[0]); // Close reader (parent) end.
g_child_crash_pipe = pipefd[1];
CrashChildMain(death_location);
FAIL() << "The child process was supposed to crash. It didn't.";
}
close(pipefd[1]); // Close writer (child) end.
DCHECK(child_crash_addr);
int res = HANDLE_EINTR(read(pipefd[0], child_crash_addr, sizeof(uintptr_t)));
ASSERT_EQ(static_cast<int>(sizeof(uintptr_t)), res);
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
uintptr_t child_crash_addr_1 = 0;
uintptr_t child_crash_addr_2 = 0;
uintptr_t child_crash_addr_3 = 0;
SpawnChildAndCrash(1, &child_crash_addr_1);
SpawnChildAndCrash(2, &child_crash_addr_2);
SpawnChildAndCrash(3, &child_crash_addr_3);
ASSERT_NE(0u, child_crash_addr_1);
ASSERT_NE(0u, child_crash_addr_2);
ASSERT_NE(0u, child_crash_addr_3);
ASSERT_NE(child_crash_addr_1, child_crash_addr_2);
ASSERT_NE(child_crash_addr_1, child_crash_addr_3);
ASSERT_NE(child_crash_addr_2, child_crash_addr_3);
}
#endif // BUILDFLAG(IS_POSIX)
TEST_F(LoggingTest, DebugLoggingReleaseBehavior) {
#if DCHECK_IS_ON()
int debug_only_variable = 1;
#endif
// These should avoid emitting references to |debug_only_variable|
// in release mode.
DLOG_IF(INFO, debug_only_variable) << "test";
DLOG_ASSERT(debug_only_variable) << "test";
DPLOG_IF(INFO, debug_only_variable) << "test";
DVLOG_IF(1, debug_only_variable) << "test";
}
TEST_F(LoggingTest, NestedLogAssertHandlers) {
::testing::InSequence dummy;
::testing::StrictMock<MockLogAssertHandler> handler_a, handler_b;
EXPECT_CALL(
handler_a,
HandleLogAssert(
_, _, base::StringPiece("First assert must be caught by handler_a"),
_));
EXPECT_CALL(
handler_b,
HandleLogAssert(
_, _, base::StringPiece("Second assert must be caught by handler_b"),
_));
EXPECT_CALL(
handler_a,
HandleLogAssert(
_, _,
base::StringPiece("Last assert must be caught by handler_a again"),
_));
logging::ScopedLogAssertHandler scoped_handler_a(base::BindRepeating(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_a)));
// Using LOG(FATAL) rather than CHECK(false) here since log messages aren't
// preserved for CHECKs in official builds.
LOG(FATAL) << "First assert must be caught by handler_a";
{
logging::ScopedLogAssertHandler scoped_handler_b(base::BindRepeating(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_b)));
LOG(FATAL) << "Second assert must be caught by handler_b";
}
LOG(FATAL) << "Last assert must be caught by handler_a again";
}
// Test that defining an operator<< for a type in a namespace doesn't prevent
// other code in that namespace from calling the operator<<(ostream, wstring)
// defined by logging.h. This can fail if operator<<(ostream, wstring) can't be
// found by ADL, since defining another operator<< prevents name lookup from
// looking in the global namespace.
namespace nested_test {
class Streamable {};
[[maybe_unused]] std::ostream& operator<<(std::ostream& out,
const Streamable&) {
return out << "Streamable";
}
TEST_F(LoggingTest, StreamingWstringFindsCorrectOperator) {
std::wstring wstr = L"Hello World";
std::ostringstream ostr;
ostr << wstr;
EXPECT_EQ("Hello World", ostr.str());
}
} // namespace nested_test
TEST_F(LoggingTest, LogPrefix) {
// Use a static because only captureless lambdas can be converted to a
// function pointer for SetLogMessageHandler().
static base::NoDestructor<std::string> log_string;
SetLogMessageHandler([](int severity, const char* file, int line,
size_t start, const std::string& str) -> bool {
*log_string = str;
return true;
});
// Logging with a prefix includes the prefix string.
const char kPrefix[] = "prefix";
SetLogPrefix(kPrefix);
LOG(ERROR) << "test"; // Writes into |log_string|.
EXPECT_NE(std::string::npos, log_string->find(kPrefix));
// Logging without a prefix does not include the prefix string.
SetLogPrefix(nullptr);
LOG(ERROR) << "test"; // Writes into |log_string|.
EXPECT_EQ(std::string::npos, log_string->find(kPrefix));
}
#if BUILDFLAG(IS_CHROMEOS_ASH)
TEST_F(LoggingTest, LogCrosSyslogFormat) {
// Set log format to syslog format.
scoped_logging_settings().SetLogFormat(LogFormat::LOG_FORMAT_SYSLOG);
const char* kTimestampPattern = R"(\d\d\d\d\-\d\d\-\d\d)" // date
R"(T\d\d\:\d\d\:\d\d\.\d\d\d\d\d\d)" // time
R"(Z.+\n)"; // timezone
// Use a static because only captureless lambdas can be converted to a
// function pointer for SetLogMessageHandler().
static base::NoDestructor<std::string> log_string;
SetLogMessageHandler([](int severity, const char* file, int line,
size_t start, const std::string& str) -> bool {
*log_string = str;
return true;
});
{
// All flags are true.
SetLogItems(true, true, true, true);
const char* kExpected =
R"(\S+ \d+ ERROR \S+\[\d+:\d+\]\: \[\S+\] message\n)";
LOG(ERROR) << "message";
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kTimestampPattern));
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kExpected));
}
{
// Timestamp is true.
SetLogItems(false, false, true, false);
const char* kExpected = R"(\S+ ERROR \S+\: \[\S+\] message\n)";
LOG(ERROR) << "message";
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kTimestampPattern));
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kExpected));
}
{
// PID and timestamp are true.
SetLogItems(true, false, true, false);
const char* kExpected = R"(\S+ ERROR \S+\[\d+\]: \[\S+\] message\n)";
LOG(ERROR) << "message";
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kTimestampPattern));
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kExpected));
}
{
// ThreadID and timestamp are true.
SetLogItems(false, true, true, false);
const char* kExpected = R"(\S+ ERROR \S+\[:\d+\]: \[\S+\] message\n)";
LOG(ERROR) << "message";
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kTimestampPattern));
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kExpected));
}
{
// All flags are false.
SetLogItems(false, false, false, false);
const char* kExpected = R"(ERROR \S+: \[\S+\] message\n)";
LOG(ERROR) << "message";
EXPECT_THAT(*log_string, ::testing::MatchesRegex(kExpected));
}
}
#endif // BUILDFLAG(IS_CHROMEOS_ASH)
// We define a custom operator<< for std::u16string so we can use it with
// logging. This tests that conversion.
TEST_F(LoggingTest, String16) {
// Basic stream test.
{
std::ostringstream stream;
stream << "Empty '" << std::u16string() << "' standard '"
<< std::u16string(u"Hello, world") << "'";
EXPECT_STREQ("Empty '' standard 'Hello, world'", stream.str().c_str());
}
// Interesting edge cases.
{
// These should each get converted to the invalid character: EF BF BD.
std::u16string initial_surrogate;
initial_surrogate.push_back(0xd800);
std::u16string final_surrogate;
final_surrogate.push_back(0xdc00);
// Old italic A = U+10300, will get converted to: F0 90 8C 80 'z'.
std::u16string surrogate_pair;
surrogate_pair.push_back(0xd800);
surrogate_pair.push_back(0xdf00);
surrogate_pair.push_back('z');
// Will get converted to the invalid char + 's': EF BF BD 's'.
std::u16string unterminated_surrogate;
unterminated_surrogate.push_back(0xd800);
unterminated_surrogate.push_back('s');
std::ostringstream stream;
stream << initial_surrogate << "," << final_surrogate << ","
<< surrogate_pair << "," << unterminated_surrogate;
EXPECT_STREQ("\xef\xbf\xbd,\xef\xbf\xbd,\xf0\x90\x8c\x80z,\xef\xbf\xbds",
stream.str().c_str());
}
}
// Tests that we don't VLOG from logging_unittest except when in the scope
// of the ScopedVmoduleSwitches.
TEST_F(LoggingTest, ScopedVmoduleSwitches) {
#if BUILDFLAG(USE_RUNTIME_VLOG)
EXPECT_TRUE(VLOG_IS_ON(0));
#else
// VLOG defaults to off when not USE_RUNTIME_VLOG.
EXPECT_FALSE(VLOG_IS_ON(0));
#endif // BUILDFLAG(USE_RUNTIME_VLOG)
// To avoid unreachable-code warnings when VLOG is disabled at compile-time.
int expected_logs = 0;
if (VLOG_IS_ON(0))
expected_logs += 1;
SetMinLogLevel(LOGGING_FATAL);
{
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
VLOG(1) << mock_log_source.Log();
}
{
ScopedVmoduleSwitches scoped_vmodule_switches;
scoped_vmodule_switches.InitWithSwitches(__FILE__ "=1");
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log())
.Times(expected_logs)
.WillRepeatedly(Return("log message"));
VLOG(1) << mock_log_source.Log();
}
{
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
VLOG(1) << mock_log_source.Log();
}
}
TEST_F(LoggingTest, BuildCrashString) {
EXPECT_EQ("file.cc:42: ",
LogMessage("file.cc", 42, LOGGING_ERROR).BuildCrashString());
// BuildCrashString() should strip path/to/file prefix.
LogMessage msg(
#if BUILDFLAG(IS_WIN)
"..\\foo\\bar\\file.cc",
#else
"../foo/bar/file.cc",
#endif // BUILDFLAG(IS_WIN)
42, LOGGING_ERROR);
msg.stream() << "Hello";
EXPECT_EQ("file.cc:42: Hello", msg.BuildCrashString());
}
#if !BUILDFLAG(USE_RUNTIME_VLOG)
TEST_F(LoggingTest, BuildTimeVLOG) {
// Use a static because only captureless lambdas can be converted to a
// function pointer for SetLogMessageHandler().
static base::NoDestructor<std::string> log_string;
SetLogMessageHandler([](int severity, const char* file, int line,
size_t start, const std::string& str) -> bool {
*log_string = str;
return true;
});
// No VLOG by default.
EXPECT_FALSE(VLOG_IS_ON(0));
VLOG(1) << "Expect not logged";
EXPECT_TRUE(log_string->empty());
// Re-define ENABLED_VLOG_LEVEL to enable VLOG(1).
// Note that ENABLED_VLOG_LEVEL has impact on all the code after it so please
// keep this test case the last one in this file.
#undef ENABLED_VLOG_LEVEL
#define ENABLED_VLOG_LEVEL 1
EXPECT_TRUE(VLOG_IS_ON(1));
EXPECT_FALSE(VLOG_IS_ON(2));
VLOG(1) << "Expect logged";
EXPECT_THAT(*log_string, ::testing::MatchesRegex(".* Expect logged\n"));
log_string->clear();
VLOG(2) << "Expect not logged";
EXPECT_TRUE(log_string->empty());
}
#endif // !BUILDFLAG(USE_RUNTIME_VLOG)
// NO NEW TESTS HERE
// The test above redefines ENABLED_VLOG_LEVEL, so new tests should be added
// before it.
} // namespace
} // namespace logging