blob: 77b5ca425024b6db9dd4bed9360960b4ce139231 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_glib.h"
#include <glib.h>
#include <math.h>
#include "build/build_config.h"
#include <algorithm>
#include <vector>
#include "base/files/file_util.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_pump_type.h"
#include "base/posix/eintr_wrapper.h"
#include "base/run_loop.h"
#include "base/synchronization/waitable_event.h"
#include "base/synchronization/waitable_event_watcher.h"
#include "base/task/current_thread.h"
#include "base/task/single_thread_task_executor.h"
#include "base/task/single_thread_task_runner.h"
#include "base/test/task_environment.h"
#include "base/test/trace_event_analyzer.h"
#include "base/threading/thread.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
// This class injects dummy "events" into the GLib loop. When "handled" these
// events can run tasks. This is intended to mock gtk events (the corresponding
// GLib source runs at the same priority).
class EventInjector {
public:
EventInjector() : processed_events_(0) {
source_ = static_cast<Source*>(g_source_new(&SourceFuncs, sizeof(Source)));
source_->injector = this;
g_source_attach(source_, nullptr);
g_source_set_can_recurse(source_, TRUE);
}
EventInjector(const EventInjector&) = delete;
EventInjector& operator=(const EventInjector&) = delete;
~EventInjector() {
g_source_destroy(source_);
g_source_unref(source_.ExtractAsDangling());
}
int HandlePrepare() {
// If the queue is empty, block.
if (events_.empty())
return -1;
TimeDelta delta = events_[0].time - Time::NowFromSystemTime();
return std::max(0, static_cast<int>(ceil(delta.InMillisecondsF())));
}
bool HandleCheck() {
if (events_.empty())
return false;
return events_[0].time <= Time::NowFromSystemTime();
}
void HandleDispatch() {
if (events_.empty())
return;
Event event = std::move(events_[0]);
events_.erase(events_.begin());
++processed_events_;
if (!event.callback.is_null())
std::move(event.callback).Run();
else if (!event.task.is_null())
std::move(event.task).Run();
}
// Adds an event to the queue. When "handled", executes |callback|.
// delay_ms is relative to the last event if any, or to Now() otherwise.
void AddEvent(int delay_ms, OnceClosure callback) {
AddEventHelper(delay_ms, std::move(callback), OnceClosure());
}
void AddDummyEvent(int delay_ms) {
AddEventHelper(delay_ms, OnceClosure(), OnceClosure());
}
void AddEventAsTask(int delay_ms, OnceClosure task) {
AddEventHelper(delay_ms, OnceClosure(), std::move(task));
}
void Reset() {
processed_events_ = 0;
events_.clear();
}
int processed_events() const { return processed_events_; }
private:
struct Event {
Time time;
OnceClosure callback;
OnceClosure task;
};
struct Source : public GSource {
raw_ptr<EventInjector> injector;
};
void AddEventHelper(int delay_ms, OnceClosure callback, OnceClosure task) {
Time last_time;
if (!events_.empty())
last_time = (events_.end()-1)->time;
else
last_time = Time::NowFromSystemTime();
Time future = last_time + Milliseconds(delay_ms);
EventInjector::Event event = {future, std::move(callback), std::move(task)};
events_.push_back(std::move(event));
}
static gboolean Prepare(GSource* source, gint* timeout_ms) {
*timeout_ms = static_cast<Source*>(source)->injector->HandlePrepare();
return FALSE;
}
static gboolean Check(GSource* source) {
return static_cast<Source*>(source)->injector->HandleCheck();
}
static gboolean Dispatch(GSource* source,
GSourceFunc unused_func,
gpointer unused_data) {
static_cast<Source*>(source)->injector->HandleDispatch();
return TRUE;
}
raw_ptr<Source> source_;
std::vector<Event> events_;
int processed_events_;
static GSourceFuncs SourceFuncs;
};
GSourceFuncs EventInjector::SourceFuncs = {EventInjector::Prepare,
EventInjector::Check,
EventInjector::Dispatch, nullptr};
void IncrementInt(int *value) {
++*value;
}
// Checks how many events have been processed by the injector.
void ExpectProcessedEvents(EventInjector* injector, int count) {
EXPECT_EQ(injector->processed_events(), count);
}
// Posts a task on the current message loop.
void PostMessageLoopTask(const Location& from_here, OnceClosure task) {
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(from_here,
std::move(task));
}
// Test fixture.
class MessagePumpGLibTest : public testing::Test {
public:
MessagePumpGLibTest() = default;
MessagePumpGLibTest(const MessagePumpGLibTest&) = delete;
MessagePumpGLibTest& operator=(const MessagePumpGLibTest&) = delete;
EventInjector* injector() { return &injector_; }
private:
test::SingleThreadTaskEnvironment task_environment_{
test::SingleThreadTaskEnvironment::MainThreadType::UI};
EventInjector injector_;
};
} // namespace
TEST_F(MessagePumpGLibTest, TestQuit) {
// Checks that Quit works and that the basic infrastructure is working.
// Quit from a task
RunLoop().RunUntilIdle();
EXPECT_EQ(0, injector()->processed_events());
injector()->Reset();
// Quit from an event
RunLoop run_loop;
injector()->AddEvent(0, run_loop.QuitClosure());
run_loop.Run();
EXPECT_EQ(1, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) {
// Checks that tasks posted by events are executed before the next event if
// the posted task queue is empty.
// MessageLoop doesn't make strong guarantees that it is the case, but the
// current implementation ensures it and the tests below rely on it.
// If changes cause this test to fail, it is reasonable to change it, but
// TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be
// changed accordingly, otherwise they can become flaky.
injector()->AddEventAsTask(0, DoNothing());
OnceClosure check_task =
BindOnce(&ExpectProcessedEvents, Unretained(injector()), 2);
OnceClosure posted_task =
BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task));
injector()->AddEventAsTask(0, std::move(posted_task));
injector()->AddEventAsTask(0, DoNothing());
{
RunLoop run_loop;
injector()->AddEvent(0, run_loop.QuitClosure());
run_loop.Run();
}
EXPECT_EQ(4, injector()->processed_events());
injector()->Reset();
injector()->AddEventAsTask(0, DoNothing());
check_task = BindOnce(&ExpectProcessedEvents, Unretained(injector()), 2);
posted_task =
BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task));
injector()->AddEventAsTask(0, std::move(posted_task));
injector()->AddEventAsTask(10, DoNothing());
{
RunLoop run_loop;
injector()->AddEvent(0, run_loop.QuitClosure());
run_loop.Run();
}
EXPECT_EQ(4, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) {
int task_count = 0;
// Tests that we process tasks while waiting for new events.
// The event queue is empty at first.
for (int i = 0; i < 10; ++i) {
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
}
// After all the previous tasks have executed, enqueue an event that will
// quit.
{
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&EventInjector::AddEvent, Unretained(injector()), 0,
run_loop.QuitClosure()));
run_loop.Run();
}
ASSERT_EQ(10, task_count);
EXPECT_EQ(1, injector()->processed_events());
// Tests that we process delayed tasks while waiting for new events.
injector()->Reset();
task_count = 0;
for (int i = 0; i < 10; ++i) {
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count), Milliseconds(10 * i));
}
// After all the previous tasks have executed, enqueue an event that will
// quit.
// This relies on the fact that delayed tasks are executed in delay order.
// That is verified in message_loop_unittest.cc.
{
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE,
BindOnce(&EventInjector::AddEvent, Unretained(injector()), 0,
run_loop.QuitClosure()),
Milliseconds(150));
run_loop.Run();
}
ASSERT_EQ(10, task_count);
EXPECT_EQ(1, injector()->processed_events());
}
TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) {
// Tests that we process events while waiting for work.
// The event queue is empty at first.
for (int i = 0; i < 10; ++i) {
injector()->AddDummyEvent(0);
}
// After all the events have been processed, post a task that will check that
// the events have been processed (note: the task executes after the event
// that posted it has been handled, so we expect 11 at that point).
OnceClosure check_task =
BindOnce(&ExpectProcessedEvents, Unretained(injector()), 11);
OnceClosure posted_task =
BindOnce(&PostMessageLoopTask, FROM_HERE, std::move(check_task));
injector()->AddEventAsTask(10, std::move(posted_task));
// And then quit (relies on the condition tested by TestEventTaskInterleave).
RunLoop run_loop;
injector()->AddEvent(10, run_loop.QuitClosure());
run_loop.Run();
EXPECT_EQ(12, injector()->processed_events());
}
namespace {
// This class is a helper for the concurrent events / posted tasks test below.
// It will quit the main loop once enough tasks and events have been processed,
// while making sure there is always work to do and events in the queue.
class ConcurrentHelper : public RefCounted<ConcurrentHelper> {
public:
ConcurrentHelper(EventInjector* injector, OnceClosure done_closure)
: injector_(injector),
done_closure_(std::move(done_closure)),
event_count_(kStartingEventCount),
task_count_(kStartingTaskCount) {}
void FromTask() {
if (task_count_ > 0) {
--task_count_;
}
if (task_count_ == 0 && event_count_ == 0) {
std::move(done_closure_).Run();
} else {
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, this));
}
}
void FromEvent() {
if (event_count_ > 0) {
--event_count_;
}
if (task_count_ == 0 && event_count_ == 0) {
std::move(done_closure_).Run();
} else {
injector_->AddEventAsTask(0,
BindOnce(&ConcurrentHelper::FromEvent, this));
}
}
int event_count() const { return event_count_; }
int task_count() const { return task_count_; }
private:
friend class RefCounted<ConcurrentHelper>;
~ConcurrentHelper() {}
static const int kStartingEventCount = 20;
static const int kStartingTaskCount = 20;
raw_ptr<EventInjector> injector_;
OnceClosure done_closure_;
int event_count_;
int task_count_;
};
} // namespace
TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) {
// Tests that posted tasks don't starve events, nor the opposite.
// We use the helper class above. We keep both event and posted task queues
// full, the helper verifies that both tasks and events get processed.
// If that is not the case, either event_count_ or task_count_ will not get
// to 0, and MessageLoop::QuitWhenIdle() will never be called.
RunLoop run_loop;
scoped_refptr<ConcurrentHelper> helper =
new ConcurrentHelper(injector(), run_loop.QuitClosure());
// Add 2 events to the queue to make sure it is always full (when we remove
// the event before processing it).
injector()->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, helper));
injector()->AddEventAsTask(0, BindOnce(&ConcurrentHelper::FromEvent, helper));
// Similarly post 2 tasks.
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, helper));
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&ConcurrentHelper::FromTask, helper));
run_loop.Run();
EXPECT_EQ(0, helper->event_count());
EXPECT_EQ(0, helper->task_count());
}
namespace {
void AddEventsAndDrainGLib(EventInjector* injector, OnceClosure on_drained) {
// Add a couple of dummy events
injector->AddDummyEvent(0);
injector->AddDummyEvent(0);
// Then add an event that will quit the main loop.
injector->AddEvent(0, std::move(on_drained));
// Post a couple of dummy tasks
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(FROM_HERE, DoNothing());
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(FROM_HERE, DoNothing());
// Drain the events
while (g_main_context_pending(nullptr)) {
g_main_context_iteration(nullptr, FALSE);
}
}
} // namespace
TEST_F(MessagePumpGLibTest, TestDrainingGLib) {
// Tests that draining events using GLib works.
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&AddEventsAndDrainGLib, Unretained(injector()),
run_loop.QuitClosure()));
run_loop.Run();
EXPECT_EQ(3, injector()->processed_events());
}
namespace {
// Helper class that lets us run the GLib message loop.
class GLibLoopRunner : public RefCounted<GLibLoopRunner> {
public:
GLibLoopRunner() : quit_(false) { }
void RunGLib() {
while (!quit_) {
g_main_context_iteration(nullptr, TRUE);
}
}
void RunLoop() {
while (!quit_) {
g_main_context_iteration(nullptr, TRUE);
}
}
void Quit() {
quit_ = true;
}
void Reset() {
quit_ = false;
}
private:
friend class RefCounted<GLibLoopRunner>;
~GLibLoopRunner() {}
bool quit_;
};
void TestGLibLoopInternal(EventInjector* injector, OnceClosure done) {
scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
int task_count = 0;
// Add a couple of dummy events
injector->AddDummyEvent(0);
injector->AddDummyEvent(0);
// Post a couple of dummy tasks
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
// Delayed events
injector->AddDummyEvent(10);
injector->AddDummyEvent(10);
// Delayed work
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count), Milliseconds(30));
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), Milliseconds(40));
// Run a nested, straight GLib message loop.
{
CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop allow;
runner->RunGLib();
}
ASSERT_EQ(3, task_count);
EXPECT_EQ(4, injector->processed_events());
std::move(done).Run();
}
void TestGtkLoopInternal(EventInjector* injector, OnceClosure done) {
scoped_refptr<GLibLoopRunner> runner = new GLibLoopRunner();
int task_count = 0;
// Add a couple of dummy events
injector->AddDummyEvent(0);
injector->AddDummyEvent(0);
// Post a couple of dummy tasks
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count));
// Delayed events
injector->AddDummyEvent(10);
injector->AddDummyEvent(10);
// Delayed work
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&IncrementInt, &task_count), Milliseconds(30));
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), Milliseconds(40));
// Run a nested, straight Gtk message loop.
{
CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop allow;
runner->RunLoop();
}
ASSERT_EQ(3, task_count);
EXPECT_EQ(4, injector->processed_events());
std::move(done).Run();
}
} // namespace
TEST_F(MessagePumpGLibTest, TestGLibLoop) {
// Tests that events and posted tasks are correctly executed if the message
// loop is not run by MessageLoop::Run() but by a straight GLib loop.
// Note that in this case we don't make strong guarantees about niceness
// between events and posted tasks.
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&TestGLibLoopInternal, Unretained(injector()),
run_loop.QuitClosure()));
run_loop.Run();
}
TEST_F(MessagePumpGLibTest, TestGtkLoop) {
// Tests that events and posted tasks are correctly executed if the message
// loop is not run by MessageLoop::Run() but by a straight Gtk loop.
// Note that in this case we don't make strong guarantees about niceness
// between events and posted tasks.
RunLoop run_loop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&TestGtkLoopInternal, Unretained(injector()),
run_loop.QuitClosure()));
run_loop.Run();
}
namespace {
class NestedEventAnalyzer {
public:
NestedEventAnalyzer() {
trace_analyzer::Start(TRACE_DISABLED_BY_DEFAULT("base"));
}
size_t CountEvents() {
std::unique_ptr<trace_analyzer::TraceAnalyzer> analyzer =
trace_analyzer::Stop();
trace_analyzer::TraceEventVector events;
return analyzer->FindEvents(trace_analyzer::Query::EventName() ==
trace_analyzer::Query::String("Nested"),
&events);
}
};
} // namespace
TEST_F(MessagePumpGLibTest, TestNativeNestedLoopWithoutDoWork) {
// Tests that nesting is triggered correctly if a message loop is run
// from a native event (gtk event) outside of a work item (not in a posted
// task).
RunLoop run_loop;
NestedEventAnalyzer analyzer;
base::CurrentThread::Get()->EnableMessagePumpTimeKeeperMetrics(
"GlibMainLoopTest");
scoped_refptr<GLibLoopRunner> runner = base::MakeRefCounted<GLibLoopRunner>();
injector()->AddEvent(
0,
BindOnce(
[](EventInjector* injector, scoped_refptr<GLibLoopRunner> runner,
OnceClosure done) {
CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop allow;
runner->RunLoop();
},
Unretained(injector()), runner, run_loop.QuitClosure()));
injector()->AddDummyEvent(0);
injector()->AddDummyEvent(0);
injector()->AddDummyEvent(0);
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, BindOnce(&GLibLoopRunner::Quit, runner), Milliseconds(40));
SingleThreadTaskRunner::GetCurrentDefault()->PostDelayedTask(
FROM_HERE, run_loop.QuitClosure(), Milliseconds(40));
run_loop.Run();
// It would be expected that there be one single event, but it seems like this
// is counting the Begin/End of the Nested trace event. Each of the two events
// found are of duration 0 with distinct timestamps. It has also been
// confirmed that nesting occurs only once.
CHECK_EQ(analyzer.CountEvents(), 2ul);
}
// Tests for WatchFileDescriptor API
class MessagePumpGLibFdWatchTest : public testing::Test {
protected:
MessagePumpGLibFdWatchTest()
: io_thread_("MessagePumpGLibFdWatchTestIOThread") {}
~MessagePumpGLibFdWatchTest() override = default;
void SetUp() override {
Thread::Options options(MessagePumpType::IO, 0);
ASSERT_TRUE(io_thread_.StartWithOptions(std::move(options)));
int ret = pipe(pipefds_);
ASSERT_EQ(0, ret);
}
void TearDown() override {
// Wait for the IO thread to exit before closing FDs which may have been
// passed to it.
io_thread_.Stop();
if (IGNORE_EINTR(close(pipefds_[0])) < 0)
PLOG(ERROR) << "close";
if (IGNORE_EINTR(close(pipefds_[1])) < 0)
PLOG(ERROR) << "close";
}
void WaitUntilIoThreadStarted() {
ASSERT_TRUE(io_thread_.WaitUntilThreadStarted());
}
scoped_refptr<SingleThreadTaskRunner> io_runner() const {
return io_thread_.task_runner();
}
void SimulateEvent(MessagePumpGlib* pump,
MessagePumpGlib::FdWatchController* controller) {
controller->poll_fd_->revents = G_IO_IN | G_IO_OUT;
pump->HandleFdWatchDispatch(controller);
}
int pipefds_[2];
private:
Thread io_thread_;
};
namespace {
class BaseWatcher : public MessagePumpGlib::FdWatcher {
public:
explicit BaseWatcher(MessagePumpGlib::FdWatchController* controller)
: controller_(controller) {
DCHECK(controller_);
}
~BaseWatcher() override = default;
// base:MessagePumpGlib::FdWatcher interface
void OnFileCanReadWithoutBlocking(int /* fd */) override { NOTREACHED(); }
void OnFileCanWriteWithoutBlocking(int /* fd */) override { NOTREACHED(); }
protected:
raw_ptr<MessagePumpGlib::FdWatchController> controller_;
};
class DeleteWatcher : public BaseWatcher {
public:
explicit DeleteWatcher(
std::unique_ptr<MessagePumpGlib::FdWatchController> controller)
: BaseWatcher(controller.get()),
owned_controller_(std::move(controller)) {}
~DeleteWatcher() override { DCHECK(!controller_); }
bool HasController() const { return !!controller_; }
void OnFileCanWriteWithoutBlocking(int /* fd */) override {
ClearController();
}
protected:
void ClearController() {
DCHECK(owned_controller_);
controller_ = nullptr;
owned_controller_.reset();
}
private:
std::unique_ptr<MessagePumpGlib::FdWatchController> owned_controller_;
};
class StopWatcher : public BaseWatcher {
public:
explicit StopWatcher(MessagePumpGlib::FdWatchController* controller)
: BaseWatcher(controller) {}
~StopWatcher() override = default;
void OnFileCanWriteWithoutBlocking(int /* fd */) override {
controller_->StopWatchingFileDescriptor();
}
};
void QuitMessageLoopAndStart(OnceClosure quit_closure) {
std::move(quit_closure).Run();
RunLoop runloop(RunLoop::Type::kNestableTasksAllowed);
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(FROM_HERE,
runloop.QuitClosure());
runloop.Run();
}
class NestedPumpWatcher : public MessagePumpGlib::FdWatcher {
public:
NestedPumpWatcher() = default;
~NestedPumpWatcher() override = default;
void OnFileCanReadWithoutBlocking(int /* fd */) override {
RunLoop runloop;
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&QuitMessageLoopAndStart, runloop.QuitClosure()));
runloop.Run();
}
void OnFileCanWriteWithoutBlocking(int /* fd */) override {}
};
class QuitWatcher : public DeleteWatcher {
public:
QuitWatcher(std::unique_ptr<MessagePumpGlib::FdWatchController> controller,
base::OnceClosure quit_closure)
: DeleteWatcher(std::move(controller)),
quit_closure_(std::move(quit_closure)) {}
void OnFileCanReadWithoutBlocking(int fd) override {
ClearController();
if (quit_closure_)
std::move(quit_closure_).Run();
}
private:
base::OnceClosure quit_closure_;
};
void WriteFDWrapper(const int fd,
const char* buf,
int size,
WaitableEvent* event) {
ASSERT_TRUE(WriteFileDescriptor(fd, StringPiece(buf, size)));
}
} // namespace
// Tests that MessagePumpGlib::FdWatcher::OnFileCanReadWithoutBlocking is not
// called for a READ_WRITE event, and that the controller is destroyed in
// OnFileCanWriteWithoutBlocking callback.
TEST_F(MessagePumpGLibFdWatchTest, DeleteWatcher) {
auto pump = std::make_unique<MessagePumpGlib>();
auto controller_ptr =
std::make_unique<MessagePumpGlib::FdWatchController>(FROM_HERE);
auto* controller = controller_ptr.get();
DeleteWatcher watcher(std::move(controller_ptr));
pump->WatchFileDescriptor(pipefds_[1], false,
MessagePumpGlib::WATCH_READ_WRITE, controller,
&watcher);
SimulateEvent(pump.get(), controller);
EXPECT_FALSE(watcher.HasController());
}
// Tests that MessagePumpGlib::FdWatcher::OnFileCanReadWithoutBlocking is not
// called for a READ_WRITE event, when the watcher calls
// StopWatchingFileDescriptor in OnFileCanWriteWithoutBlocking callback.
TEST_F(MessagePumpGLibFdWatchTest, StopWatcher) {
std::unique_ptr<MessagePumpGlib> pump(new MessagePumpGlib);
MessagePumpGlib::FdWatchController controller(FROM_HERE);
StopWatcher watcher(&controller);
pump->WatchFileDescriptor(pipefds_[1], false,
MessagePumpGlib::WATCH_READ_WRITE, &controller,
&watcher);
SimulateEvent(pump.get(), &controller);
}
// Tests that FdWatcher works properly with nested loops.
TEST_F(MessagePumpGLibFdWatchTest, NestedPumpWatcher) {
test::SingleThreadTaskEnvironment task_environment(
test::SingleThreadTaskEnvironment::MainThreadType::UI);
std::unique_ptr<MessagePumpGlib> pump(new MessagePumpGlib);
NestedPumpWatcher watcher;
MessagePumpGlib::FdWatchController controller(FROM_HERE);
pump->WatchFileDescriptor(pipefds_[1], false, MessagePumpGlib::WATCH_READ,
&controller, &watcher);
SimulateEvent(pump.get(), &controller);
}
// Tests that MessagePumpGlib quits immediately when it is quit from
// libevent's event_base_loop().
TEST_F(MessagePumpGLibFdWatchTest, QuitWatcher) {
MessagePumpGlib* pump = new MessagePumpGlib();
SingleThreadTaskExecutor executor(WrapUnique(pump));
RunLoop run_loop;
auto owned_controller =
std::make_unique<MessagePumpGlib::FdWatchController>(FROM_HERE);
MessagePumpGlib::FdWatchController* controller = owned_controller.get();
QuitWatcher delegate(std::move(owned_controller), run_loop.QuitClosure());
pump->WatchFileDescriptor(pipefds_[0], false, MessagePumpGlib::WATCH_READ,
controller, &delegate);
// Make the IO thread wait for |event| before writing to pipefds[1].
const char buf = 0;
WaitableEvent event;
auto watcher = std::make_unique<WaitableEventWatcher>();
WaitableEventWatcher::EventCallback write_fd_task =
BindOnce(&WriteFDWrapper, pipefds_[1], &buf, 1);
io_runner()->PostTask(
FROM_HERE, BindOnce(IgnoreResult(&WaitableEventWatcher::StartWatching),
Unretained(watcher.get()), &event,
std::move(write_fd_task), io_runner()));
// Queue |event| to signal on |CurrentUIThread::Get()|.
SingleThreadTaskRunner::GetCurrentDefault()->PostTask(
FROM_HERE, BindOnce(&WaitableEvent::Signal, Unretained(&event)));
// Now run the MessageLoop.
run_loop.Run();
// StartWatching can move |watcher| to IO thread. Release on IO thread.
io_runner()->PostTask(FROM_HERE, BindOnce(&WaitableEventWatcher::StopWatching,
Owned(std::move(watcher))));
}
} // namespace base