blob: 20b82d5ff0bcadc359eced61844c6726dca0016b [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/rand_util.h"
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <algorithm>
#include <limits>
#include "base/check_op.h"
#include "base/strings/string_util.h"
namespace base {
uint64_t RandUint64() {
uint64_t number;
RandBytes(&number, sizeof(number));
return number;
}
int RandInt(int min, int max) {
DCHECK_LE(min, max);
uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min) + 1;
// |range| is at most UINT_MAX + 1, so the result of RandGenerator(range)
// is at most UINT_MAX. Hence it's safe to cast it from uint64_t to int64_t.
int result =
static_cast<int>(min + static_cast<int64_t>(base::RandGenerator(range)));
DCHECK_GE(result, min);
DCHECK_LE(result, max);
return result;
}
double RandDouble() {
return BitsToOpenEndedUnitInterval(base::RandUint64());
}
float RandFloat() {
return BitsToOpenEndedUnitIntervalF(base::RandUint64());
}
double BitsToOpenEndedUnitInterval(uint64_t bits) {
// We try to get maximum precision by masking out as many bits as will fit
// in the target type's mantissa, and raising it to an appropriate power to
// produce output in the range [0, 1). For IEEE 754 doubles, the mantissa
// is expected to accommodate 53 bits (including the implied bit).
static_assert(std::numeric_limits<double>::radix == 2,
"otherwise use scalbn");
constexpr int kBits = std::numeric_limits<double>::digits;
return ldexp(bits & ((UINT64_C(1) << kBits) - 1u), -kBits);
}
float BitsToOpenEndedUnitIntervalF(uint64_t bits) {
// We try to get maximum precision by masking out as many bits as will fit
// in the target type's mantissa, and raising it to an appropriate power to
// produce output in the range [0, 1). For IEEE 754 floats, the mantissa is
// expected to accommodate 12 bits (including the implied bit).
static_assert(std::numeric_limits<float>::radix == 2, "otherwise use scalbn");
constexpr int kBits = std::numeric_limits<float>::digits;
return ldexpf(bits & ((UINT64_C(1) << kBits) - 1u), -kBits);
}
uint64_t RandGenerator(uint64_t range) {
DCHECK_GT(range, 0u);
// We must discard random results above this number, as they would
// make the random generator non-uniform (consider e.g. if
// MAX_UINT64 was 7 and |range| was 5, then a result of 1 would be twice
// as likely as a result of 3 or 4).
uint64_t max_acceptable_value =
(std::numeric_limits<uint64_t>::max() / range) * range - 1;
uint64_t value;
do {
value = base::RandUint64();
} while (value > max_acceptable_value);
return value % range;
}
std::string RandBytesAsString(size_t length) {
DCHECK_GT(length, 0u);
std::string result;
RandBytes(WriteInto(&result, length + 1), length);
return result;
}
InsecureRandomGenerator::InsecureRandomGenerator() {
a_ = base::RandUint64();
b_ = base::RandUint64();
}
void InsecureRandomGenerator::ReseedForTesting(uint64_t seed) {
a_ = seed;
b_ = seed;
}
uint64_t InsecureRandomGenerator::RandUint64() {
// Using XorShift128+, which is simple and widely used. See
// https://en.wikipedia.org/wiki/Xorshift#xorshift+ for details.
uint64_t t = a_;
const uint64_t s = b_;
a_ = s;
t ^= t << 23;
t ^= t >> 17;
t ^= s ^ (s >> 26);
b_ = t;
return t + s;
}
uint32_t InsecureRandomGenerator::RandUint32() {
// The generator usually returns an uint64_t, truncate it.
//
// It is noted in this paper (https://arxiv.org/abs/1810.05313) that the
// lowest 32 bits fail some statistical tests from the Big Crush
// suite. Use the higher ones instead.
return this->RandUint64() >> 32;
}
double InsecureRandomGenerator::RandDouble() {
uint64_t x = RandUint64();
// From https://vigna.di.unimi.it/xorshift/.
// 53 bits of mantissa, hence the "hexadecimal exponent" 1p-53.
return (x >> 11) * 0x1.0p-53;
}
MetricsSubSampler::MetricsSubSampler() = default;
bool MetricsSubSampler::ShouldSample(double probability) {
return generator_.RandDouble() < probability;
}
} // namespace base