blob: 2e437a312b335acafe6dbadc550b3c5a48773aa6 [file] [log] [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/test/task_environment.h"
#include <algorithm>
#include <memory>
#include <ostream>
#include "base/check.h"
#include "base/debug/stack_trace.h"
#include "base/functional/callback_forward.h"
#include "base/functional/callback_helpers.h"
#include "base/lazy_instance.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/message_loop/message_pump.h"
#include "base/message_loop/message_pump_type.h"
#include "base/no_destructor.h"
#include "base/process/process.h"
#include "base/run_loop.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/task/common/lazy_now.h"
#include "base/task/sequence_manager/sequence_manager.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/time_domain.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/thread_pool/thread_pool_impl.h"
#include "base/task/thread_pool/thread_pool_instance.h"
#include "base/test/bind.h"
#include "base/test/test_mock_time_task_runner.h"
#include "base/test/test_timeouts.h"
#include "base/thread_annotations.h"
#include "base/threading/platform_thread.h"
#include "base/threading/sequence_local_storage_map.h"
#include "base/threading/thread_checker_impl.h"
#include "base/threading/thread_local.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/clock.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(STARBOARD)
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#include "base/files/file_descriptor_watcher_posix.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
#endif
#if BUILDFLAG(ENABLE_BASE_TRACING)
#include "base/trace_event/trace_log.h" // nogncheck
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
namespace base {
namespace test {
namespace {
ObserverList<TaskEnvironment::DestructionObserver>& GetDestructionObservers() {
static NoDestructor<ObserverList<TaskEnvironment::DestructionObserver>>
instance;
return *instance;
}
// A pointer to the current TestTaskTracker, if any, constant throughout the
// lifetime of a ThreadPoolInstance managed by a TaskEnvironment.
TaskEnvironment::TestTaskTracker* g_task_tracker = nullptr;
base::MessagePumpType GetMessagePumpTypeForMainThreadType(
TaskEnvironment::MainThreadType main_thread_type) {
switch (main_thread_type) {
case TaskEnvironment::MainThreadType::DEFAULT:
return MessagePumpType::DEFAULT;
case TaskEnvironment::MainThreadType::UI:
return MessagePumpType::UI;
case TaskEnvironment::MainThreadType::IO:
return MessagePumpType::IO;
}
NOTREACHED();
return MessagePumpType::DEFAULT;
}
std::unique_ptr<sequence_manager::SequenceManager>
CreateSequenceManagerForMainThreadType(
TaskEnvironment::MainThreadType main_thread_type,
sequence_manager::SequenceManager::PrioritySettings priority_settings) {
auto type = GetMessagePumpTypeForMainThreadType(main_thread_type);
return sequence_manager::CreateSequenceManagerOnCurrentThreadWithPump(
MessagePump::Create(type),
base::sequence_manager::SequenceManager::Settings::Builder()
.SetMessagePumpType(type)
.SetPrioritySettings(std::move(priority_settings))
.Build());
}
class TickClockBasedClock : public Clock {
public:
explicit TickClockBasedClock(const TickClock* tick_clock)
: tick_clock_(*tick_clock),
start_ticks_(tick_clock_->NowTicks()),
start_time_(Time::UnixEpoch()) {}
Time Now() const override {
return start_time_ + (tick_clock_->NowTicks() - start_ticks_);
}
private:
const raw_ref<const TickClock> tick_clock_;
const TimeTicks start_ticks_;
const Time start_time_;
};
} // namespace
class TaskEnvironment::TestTaskTracker
: public internal::ThreadPoolImpl::TaskTrackerImpl {
public:
TestTaskTracker();
TestTaskTracker(const TestTaskTracker&) = delete;
TestTaskTracker& operator=(const TestTaskTracker&) = delete;
// Allow running tasks. Returns whether tasks were previously allowed to run.
bool AllowRunTasks();
// Disallow running tasks. Returns true on success; success requires there to
// be no tasks currently running. Returns false if >0 tasks are currently
// running. Prior to returning false, it will attempt to block until at least
// one task has completed (in an attempt to avoid callers busy-looping
// DisallowRunTasks() calls with the same set of slowly ongoing tasks).
// Returns false if none of the ongoing tasks complete within |timeout| in an
// attempt to prevent a deadlock in the event that the only task remaining is
// blocked on the main thread.
bool DisallowRunTasks(TimeDelta timeout = Milliseconds(1));
// Returns true if tasks are currently allowed to run.
bool TasksAllowedToRun() const;
// For debugging purposes. Returns a string with information about all the
// currently running tasks on the thread pool.
std::string DescribeRunningTasks() const;
// Returns true if this is invoked on this TaskTracker's owning thread
// (i.e. test main thread).
bool OnControllerThread() const {
return controller_thread_checker_.CalledOnValidThread();
}
private:
friend class TaskEnvironment;
// internal::ThreadPoolImpl::TaskTrackerImpl:
void RunTask(internal::Task task,
internal::TaskSource* sequence,
const TaskTraits& traits) override;
void BeginCompleteShutdown(base::WaitableEvent& shutdown_event) override;
void AssertFlushForTestingAllowed() override;
// Synchronizes accesses to members below.
mutable Lock lock_;
// True if running tasks is allowed.
bool can_run_tasks_ GUARDED_BY(lock_) = true;
// Signaled when |can_run_tasks_| becomes true.
ConditionVariable can_run_tasks_cv_ GUARDED_BY(lock_);
// Signaled when a task is completed.
ConditionVariable task_completed_cv_ GUARDED_BY(lock_);
// Next task number so that each task has some unique-ish id.
int64_t next_task_number_ GUARDED_BY(lock_) = 1;
// The set of tasks currently running, keyed by the id from
// |next_task_number_|.
base::flat_map<int64_t, Location> running_tasks_ GUARDED_BY(lock_);
// Used to implement OnControllerThread().
ThreadCheckerImpl controller_thread_checker_;
};
class TaskEnvironment::MockTimeDomain : public sequence_manager::TimeDomain {
public:
explicit MockTimeDomain(
sequence_manager::internal::SequenceManagerImpl* sequence_manager)
: sequence_manager_(sequence_manager) {
DCHECK_EQ(nullptr, current_mock_time_domain_);
current_mock_time_domain_ = this;
}
~MockTimeDomain() override {
DCHECK_EQ(this, current_mock_time_domain_);
current_mock_time_domain_ = nullptr;
}
static MockTimeDomain* current_mock_time_domain_;
static Time GetTime() {
return Time::UnixEpoch() +
(current_mock_time_domain_->NowTicks() - TimeTicks());
}
static TimeTicks GetTimeTicks() {
return current_mock_time_domain_->NowTicks();
}
void AdvanceClock(TimeDelta delta) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
{
AutoLock lock(now_ticks_lock_);
now_ticks_ += delta;
}
if (thread_pool_) {
thread_pool_->ProcessRipeDelayedTasksForTesting();
}
}
void SetThreadPool(internal::ThreadPoolImpl* thread_pool,
const TestTaskTracker* thread_pool_task_tracker) {
DCHECK(!thread_pool_);
DCHECK(!thread_pool_task_tracker_);
thread_pool_ = thread_pool;
thread_pool_task_tracker_ = thread_pool_task_tracker;
}
// sequence_manager::TimeDomain:
// This method is called when the underlying message pump has run out of
// non-delayed work. Advances time to the next task unless
// |quit_when_idle_requested| or TaskEnvironment controls mock time.
bool MaybeFastForwardToWakeUp(
absl::optional<sequence_manager::WakeUp> next_wake_up,
bool quit_when_idle_requested) override {
if (quit_when_idle_requested) {
return false;
}
return FastForwardToNextTaskOrCap(next_wake_up, TimeTicks::Max()) ==
NextTaskSource::kMainThreadHasWork;
}
const char* GetName() const override { return "MockTimeDomain"; }
// TickClock implementation:
TimeTicks NowTicks() const override {
// This can be called from any thread.
AutoLock lock(now_ticks_lock_);
return now_ticks_;
}
// Used by FastForwardToNextTaskOrCap() to return which task source time was
// advanced to.
enum class NextTaskSource {
// Out of tasks under |fast_forward_cap|.
kNone,
// There's now >=1 immediate task on the main thread (ThreadPool might have
// some too).
kMainThreadHasWork,
// There's now >=1 immediate task in the thread pool.
kThreadPoolOnly,
};
// Advances time to the first of : next main thread delayed task, next thread
// pool task, or |fast_forward_cap| (if it's not Max()). Ignores immediate
// tasks, expected to be called after being just idle, racily scheduling
// immediate tasks doesn't affect the outcome of this call.
NextTaskSource FastForwardToNextTaskOrCap(
absl::optional<sequence_manager::WakeUp> next_main_thread_wake_up,
TimeTicks fast_forward_cap) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Consider the next thread pool tasks iff they're running.
absl::optional<TimeTicks> next_thread_pool_task_time;
if (thread_pool_ && thread_pool_task_tracker_->TasksAllowedToRun()) {
next_thread_pool_task_time =
thread_pool_->NextScheduledRunTimeForTesting();
}
// Custom comparison logic to consider nullopt the largest rather than
// smallest value. Could consider using TimeTicks::Max() instead of nullopt
// to represent out-of-tasks?
absl::optional<TimeTicks> next_task_time;
if (!next_main_thread_wake_up) {
next_task_time = next_thread_pool_task_time;
} else if (!next_thread_pool_task_time) {
next_task_time = next_main_thread_wake_up->time;
} else {
next_task_time =
std::min(next_main_thread_wake_up->time, *next_thread_pool_task_time);
}
if (next_task_time && *next_task_time <= fast_forward_cap) {
{
AutoLock lock(now_ticks_lock_);
// It's possible for |next_task_time| to be in the past in the following
// scenario:
// Start with Now() == 100ms
// Thread A : Post 200ms delayed task T (construct and enqueue)
// Thread B : Construct 20ms delayed task U
// => |delayed_run_time| == 120ms.
// Thread A : FastForwardToNextTaskOrCap() => fast-forwards to T @
// 300ms (task U is not yet in queue).
// Thread B : Complete enqueue of task U.
// Thread A : FastForwardToNextTaskOrCap() => must stay at 300ms and run
// U, not go back to 120ms.
// Hence we need std::max() to protect against this because construction
// and enqueuing isn't atomic in time (LazyNow support in
// base/task/thread_pool could help).
now_ticks_ = std::max(now_ticks_, *next_task_time);
}
if (next_task_time == next_thread_pool_task_time) {
thread_pool_->ProcessRipeDelayedTasksForTesting();
}
if (next_main_thread_wake_up &&
next_task_time == next_main_thread_wake_up->time) {
return NextTaskSource::kMainThreadHasWork;
}
// The main thread doesn't have immediate work so it'll go to sleep after
// returning from this call. We must make sure it wakes up when the
// ThreadPool is done or the test may stall : crbug.com/1263149.
//
// Note: It is necessary to reach in SequenceManagerImpl to ScheduleWork
// instead of alternatives to waking the main thread, like posting a
// no-op task, as alternatives would prevent the main thread from
// achieving quiescence (which some task monitoring tests verify).
thread_pool_->FlushAsyncForTesting(BindOnce(
&sequence_manager::internal::SequenceManagerImpl::ScheduleWork,
Unretained(sequence_manager_)));
return NextTaskSource::kThreadPoolOnly;
}
if (!fast_forward_cap.is_max()) {
AutoLock lock(now_ticks_lock_);
// It's possible that Now() is already beyond |fast_forward_cap| when the
// caller nests multiple FastForwardBy() calls.
now_ticks_ = std::max(now_ticks_, fast_forward_cap);
}
return NextTaskSource::kNone;
}
private:
SEQUENCE_CHECKER(sequence_checker_);
raw_ptr<internal::ThreadPoolImpl, DanglingUntriaged> thread_pool_ = nullptr;
raw_ptr<const TestTaskTracker, DanglingUntriaged> thread_pool_task_tracker_ =
nullptr;
const raw_ptr<sequence_manager::internal::SequenceManagerImpl,
DanglingUntriaged>
sequence_manager_;
// Protects |now_ticks_|
mutable Lock now_ticks_lock_;
// Only ever written to from the main sequence. Start from real Now() instead
// of zero to give a more realistic view to tests.
TimeTicks now_ticks_ GUARDED_BY(now_ticks_lock_){
base::subtle::TimeTicksNowIgnoringOverride()
.SnappedToNextTick(TimeTicks(), Milliseconds(1))};
};
TaskEnvironment::MockTimeDomain*
TaskEnvironment::MockTimeDomain::current_mock_time_domain_ = nullptr;
TaskEnvironment::TaskEnvironment(
sequence_manager::SequenceManager::PrioritySettings priority_settings,
TimeSource time_source,
MainThreadType main_thread_type,
ThreadPoolExecutionMode thread_pool_execution_mode,
ThreadingMode threading_mode,
ThreadPoolCOMEnvironment thread_pool_com_environment,
bool subclass_creates_default_taskrunner,
trait_helpers::NotATraitTag)
: main_thread_type_(main_thread_type),
thread_pool_execution_mode_(thread_pool_execution_mode),
threading_mode_(threading_mode),
thread_pool_com_environment_(thread_pool_com_environment),
subclass_creates_default_taskrunner_(subclass_creates_default_taskrunner),
sequence_manager_(
CreateSequenceManagerForMainThreadType(main_thread_type,
std::move(priority_settings))),
mock_time_domain_(
time_source != TimeSource::SYSTEM_TIME
? std::make_unique<TaskEnvironment::MockTimeDomain>(
static_cast<
sequence_manager::internal::SequenceManagerImpl*>(
sequence_manager_.get()))
: nullptr),
time_overrides_(time_source == TimeSource::MOCK_TIME
? std::make_unique<subtle::ScopedTimeClockOverrides>(
&MockTimeDomain::GetTime,
&MockTimeDomain::GetTimeTicks,
nullptr)
: nullptr),
mock_clock_(mock_time_domain_ ? std::make_unique<TickClockBasedClock>(
mock_time_domain_.get())
: nullptr),
scoped_lazy_task_runner_list_for_testing_(
std::make_unique<internal::ScopedLazyTaskRunnerListForTesting>()),
// TODO(https://crbug.com/922098): Enable Run() timeouts even for
// instances created with TimeSource::MOCK_TIME.
run_loop_timeout_(
mock_time_domain_
? nullptr
: std::make_unique<ScopedRunLoopTimeout>(
FROM_HERE,
TestTimeouts::action_timeout(),
BindRepeating(&sequence_manager::SequenceManager::
DescribeAllPendingTasks,
Unretained(sequence_manager_.get())))) {
CHECK(!base::SingleThreadTaskRunner::HasCurrentDefault());
// If |subclass_creates_default_taskrunner| is true then initialization is
// deferred until DeferredInitFromSubclass().
if (!subclass_creates_default_taskrunner) {
task_queue_ =
sequence_manager_->CreateTaskQueue(sequence_manager::TaskQueue::Spec(
sequence_manager::QueueName::TASK_ENVIRONMENT_DEFAULT_TQ));
task_runner_ = task_queue_->task_runner();
sequence_manager_->SetDefaultTaskRunner(task_runner_);
if (mock_time_domain_) {
sequence_manager_->SetTimeDomain(mock_time_domain_.get());
}
CHECK(base::SingleThreadTaskRunner::HasCurrentDefault())
<< "SingleThreadTaskRunner::CurrentDefaultHandle should've been set "
"now.";
CompleteInitialization();
}
if (threading_mode_ != ThreadingMode::MAIN_THREAD_ONLY) {
InitializeThreadPool();
}
if (thread_pool_execution_mode_ == ThreadPoolExecutionMode::QUEUED &&
task_tracker_) {
CHECK(task_tracker_->DisallowRunTasks());
}
}
// static
TaskEnvironment::TestTaskTracker* TaskEnvironment::CreateThreadPool() {
CHECK(!ThreadPoolInstance::Get())
<< "Someone has already installed a ThreadPoolInstance. If nothing in "
"your test does so, then a test that ran earlier may have installed "
"one and leaked it. base::TestSuite will trap leaked globals, unless "
"someone has explicitly disabled it with "
"DisableCheckForLeakedGlobals().";
auto task_tracker = std::make_unique<TestTaskTracker>();
TestTaskTracker* raw_task_tracker = task_tracker.get();
// Disable background threads to avoid hangs when flushing background tasks.
auto thread_pool = std::make_unique<internal::ThreadPoolImpl>(
std::string(), std::move(task_tracker),
/*use_background_threads=*/false);
ThreadPoolInstance::Set(std::move(thread_pool));
DCHECK(!g_task_tracker);
g_task_tracker = raw_task_tracker;
return raw_task_tracker;
}
void TaskEnvironment::InitializeThreadPool() {
#if BUILDFLAG(ENABLE_BASE_TRACING)
// Force the creation of TraceLog instance before starting ThreadPool and
// creating additional threads to avoid race conditions.
trace_event::TraceLog::GetInstance();
#endif // BUILDFLAG(ENABLE_BASE_TRACING)
task_tracker_ = CreateThreadPool();
if (mock_time_domain_) {
mock_time_domain_->SetThreadPool(
static_cast<internal::ThreadPoolImpl*>(ThreadPoolInstance::Get()),
task_tracker_);
}
ThreadPoolInstance::InitParams init_params(kNumForegroundThreadPoolThreads);
init_params.suggested_reclaim_time = TimeDelta::Max();
#if BUILDFLAG(IS_WIN)
if (thread_pool_com_environment_ == ThreadPoolCOMEnvironment::COM_MTA) {
init_params.common_thread_pool_environment =
ThreadPoolInstance::InitParams::CommonThreadPoolEnvironment::COM_MTA;
}
#endif
ThreadPoolInstance::Get()->Start(init_params);
}
void TaskEnvironment::CompleteInitialization() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
#if defined(STARBOARD)
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
if (main_thread_type() == MainThreadType::IO) {
file_descriptor_watcher_ =
std::make_unique<FileDescriptorWatcher>(GetMainThreadTaskRunner());
}
#endif // BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
}
TaskEnvironment::TaskEnvironment(TaskEnvironment&& other) = default;
TaskEnvironment::~TaskEnvironment() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
DestroyTaskEnvironment();
}
void TaskEnvironment::DestroyTaskEnvironment() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
// If we've been moved or already destroyed (i.e. subclass invoked
// DestroyTaskEnvironment() before ~TaskEnvironment()) then bail out.
if (!owns_instance_) {
return;
}
owns_instance_.reset();
for (auto& observer : GetDestructionObservers()) {
observer.WillDestroyCurrentTaskEnvironment();
}
ShutdownAndJoinThreadPool();
task_queue_ = nullptr;
// SequenceManagerImpl must outlive the threads in the ThreadPoolInstance()
// (ShutdownAndJoinThreadPool() above) as TaskEnvironment::MockTimeDomain can
// invoke its SequenceManagerImpl* from worker threads.
// Additionally, Tasks owned by `sequence_manager_` can have referencees to
// PooledTaskRunnerDelegates. These are owned by the thread pool, so destroy
// `sequence_manager` before the thread pool itself.
sequence_manager_.reset();
DestroyThreadPool();
}
void TaskEnvironment::ShutdownAndJoinThreadPool() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
if (threading_mode_ == ThreadingMode::MAIN_THREAD_ONLY) {
return;
}
DCHECK(ThreadPoolInstance::Get());
// Ideally this would RunLoop().RunUntilIdle() here to catch any errors or
// infinite post loop in the remaining work but this isn't possible right now
// because base::~MessageLoop() didn't use to do this and adding it here would
// make the migration away from MessageLoop that much harder.
// Without FlushForTesting(), DeleteSoon() and ReleaseSoon() tasks could be
// skipped, resulting in memory leaks.
task_tracker_->AllowRunTasks();
ThreadPoolInstance::Get()->FlushForTesting();
ThreadPoolInstance::Get()->Shutdown();
ThreadPoolInstance::Get()->JoinForTesting();
DCHECK_EQ(g_task_tracker, task_tracker_);
g_task_tracker = nullptr;
}
void TaskEnvironment::DestroyThreadPool() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
if (threading_mode_ == ThreadingMode::MAIN_THREAD_ONLY) {
return;
}
DCHECK(ThreadPoolInstance::Get());
// Task runner lists will be destroyed when resetting thread pool instance.
scoped_lazy_task_runner_list_for_testing_.reset();
// Destroying ThreadPoolInstance state can result in waiting on worker
// threads. Make sure this is allowed to avoid flaking tests that have
// disallowed waits on their main thread.
ScopedAllowBaseSyncPrimitivesForTesting allow_waits_to_destroy_task_tracker;
ThreadPoolInstance::Set(nullptr);
}
sequence_manager::TimeDomain* TaskEnvironment::GetMockTimeDomain() const {
return mock_time_domain_.get();
}
sequence_manager::SequenceManager* TaskEnvironment::sequence_manager() const {
DCHECK(subclass_creates_default_taskrunner_);
return sequence_manager_.get();
}
void TaskEnvironment::DeferredInitFromSubclass(
scoped_refptr<base::SingleThreadTaskRunner> task_runner) {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
task_runner_ = std::move(task_runner);
sequence_manager_->SetDefaultTaskRunner(task_runner_);
CompleteInitialization();
}
scoped_refptr<base::SingleThreadTaskRunner>
TaskEnvironment::GetMainThreadTaskRunner() {
DCHECK(task_runner_);
return task_runner_;
}
bool TaskEnvironment::MainThreadIsIdle() const {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
sequence_manager::internal::SequenceManagerImpl* sequence_manager_impl =
static_cast<sequence_manager::internal::SequenceManagerImpl*>(
sequence_manager_.get());
// ReclaimMemory sweeps canceled delayed tasks.
sequence_manager_impl->ReclaimMemory();
return sequence_manager_impl->IsIdleForTesting();
}
RepeatingClosure TaskEnvironment::QuitClosure() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
if (!run_until_quit_loop_) {
run_until_quit_loop_ =
std::make_unique<RunLoop>(RunLoop::Type::kNestableTasksAllowed);
}
return run_until_quit_loop_->QuitClosure();
}
void TaskEnvironment::RunUntilQuit() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
DCHECK(run_until_quit_loop_)
<< "QuitClosure() not called before RunUntilQuit()";
const bool could_run_tasks = task_tracker_->AllowRunTasks();
run_until_quit_loop_->Run();
// Make the next call to RunUntilQuit() use a new RunLoop. This also
// invalidates all existing quit closures.
run_until_quit_loop_.reset();
if (!could_run_tasks) {
EXPECT_TRUE(
task_tracker_->DisallowRunTasks(TestTimeouts::action_max_timeout()))
<< "Could not bring ThreadPool back to ThreadPoolExecutionMode::QUEUED "
"after Quit() because some tasks were long running:\n"
<< task_tracker_->DescribeRunningTasks();
}
}
void TaskEnvironment::RunUntilIdle() {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
if (threading_mode_ == ThreadingMode::MAIN_THREAD_ONLY) {
RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle();
return;
}
// TODO(gab): This can be heavily simplified to essentially:
// bool HasMainThreadTasks() {
// if (message_loop_)
// return !message_loop_->IsIdleForTesting();
// return mock_time_task_runner_->NextPendingTaskDelay().is_zero();
// }
// while (task_tracker_->HasIncompleteTasks() || HasMainThreadTasks()) {
// base::RunLoop().RunUntilIdle();
// // Avoid busy-looping.
// if (task_tracker_->HasIncompleteTasks())
// PlatformThread::Sleep(Milliseconds(1));
// }
// Update: This can likely be done now that MessageLoop::IsIdleForTesting()
// checks all queues.
//
// Other than that it works because once |task_tracker_->HasIncompleteTasks()|
// is false we know for sure that the only thing that can make it true is a
// main thread task (TaskEnvironment owns all the threads). As such we can't
// racily see it as false on the main thread and be wrong as if it the main
// thread sees the atomic count at zero, it's the only one that can make it go
// up. And the only thing that can make it go up on the main thread are main
// thread tasks and therefore we're done if there aren't any left.
//
// This simplification further allows simplification of DisallowRunTasks().
//
// This can also be simplified even further once TaskTracker becomes directly
// aware of main thread tasks. https://crbug.com/660078.
const bool could_run_tasks = task_tracker_->AllowRunTasks();
for (;;) {
task_tracker_->AllowRunTasks();
// First run as many tasks as possible on the main thread in parallel with
// tasks in ThreadPool. This increases likelihood of TSAN catching
// threading errors and eliminates possibility of hangs should a
// ThreadPool task synchronously block on a main thread task
// (ThreadPoolInstance::FlushForTesting() can't be used here for that
// reason).
RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle();
// Then halt ThreadPool. DisallowRunTasks() failing indicates that there
// were ThreadPool tasks currently running. In that case, try again from
// top when DisallowRunTasks() yields control back to this thread as they
// may have posted main thread tasks.
if (!task_tracker_->DisallowRunTasks()) {
continue;
}
// Once ThreadPool is halted. Run any remaining main thread tasks (which
// may have been posted by ThreadPool tasks that completed between the
// above main thread RunUntilIdle() and ThreadPool DisallowRunTasks()).
// Note: this assumes that no main thread task synchronously blocks on a
// ThreadPool tasks (it certainly shouldn't); this call could otherwise
// hang.
RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle();
// The above RunUntilIdle() guarantees there are no remaining main thread
// tasks (the ThreadPool being halted during the last RunUntilIdle() is
// key as it prevents a task being posted to it racily with it determining
// it had no work remaining). Therefore, we're done if there is no more work
// on ThreadPool either (there can be ThreadPool work remaining if
// DisallowRunTasks() preempted work and/or the last RunUntilIdle() posted
// more ThreadPool tasks).
// Note: this last |if| couldn't be turned into a |do {} while();|. A
// conditional loop makes it such that |continue;| results in checking the
// condition (not unconditionally loop again) which would be incorrect for
// the above logic as it'd then be possible for a ThreadPool task to be
// running during the DisallowRunTasks() test, causing it to fail, but then
// post to the main thread and complete before the loop's condition is
// verified which could result in HasIncompleteUndelayedTasksForTesting()
// returning false and the loop erroneously exiting with a pending task on
// the main thread.
if (!task_tracker_->HasIncompleteTaskSourcesForTesting()) {
break;
}
}
// The above loop always ends with running tasks being disallowed. Re-enable
// parallel execution before returning if it was allowed at the beginning of
// this call.
if (could_run_tasks) {
task_tracker_->AllowRunTasks();
}
}
void TaskEnvironment::FastForwardBy(TimeDelta delta) {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
DCHECK(mock_time_domain_);
DCHECK_GE(delta, TimeDelta());
const bool could_run_tasks = task_tracker_ && task_tracker_->AllowRunTasks();
const TimeTicks fast_forward_until = mock_time_domain_->NowTicks() + delta;
do {
RunUntilIdle();
// ReclaimMemory sweeps canceled delayed tasks, making sure
// FastForwardToNextTaskOrCap isn't affected by canceled tasks.
sequence_manager_->ReclaimMemory();
} while (mock_time_domain_->FastForwardToNextTaskOrCap(
sequence_manager_->GetNextDelayedWakeUp(), fast_forward_until) !=
MockTimeDomain::NextTaskSource::kNone);
if (task_tracker_ && !could_run_tasks) {
task_tracker_->DisallowRunTasks();
}
}
void TaskEnvironment::FastForwardUntilNoTasksRemain() {
// TimeTicks::operator+(TimeDelta) uses saturated arithmetic so it's safe to
// pass in TimeDelta::Max().
FastForwardBy(TimeDelta::Max());
}
void TaskEnvironment::AdvanceClock(TimeDelta delta) {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
DCHECK(mock_time_domain_);
DCHECK_GE(delta, TimeDelta());
mock_time_domain_->AdvanceClock(delta);
}
const TickClock* TaskEnvironment::GetMockTickClock() const {
DCHECK(mock_time_domain_);
return mock_time_domain_.get();
}
base::TimeTicks TaskEnvironment::NowTicks() const {
DCHECK(mock_time_domain_);
return mock_time_domain_->NowTicks();
}
const Clock* TaskEnvironment::GetMockClock() const {
DCHECK(mock_clock_);
return mock_clock_.get();
}
size_t TaskEnvironment::GetPendingMainThreadTaskCount() const {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
// ReclaimMemory sweeps canceled delayed tasks.
sequence_manager_->ReclaimMemory();
return sequence_manager_->GetPendingTaskCountForTesting();
}
TimeDelta TaskEnvironment::NextMainThreadPendingTaskDelay() const {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
// ReclaimMemory sweeps canceled delayed tasks.
sequence_manager_->ReclaimMemory();
DCHECK(mock_time_domain_);
LazyNow lazy_now(mock_time_domain_->NowTicks());
if (!sequence_manager_->IsIdleForTesting()) {
return TimeDelta();
}
absl::optional<sequence_manager::WakeUp> wake_up =
sequence_manager_->GetNextDelayedWakeUp();
return wake_up ? wake_up->time - lazy_now.Now() : TimeDelta::Max();
}
bool TaskEnvironment::NextTaskIsDelayed() const {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
TimeDelta delay = NextMainThreadPendingTaskDelay();
return !delay.is_zero() && !delay.is_max();
}
void TaskEnvironment::DescribeCurrentTasks() const {
DCHECK_CALLED_ON_VALID_THREAD(main_thread_checker_);
LOG(INFO) << task_tracker_->DescribeRunningTasks();
LOG(INFO) << sequence_manager_->DescribeAllPendingTasks();
}
void TaskEnvironment::DetachFromThread() {
DETACH_FROM_THREAD(main_thread_checker_);
if (task_tracker_) {
task_tracker_->controller_thread_checker_.DetachFromThread();
}
}
// static
void TaskEnvironment::AddDestructionObserver(DestructionObserver* observer) {
GetDestructionObservers().AddObserver(observer);
}
// static
void TaskEnvironment::RemoveDestructionObserver(DestructionObserver* observer) {
GetDestructionObservers().RemoveObserver(observer);
}
TaskEnvironment::ParallelExecutionFence::ParallelExecutionFence(
const char* error_message) {
CHECK(!g_task_tracker || g_task_tracker->OnControllerThread())
<< error_message;
if (g_task_tracker) {
// Do not attempt to install a fence post shutdown, the only remaining tasks
// at that point are CONTINUE_ON_SHUTDOWN and attempting to wait for them
// causes more issues (test timeouts) than the fence solves (data races on
// global state). CONTINUE_ON_SHUTDOWN tasks should generally not be
// touching global state and while not all users of ParallelExecutionFence
// (FeatureList) guard against access from CONTINUE_ON_SHUTDOWN tasks, any
// such tasks abusing this would be flagged by TSAN and have to be fixed
// manually. Note: this is only relevant in browser tests as unit tests
// already go through a full join in TaskEnvironment::DestroyThreadPool().
previously_allowed_to_run_ = g_task_tracker->TasksAllowedToRun() &&
!g_task_tracker->IsShutdownComplete();
// DisallowRunTasks typically yields back if it fails to reach quiescence
// within 1ms. This is typically done to let the main thread run tasks that
// could potentially be blocking main thread tasks. In this case however,
// main thread making progress while installing the fence would be more
// surprising. So allow more time but report errors after a while.
while (previously_allowed_to_run_ &&
!g_task_tracker->DisallowRunTasks(Seconds(5))) {
LOG(WARNING) << "Installing ParallelExecutionFence is slow because of "
"these running tasks:\n"
<< g_task_tracker->DescribeRunningTasks()
<< "\nParallelExecutionFence requested by:\n"
<< debug::StackTrace();
}
} else if (ThreadPoolInstance::Get()) {
LOG(WARNING)
<< "ParallelExecutionFence is ineffective when ThreadPoolInstance is "
"not managed by a TaskEnvironment.\n"
"Test fixtures should use a TaskEnvironment member or statically "
"invoke TaskEnvironment::CreateThreadPool() + "
"ThreadPoolInstance::Get()->StartWithDefaultParams() when the "
"former is not possible.";
}
}
TaskEnvironment::ParallelExecutionFence::~ParallelExecutionFence() {
if (previously_allowed_to_run_) {
g_task_tracker->AllowRunTasks();
}
}
TaskEnvironment::TestTaskTracker::TestTaskTracker()
: can_run_tasks_cv_(&lock_), task_completed_cv_(&lock_) {
// Consider threads blocked on these as idle (avoids instantiating
// ScopedBlockingCalls and confusing some //base internals tests).
can_run_tasks_cv_.declare_only_used_while_idle();
task_completed_cv_.declare_only_used_while_idle();
}
bool TaskEnvironment::TestTaskTracker::AllowRunTasks() {
AutoLock auto_lock(lock_);
const bool could_run_tasks = can_run_tasks_;
can_run_tasks_ = true;
can_run_tasks_cv_.Broadcast();
return could_run_tasks;
}
bool TaskEnvironment::TestTaskTracker::TasksAllowedToRun() const {
AutoLock auto_lock(lock_);
return can_run_tasks_;
}
bool TaskEnvironment::TestTaskTracker::DisallowRunTasks(TimeDelta timeout) {
// Disallowing task running should only be done from the main thread to avoid
// racing with shutdown.
DCHECK(OnControllerThread());
AutoLock auto_lock(lock_);
// Can't disallow run task if there are tasks running.
for (TimeTicks now = subtle::TimeTicksNowIgnoringOverride(),
end = now + timeout;
!running_tasks_.empty() && now < end;
now = subtle::TimeTicksNowIgnoringOverride()) {
task_completed_cv_.TimedWait(end - now);
}
// Timed out waiting for running tasks, yield to caller.
if (!running_tasks_.empty()) {
// This condition should never be sought after shutdown and this call
// shouldn't be racing shutdown either per the above `OnControllerThread()`
// contract.
DCHECK(!IsShutdownComplete());
return false;
}
can_run_tasks_ = false;
return true;
}
void TaskEnvironment::TestTaskTracker::RunTask(internal::Task task,
internal::TaskSource* sequence,
const TaskTraits& traits) {
const Location posted_from = task.posted_from;
int task_number;
{
AutoLock auto_lock(lock_);
while (!can_run_tasks_) {
can_run_tasks_cv_.Wait();
}
task_number = next_task_number_++;
auto pair = running_tasks_.emplace(task_number, posted_from);
CHECK(pair.second); // If false, the |task_number| was already present.
}
// Using TimeTicksNowIgnoringOverride() because in tests that mock time,
// Now() can advance very far very fast, and that's not a problem. This is
// watching for tests that have actually long running tasks which cause our
// test suites to run slowly.
base::TimeTicks before = base::subtle::TimeTicksNowIgnoringOverride();
internal::ThreadPoolImpl::TaskTrackerImpl::RunTask(std::move(task), sequence,
traits);
base::TimeTicks after = base::subtle::TimeTicksNowIgnoringOverride();
const TimeDelta kTimeout = TestTimeouts::action_max_timeout();
if ((after - before) > kTimeout) {
ADD_FAILURE() << "TaskEnvironment: RunTask took more than "
<< kTimeout.InSeconds() << " seconds. Posted from "
<< posted_from.ToString();
}
{
AutoLock auto_lock(lock_);
CHECK(can_run_tasks_);
size_t found = running_tasks_.erase(task_number);
CHECK_EQ(1u, found);
task_completed_cv_.Broadcast();
}
}
std::string TaskEnvironment::TestTaskTracker::DescribeRunningTasks() const {
base::flat_map<int64_t, Location> running_tasks_copy;
{
AutoLock auto_lock(lock_);
running_tasks_copy = running_tasks_;
}
std::string running_tasks_str = "ThreadPool currently running tasks:";
if (running_tasks_copy.empty()) {
running_tasks_str += " none.";
} else {
for (auto& pair : running_tasks_copy) {
running_tasks_str += "\n Task posted from: " + pair.second.ToString();
}
}
return running_tasks_str;
}
void TaskEnvironment::TestTaskTracker::BeginCompleteShutdown(
base::WaitableEvent& shutdown_event) {
const TimeDelta kTimeout = TestTimeouts::action_max_timeout();
if (shutdown_event.TimedWait(kTimeout)) {
return; // All tasks completed in time, yay! Yield back to shutdown.
}
// If we had to wait too long for the shutdown tasks to complete, then we
// should fail the test and report which tasks are currently running.
std::string failure_tasks = DescribeRunningTasks();
ADD_FAILURE() << "TaskEnvironment: CompleteShutdown took more than "
<< kTimeout.InSeconds() << " seconds.\n"
<< failure_tasks;
base::Process::TerminateCurrentProcessImmediately(-1);
}
void TaskEnvironment::TestTaskTracker::AssertFlushForTestingAllowed() {
AutoLock auto_lock(lock_);
ASSERT_TRUE(can_run_tasks_)
<< "FlushForTesting() requires ThreadPool tasks to be allowed to run or "
"it will hang. Note: DisallowRunTasks happens implicitly on-and-off "
"during TaskEnvironment::RunUntilIdle and main thread tasks running "
"under it should thus never FlushForTesting().";
}
} // namespace test
} // namespace base