blob: d84b2f69d01a989404f9403e7caff91c100d2a21 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// `Time` represents an absolute point in coordinated universal time (UTC),
// internally represented as microseconds (s/1,000,000) since the Windows epoch
// (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
// defined in time_PLATFORM.cc. Note that values for `Time` may skew and jump
// around as the operating system makes adjustments to synchronize (e.g., with
// NTP servers). Thus, client code that uses the `Time` class must account for
// this.
//
// `TimeDelta` represents a duration of time, internally represented in
// microseconds.
//
// `TimeTicks` and `ThreadTicks` represent an abstract time that is most of the
// time incrementing, for use in measuring time durations. Internally, they are
// represented in microseconds. They cannot be converted to a human-readable
// time, but are guaranteed not to decrease (unlike the `Time` class). Note
// that `TimeTicks` may "stand still" (e.g., if the computer is suspended), and
// `ThreadTicks` will "stand still" whenever the thread has been de-scheduled
// by the operating system.
//
// All time classes are copyable, assignable, and occupy 64 bits per instance.
// Prefer to pass them by value, e.g.:
//
// void MyFunction(TimeDelta arg);
//
// All time classes support `operator<<` with logging streams, e.g. `LOG(INFO)`.
// For human-readable formatting, use //base/i18n/time_formatting.h.
//
// Example use cases for different time classes:
//
// Time: Interpreting the wall-clock time provided by a remote system.
// Detecting whether cached resources have expired. Providing the
// user with a display of the current date and time. Determining
// the amount of time between events across re-boots of the
// machine.
//
// TimeTicks: Tracking the amount of time a task runs. Executing delayed
// tasks at the right time. Computing presentation timestamps.
// Synchronizing audio and video using TimeTicks as a common
// reference clock (lip-sync). Measuring network round-trip
// latency.
//
// ThreadTicks: Benchmarking how long the current thread has been doing actual
// work.
//
// Serialization:
//
// Use the helpers in //base/json/values_util.h when serializing `Time`
// or `TimeDelta` to/from `base::Value`.
//
// Otherwise:
//
// - Time: use `FromDeltaSinceWindowsEpoch()`/`ToDeltaSinceWindowsEpoch()`.
// - TimeDelta: use `base::Microseconds()`/`InMicroseconds()`.
//
// `TimeTicks` and `ThreadTicks` do not have a stable origin; serialization for
// the purpose of persistence is not supported.
#ifndef BASE_TIME_TIME_H_
#define BASE_TIME_TIME_H_
#include <stdint.h>
#include <time.h>
#include <iosfwd>
#include <limits>
#include <ostream>
#include "base/base_export.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/numerics/clamped_math.h"
#include "build/build_config.h"
#include "build/chromeos_buildflags.h"
#if defined(STARBOARD)
#include "starboard/common/time.h"
#else
#if BUILDFLAG(IS_APPLE)
#include "base/time/buildflags/buildflags.h"
#endif
#if BUILDFLAG(IS_FUCHSIA)
#include <zircon/types.h>
#endif
#if BUILDFLAG(IS_APPLE)
#include <CoreFoundation/CoreFoundation.h>
#include <mach/mach_time.h>
// Avoid Mac system header macro leak.
#undef TYPE_BOOL
#endif
#if BUILDFLAG(IS_ANDROID)
#include <jni.h>
#endif
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#include <unistd.h>
#include <sys/time.h>
#endif
#if BUILDFLAG(IS_WIN)
#include "base/gtest_prod_util.h"
#include "base/win/windows_types.h"
namespace ABI {
namespace Windows {
namespace Foundation {
struct DateTime;
struct TimeSpan;
} // namespace Foundation
} // namespace Windows
} // namespace ABI
#endif
#endif
namespace base {
class PlatformThreadHandle;
class TimeDelta;
template <typename T>
constexpr TimeDelta Microseconds(T n);
// TimeDelta ------------------------------------------------------------------
class BASE_EXPORT TimeDelta {
public:
constexpr TimeDelta() = default;
#if defined(STARBOARD)
static constexpr int64_t kHoursPerDay = 24;
static constexpr int64_t kSecondsPerMinute = 60;
static constexpr int64_t kMinutesPerHour = 60;
static constexpr int64_t kSecondsPerHour =
kSecondsPerMinute * kMinutesPerHour;
static constexpr int64_t kMillisecondsPerSecond = 1000;
static constexpr int64_t kMillisecondsPerDay =
kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
static constexpr int64_t kMicrosecondsPerSecond =
kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
static constexpr int64_t kMicrosecondsPerMinute =
kMicrosecondsPerSecond * kSecondsPerMinute;
static constexpr int64_t kMicrosecondsPerHour =
kMicrosecondsPerMinute * kMinutesPerHour;
static constexpr int64_t kMicrosecondsPerDay =
kMicrosecondsPerHour * kHoursPerDay;
static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
static constexpr int64_t kNanosecondsPerSecond =
kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
template <typename T>
static constexpr TimeDelta FromDays(T n) {
return FromInternalValue(MakeClampedNum(n) * kMicrosecondsPerDay);
}
template <typename T>
static constexpr TimeDelta FromHours(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
kMicrosecondsPerHour);
}
template <typename T>
static constexpr TimeDelta FromMinutes(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
kMicrosecondsPerMinute);
}
template <typename T>
static constexpr TimeDelta FromSeconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
kMicrosecondsPerSecond);
}
template <typename T>
static constexpr TimeDelta FromSecondsD(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
kMicrosecondsPerSecond);
}
template <typename T>
static constexpr TimeDelta FromMilliseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
kMicrosecondsPerMillisecond);
}
template <typename T>
static constexpr TimeDelta FromMillisecondsD(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
kMicrosecondsPerMillisecond);
}
template <typename T>
static constexpr TimeDelta FromMicroseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n));
}
template <typename T>
static constexpr TimeDelta FromNanoseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) /
kNanosecondsPerMicrosecond);
}
template <typename T>
static constexpr TimeDelta FromHertz(T n) {
return n ? TimeDelta::FromInternalValue(kMicrosecondsPerSecond /
MakeClampedNum(n))
: TimeDelta::Max();
}
#elif BUILDFLAG(IS_WIN)
static TimeDelta FromQPCValue(LONGLONG qpc_value);
// TODO(crbug.com/989694): Avoid base::TimeDelta factory functions
// based on absolute time
static TimeDelta FromFileTime(FILETIME ft);
static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
static TimeDelta FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
static TimeDelta FromTimeSpec(const timespec& ts);
#endif
#if BUILDFLAG(IS_FUCHSIA)
static TimeDelta FromZxDuration(zx_duration_t nanos);
#endif
#if BUILDFLAG(IS_APPLE)
#if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
static TimeDelta FromMachTime(uint64_t mach_time);
#endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
#endif // BUILDFLAG(IS_APPLE)
// Converts an integer value representing TimeDelta to a class. This is used
// when deserializing a |TimeDelta| structure, using a value known to be
// compatible. It is not provided as a constructor because the integer type
// may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. http://crbug.com/634507
static constexpr TimeDelta FromInternalValue(int64_t delta) {
return TimeDelta(delta);
}
// Returns the maximum time delta, which should be greater than any reasonable
// time delta we might compare it to. If converted to double with ToDouble()
// it becomes an IEEE double infinity. Use FiniteMax() if you want a very
// large number that doesn't do this. TimeDelta math saturates at the end
// points so adding to TimeDelta::Max() leaves the value unchanged.
// Subtracting should leave the value unchanged but currently changes it
// TODO(https://crbug.com/869387).
static constexpr TimeDelta Max();
// Returns the minimum time delta, which should be less than than any
// reasonable time delta we might compare it to. For more details see the
// comments for Max().
static constexpr TimeDelta Min();
// Returns the maximum time delta which is not equivalent to infinity. Only
// subtracting a finite time delta from this time delta has a defined result.
static constexpr TimeDelta FiniteMax();
// Returns the minimum time delta which is not equivalent to -infinity. Only
// adding a finite time delta to this time delta has a defined result.
static constexpr TimeDelta FiniteMin();
// Returns the internal numeric value of the TimeDelta object. Please don't
// use this and do arithmetic on it, as it is more error prone than using the
// provided operators.
// For serializing, use FromInternalValue to reconstitute.
//
// DEPRECATED - Do not use in new code. http://crbug.com/634507
constexpr int64_t ToInternalValue() const { return delta_; }
// Returns the magnitude (absolute value) of this TimeDelta.
constexpr TimeDelta magnitude() const { return TimeDelta(delta_.Abs()); }
// Returns true if the time delta is a zero, positive or negative time delta.
constexpr bool is_zero() const { return delta_ == 0; }
constexpr bool is_positive() const { return delta_ > 0; }
constexpr bool is_negative() const { return delta_ < 0; }
// Returns true if the time delta is the maximum/minimum time delta.
constexpr bool is_max() const { return *this == Max(); }
constexpr bool is_min() const { return *this == Min(); }
constexpr bool is_inf() const { return is_min() || is_max(); }
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
struct timespec ToTimeSpec() const;
#endif
#if BUILDFLAG(IS_FUCHSIA)
zx_duration_t ToZxDuration() const;
#endif
#if BUILDFLAG(IS_WIN)
ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
ABI::Windows::Foundation::TimeSpan ToWinrtTimeSpan() const;
#endif
// Returns the frequency in Hertz (cycles per second) that has a period of
// *this.
constexpr double ToHz() const;
// Returns the time delta in some unit. Minimum argument values return as
// -inf for doubles and min type values otherwise. Maximum ones are treated as
// +inf for doubles and max type values otherwise. Their results will produce
// an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
// point value. The InXYZ versions return a truncated value (aka rounded
// towards zero, std::trunc() behavior). The InXYZFloored() versions round to
// lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
// up to greater integers (std::ceil() behavior). WARNING: Floating point
// arithmetic is such that XXX(t.InXXXF()) may not precisely equal |t|.
// Hence, floating point values should not be used for storage.
int InDays() const;
int InDaysFloored() const;
constexpr int InHours() const;
constexpr int InMinutes() const;
constexpr double InSecondsF() const;
constexpr int64_t InSeconds() const;
double InMillisecondsF() const;
int64_t InMilliseconds() const;
int64_t InMillisecondsRoundedUp() const;
constexpr int64_t InMicroseconds() const { return delta_; }
double InMicrosecondsF() const;
constexpr int64_t InNanoseconds() const;
// Computations with other deltas.
constexpr TimeDelta operator+(TimeDelta other) const;
constexpr TimeDelta operator-(TimeDelta other) const;
constexpr TimeDelta& operator+=(TimeDelta other) {
return *this = (*this + other);
}
constexpr TimeDelta& operator-=(TimeDelta other) {
return *this = (*this - other);
}
constexpr TimeDelta operator-() const {
if (!is_inf())
return TimeDelta(-delta_);
return (delta_ < 0) ? Max() : Min();
}
// Computations with numeric types.
template <typename T>
constexpr TimeDelta operator*(T a) const {
return TimeDelta(int64_t{delta_ * a});
}
template <typename T>
constexpr TimeDelta operator/(T a) const {
return TimeDelta(int64_t{delta_ / a});
}
template <typename T>
constexpr TimeDelta& operator*=(T a) {
return *this = (*this * a);
}
template <typename T>
constexpr TimeDelta& operator/=(T a) {
return *this = (*this / a);
}
// This does floating-point division. For an integer result, either call
// IntDiv(), or (possibly clearer) use this operator with
// base::Clamp{Ceil,Floor,Round}() or base::saturated_cast() (for truncation).
// Note that converting to double here drops precision to 53 bits.
constexpr double operator/(TimeDelta a) const {
// 0/0 and inf/inf (any combination of positive and negative) are invalid
// (they are almost certainly not intentional, and result in NaN, which
// turns into 0 if clamped to an integer; this makes introducing subtle bugs
// too easy).
CHECK(!is_zero() || !a.is_zero());
CHECK(!is_inf() || !a.is_inf());
return ToDouble() / a.ToDouble();
}
constexpr int64_t IntDiv(TimeDelta a) const {
if (!is_inf() && !a.is_zero())
return int64_t{delta_ / a.delta_};
// For consistency, use the same edge case CHECKs and behavior as the code
// above.
CHECK(!is_zero() || !a.is_zero());
CHECK(!is_inf() || !a.is_inf());
return ((delta_ < 0) == (a.delta_ < 0))
? std::numeric_limits<int64_t>::max()
: std::numeric_limits<int64_t>::min();
}
constexpr TimeDelta operator%(TimeDelta a) const {
return TimeDelta(
(is_inf() || a.is_zero() || a.is_inf()) ? delta_ : (delta_ % a.delta_));
}
constexpr TimeDelta& operator%=(TimeDelta other) {
return *this = (*this % other);
}
// Comparison operators.
constexpr bool operator==(TimeDelta other) const {
return delta_ == other.delta_;
}
constexpr bool operator!=(TimeDelta other) const {
return delta_ != other.delta_;
}
constexpr bool operator<(TimeDelta other) const {
return delta_ < other.delta_;
}
constexpr bool operator<=(TimeDelta other) const {
return delta_ <= other.delta_;
}
constexpr bool operator>(TimeDelta other) const {
return delta_ > other.delta_;
}
constexpr bool operator>=(TimeDelta other) const {
return delta_ >= other.delta_;
}
// Returns this delta, ceiled/floored/rounded-away-from-zero to the nearest
// multiple of |interval|.
TimeDelta CeilToMultiple(TimeDelta interval) const;
TimeDelta FloorToMultiple(TimeDelta interval) const;
TimeDelta RoundToMultiple(TimeDelta interval) const;
private:
// Constructs a delta given the duration in microseconds. This is private
// to avoid confusion by callers with an integer constructor. Use
// base::Seconds, base::Milliseconds, etc. instead.
constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
constexpr explicit TimeDelta(ClampedNumeric<int64_t> delta_us)
: delta_(delta_us) {}
// Returns a double representation of this TimeDelta's tick count. In
// particular, Max()/Min() are converted to +/-infinity.
constexpr double ToDouble() const {
if (!is_inf())
return static_cast<double>(delta_);
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
// Delta in microseconds.
ClampedNumeric<int64_t> delta_ = 0;
};
constexpr TimeDelta TimeDelta::operator+(TimeDelta other) const {
if (!other.is_inf())
return TimeDelta(delta_ + other.delta_);
// Additions involving two infinities are only valid if signs match.
CHECK(!is_inf() || (delta_ == other.delta_));
return other;
}
constexpr TimeDelta TimeDelta::operator-(TimeDelta other) const {
if (!other.is_inf())
return TimeDelta(delta_ - other.delta_);
// Subtractions involving two infinities are only valid if signs differ.
CHECK_NE(int64_t{delta_}, int64_t{other.delta_});
return (other.delta_ < 0) ? Max() : Min();
}
template <typename T>
constexpr TimeDelta operator*(T a, TimeDelta td) {
return td * a;
}
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
// TimeBase--------------------------------------------------------------------
// Do not reference the time_internal::TimeBase template class directly. Please
// use one of the time subclasses instead, and only reference the public
// TimeBase members via those classes.
namespace time_internal {
// Provides value storage and comparison/math operations common to all time
// classes. Each subclass provides for strong type-checking to ensure
// semantically meaningful comparison/math of time values from the same clock
// source or timeline.
template<class TimeClass>
class TimeBase {
public:
static constexpr int64_t kHoursPerDay = 24;
static constexpr int64_t kSecondsPerMinute = 60;
static constexpr int64_t kMinutesPerHour = 60;
static constexpr int64_t kSecondsPerHour =
kSecondsPerMinute * kMinutesPerHour;
static constexpr int64_t kMillisecondsPerSecond = 1000;
static constexpr int64_t kMillisecondsPerDay =
kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
static constexpr int64_t kMicrosecondsPerSecond =
kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
static constexpr int64_t kMicrosecondsPerMinute =
kMicrosecondsPerSecond * kSecondsPerMinute;
static constexpr int64_t kMicrosecondsPerHour =
kMicrosecondsPerMinute * kMinutesPerHour;
static constexpr int64_t kMicrosecondsPerDay =
kMicrosecondsPerHour * kHoursPerDay;
static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
static constexpr int64_t kNanosecondsPerSecond =
kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
// TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
//
// Warning: Be careful when writing code that performs math on time values,
// since it's possible to produce a valid "zero" result that should not be
// interpreted as a "null" value. If you find yourself using this method or
// the zero-arg default constructor, please consider using an optional to
// express the null state.
//
// Returns true if this object has not been initialized (probably).
constexpr bool is_null() const { return us_ == 0; }
// Returns true if this object represents the maximum/minimum time.
constexpr bool is_max() const { return *this == Max(); }
constexpr bool is_min() const { return *this == Min(); }
constexpr bool is_inf() const { return is_min() || is_max(); }
// Returns the maximum/minimum times, which should be greater/less than than
// any reasonable time with which we might compare it.
static constexpr TimeClass Max() {
return TimeClass(std::numeric_limits<int64_t>::max());
}
static constexpr TimeClass Min() {
return TimeClass(std::numeric_limits<int64_t>::min());
}
// For legacy serialization only. When serializing to `base::Value`, prefer
// the helpers from //base/json/values_util.h instead. Otherwise, use
// `Time::ToDeltaSinceWindowsEpoch()` for `Time` and
// `TimeDelta::InMiseconds()` for `TimeDelta`. See http://crbug.com/634507.
constexpr int64_t ToInternalValue() const { return us_; }
// The amount of time since the origin (or "zero") point. This is a syntactic
// convenience to aid in code readability, mainly for debugging/testing use
// cases.
//
// Warning: While the Time subclass has a fixed origin point, the origin for
// the other subclasses can vary each time the application is restarted.
constexpr TimeDelta since_origin() const;
// Compute the difference between two times.
#if !defined(__aarch64__) && BUILDFLAG(IS_ANDROID)
NOINLINE // https://crbug.com/1369775
#endif
constexpr TimeDelta operator-(const TimeBase<TimeClass>& other) const;
// Return a new time modified by some delta.
constexpr TimeClass operator+(TimeDelta delta) const;
constexpr TimeClass operator-(TimeDelta delta) const;
// Modify by some time delta.
constexpr TimeClass& operator+=(TimeDelta delta) {
return static_cast<TimeClass&>(*this = (*this + delta));
}
constexpr TimeClass& operator-=(TimeDelta delta) {
return static_cast<TimeClass&>(*this = (*this - delta));
}
// Comparison operators
constexpr bool operator==(const TimeBase<TimeClass>& other) const {
return us_ == other.us_;
}
constexpr bool operator!=(const TimeBase<TimeClass>& other) const {
return us_ != other.us_;
}
constexpr bool operator<(const TimeBase<TimeClass>& other) const {
return us_ < other.us_;
}
constexpr bool operator<=(const TimeBase<TimeClass>& other) const {
return us_ <= other.us_;
}
constexpr bool operator>(const TimeBase<TimeClass>& other) const {
return us_ > other.us_;
}
constexpr bool operator>=(const TimeBase<TimeClass>& other) const {
return us_ >= other.us_;
}
protected:
constexpr explicit TimeBase(int64_t us) : us_(us) {}
// Time value in a microsecond timebase.
ClampedNumeric<int64_t> us_;
};
#if BUILDFLAG(IS_WIN)
#if defined(ARCH_CPU_ARM64)
// TSCTicksPerSecond is not supported on Windows on Arm systems because the
// cycle-counting methods use the actual CPU cycle count, and not a consistent
// incrementing counter.
#else
// Returns true if the CPU support constant rate TSC.
[[nodiscard]] BASE_EXPORT bool HasConstantRateTSC();
// Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
// been measured yet. Needs to be guarded with a call to HasConstantRateTSC().
[[nodiscard]] BASE_EXPORT double TSCTicksPerSecond();
#endif
#endif // BUILDFLAG(IS_WIN)
} // namespace time_internal
template <class TimeClass>
inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
return t + delta;
}
// Time -----------------------------------------------------------------------
// Represents a wall clock time in UTC. Values are not guaranteed to be
// monotonically non-decreasing and are subject to large amounts of skew.
// Time is stored internally as microseconds since the Windows epoch (1601).
class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
public:
// Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
// (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
// following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
// of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
// 1800, and 1900.
static constexpr int64_t kTimeTToMicrosecondsOffset =
INT64_C(11644473600000000);
#if BUILDFLAG(IS_WIN)
// To avoid overflow in QPC to Microseconds calculations, since we multiply
// by kMicrosecondsPerSecond, then the QPC value should not exceed
// (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
#endif
// kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
// for values passed to FromUTCExploded() and FromLocalExploded(). Those
// functions will return false if passed values outside these limits. The limits
// are inclusive, meaning that the API should support all dates within a given
// limit year.
//
// WARNING: These are not the same limits for the inverse functionality,
// UTCExplode() and LocalExplode(). See method comments for further details.
#if BUILDFLAG(IS_WIN)
static constexpr int kExplodedMinYear = 1601;
static constexpr int kExplodedMaxYear = 30827;
#elif BUILDFLAG(IS_IOS) && !__LP64__
static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
#elif BUILDFLAG(IS_APPLE)
static constexpr int kExplodedMinYear = 1902;
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
#elif BUILDFLAG(IS_ANDROID)
// Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
// versions like KitKat (ARM but not x86 emulator) can't handle some early
// dates (e.g. before 1170). So we set min conservatively here.
static constexpr int kExplodedMinYear = 1902;
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
#else
static constexpr int kExplodedMinYear =
(sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
static constexpr int kExplodedMaxYear =
(sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
#endif
// Represents an exploded time that can be formatted nicely. This is kind of
// like the Win32 SYSTEMTIME structure or the Unix "struct tm" with a few
// additions and changes to prevent errors.
// This structure always represents dates in the Gregorian calendar and always
// encodes day_of_week as Sunday==0, Monday==1, .., Saturday==6. This means
// that base::Time::LocalExplode and base::Time::FromLocalExploded only
// respect the current local time zone in the conversion and do *not* use a
// calendar or day-of-week encoding from the current locale.
struct BASE_EXPORT Exploded {
int year; // Four digit year "2007"
int month; // 1-based month (values 1 = January, etc.)
int day_of_week; // 0-based day of week (0 = Sunday, etc.)
int day_of_month; // 1-based day of month (1-31)
int hour; // Hour within the current day (0-23)
int minute; // Minute within the current hour (0-59)
int second; // Second within the current minute (0-59 plus leap
// seconds which may take it up to 60).
int millisecond; // Milliseconds within the current second (0-999)
// A cursory test for whether the data members are within their
// respective ranges. A 'true' return value does not guarantee the
// Exploded value can be successfully converted to a Time value.
bool HasValidValues() const;
};
// TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
//
// Warning: Be careful when writing code that performs math on time values,
// since it's possible to produce a valid "zero" result that should not be
// interpreted as a "null" value. If you find yourself using this constructor
// or the is_null() method, please consider using an optional to express the
// null state.
//
// Contains the NULL time. Use Time::Now() to get the current time.
constexpr Time() : TimeBase(0) {}
// Returns the time for epoch in Unix-like system (Jan 1, 1970).
static constexpr Time UnixEpoch() { return Time(kTimeTToMicrosecondsOffset); }
// Returns the current time. Watch out, the system might adjust its clock
// in which case time will actually go backwards. We don't guarantee that
// times are increasing, or that two calls to Now() won't be the same.
static Time Now();
// Returns the current time. Same as Now() except that this function always
// uses system time so that there are no discrepancies between the returned
// time and system time even on virtual environments including our test bot.
// For timing sensitive unittests, this function should be used.
static Time NowFromSystemTime();
// Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
// 00:00:00 UTC).
//
// For serialization, when handling `base::Value`, prefer the helpers in
// //base/json/values_util.h instead. Otherwise, use these methods for
// opaque serialization and deserialization, e.g.
//
// // Serialization:
// base::Time last_updated = ...;
// SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
//
// // Deserialization:
// base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
// base::Microseconds(LoadFromDatabase()));
//
// Do not use `FromInternalValue()` or `ToInternalValue()` for this purpose.
static constexpr Time FromDeltaSinceWindowsEpoch(TimeDelta delta) {
return Time(delta.InMicroseconds());
}
constexpr TimeDelta ToDeltaSinceWindowsEpoch() const {
return Microseconds(us_);
}
// Converts to/from time_t in UTC and a Time class.
static constexpr Time FromTimeT(time_t tt);
time_t ToTimeT() const;
// Converts time to/from a double which is the number of seconds since epoch
// (Jan 1, 1970). Webkit uses this format to represent time.
// Because WebKit initializes double time value to 0 to indicate "not
// initialized", we map it to empty Time object that also means "not
// initialized".
static Time FromDoubleT(double dt);
double ToDoubleT() const;
#if defined(STARBOARD)
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
// earlier versions) will have the |ts|'s tv_nsec component zeroed out,
// having a 1 second resolution, which agrees with
// https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
static Time FromTimeSpec(const timespec& ts);
#endif
// Converts to/from the Javascript convention for times, a number of
// milliseconds since the epoch:
// https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date/getTime.
//
// Don't use ToJsTime() in new code, since it contains a subtle hack (only
// exactly 1601-01-01 00:00 UTC is represented as 1970-01-01 00:00 UTC), and
// that is not appropriate for general use. Try to use ToJsTimeIgnoringNull()
// unless you have a very good reason to use ToJsTime().
static Time FromJsTime(double ms_since_epoch);
double ToJsTime() const;
double ToJsTimeIgnoringNull() const;
// Converts to/from Java convention for times, a number of milliseconds since
// the epoch. Because the Java format has less resolution, converting to Java
// time is a lossy operation.
static Time FromJavaTime(int64_t ms_since_epoch);
int64_t ToJavaTime() const;
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
static Time FromTimeVal(struct timeval t);
struct timeval ToTimeVal() const;
#endif
#if BUILDFLAG(IS_FUCHSIA)
static Time FromZxTime(zx_time_t time);
zx_time_t ToZxTime() const;
#endif
#if BUILDFLAG(IS_APPLE)
static Time FromCFAbsoluteTime(CFAbsoluteTime t);
CFAbsoluteTime ToCFAbsoluteTime() const;
#if defined(__OBJC__)
static Time FromNSDate(NSDate* date);
NSDate* ToNSDate() const;
#endif
#if BUILDFLAG(IS_WIN)
static Time FromFileTime(FILETIME ft);
FILETIME ToFileTime() const;
// The minimum time of a low resolution timer. This is basically a windows
// constant of ~15.6ms. While it does vary on some older OS versions, we'll
// treat it as static across all windows versions.
static const int kMinLowResolutionThresholdMs = 16;
// Enable or disable Windows high resolution timer.
static void EnableHighResolutionTimer(bool enable);
// Activates or deactivates the high resolution timer based on the |activate|
// flag. If the HighResolutionTimer is not Enabled (see
// EnableHighResolutionTimer), this function will return false. Otherwise
// returns true. Each successful activate call must be paired with a
// subsequent deactivate call.
// All callers to activate the high resolution timer must eventually call
// this function to deactivate the high resolution timer.
static bool ActivateHighResolutionTimer(bool activate);
// Returns true if the high resolution timer is both enabled and activated.
// This is provided for testing only, and is not tracked in a thread-safe
// way.
static bool IsHighResolutionTimerInUse();
// The following two functions are used to report the fraction of elapsed time
// that the high resolution timer is activated.
// ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
// measurement interval and GetHighResolutionTimerUsage() returns the
// percentage of time since the reset that the high resolution timer was
// activated.
// ResetHighResolutionTimerUsage() must be called at least once before calling
// GetHighResolutionTimerUsage(); otherwise the usage result would be
// undefined.
static void ResetHighResolutionTimerUsage();
static double GetHighResolutionTimerUsage();
#endif // BUILDFLAG(IS_WIN)
#endif
// Converts an exploded structure representing either the local time or UTC
// into a Time class. Returns false on a failure when, for example, a day of
// month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
// FromLocalExploded respects the current time zone but does not attempt to
// use the calendar or day-of-week encoding from the current locale - see the
// comments on base::Time::Exploded for more information.
[[nodiscard]] static bool FromUTCExploded(const Exploded& exploded,
Time* time) {
return FromExploded(false, exploded, time);
}
[[nodiscard]] static bool FromLocalExploded(const Exploded& exploded,
Time* time) {
return FromExploded(true, exploded, time);
}
// Converts a string representation of time to a Time object.
// An example of a time string which is converted is as below:-
// "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
// in the input string, FromString assumes local time and FromUTCString
// assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
// specified in RFC822) is treated as if the timezone is not specified.
//
// WARNING: the underlying converter is very permissive. For example: it is
// not checked whether a given day of the week matches the date; Feb 29
// silently becomes Mar 1 in non-leap years; under certain conditions, whole
// English sentences may be parsed successfully and yield unexpected results.
//
// TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
// a new time converter class.
[[nodiscard]] static bool FromString(const char* time_string,
Time* parsed_time) {
return FromStringInternal(time_string, true, parsed_time);
}
[[nodiscard]] static bool FromUTCString(const char* time_string,
Time* parsed_time) {
return FromStringInternal(time_string, false, parsed_time);
}
// Fills the given |exploded| structure with either the local time or UTC from
// this Time instance. If the conversion cannot be made, the output will be
// assigned invalid values. Use Exploded::HasValidValues() to confirm a
// successful conversion.
//
// Y10K compliance: This method will successfully convert all Times that
// represent dates on/after the start of the year 1601 and on/before the start
// of the year 30828. Some platforms might convert over a wider input range.
// LocalExplode respects the current time zone but does not attempt to use the
// calendar or day-of-week encoding from the current locale - see the comments
// on base::Time::Exploded for more information.
void UTCExplode(Exploded* exploded) const { Explode(false, exploded); }
void LocalExplode(Exploded* exploded) const { Explode(true, exploded); }
// The following two functions round down the time to the nearest day in
// either UTC or local time. It will represent midnight on that day.
Time UTCMidnight() const { return Midnight(false); }
Time LocalMidnight() const { return Midnight(true); }
// For legacy deserialization only. Converts an integer value representing
// Time to a class. This may be used when deserializing a |Time| structure,
// using a value known to be compatible. It is not provided as a constructor
// because the integer type may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. When deserializing from `base::Value`,
// prefer the helpers from //base/json/values_util.h instead.
// Otherwise, use `Time::FromDeltaSinceWindowsEpoch()` for `Time` and
// `TimeDelta::FromMiseconds()` for `TimeDelta`. http://crbug.com/634507
static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
private:
friend class time_internal::TimeBase<Time>;
constexpr explicit Time(int64_t microseconds_since_win_epoch)
: TimeBase(microseconds_since_win_epoch) {}
// Explodes the given time to either local time |is_local = true| or UTC
// |is_local = false|.
void Explode(bool is_local, Exploded* exploded) const;
// Unexplodes a given time assuming the source is either local time
// |is_local = true| or UTC |is_local = false|. Function returns false on
// failure and sets |time| to Time(0). Otherwise returns true and sets |time|
// to non-exploded time.
[[nodiscard]] static bool FromExploded(bool is_local,
const Exploded& exploded,
Time* time);
// Some platforms use the ICU library to provide To/FromExploded, when their
// native library implementations are insufficient in some way.
static void ExplodeUsingIcu(int64_t millis_since_unix_epoch,
bool is_local,
Exploded* exploded);
[[nodiscard]] static bool FromExplodedUsingIcu(
bool is_local,
const Exploded& exploded,
int64_t* millis_since_unix_epoch);
// Rounds down the time to the nearest day in either local time
// |is_local = true| or UTC |is_local = false|.
Time Midnight(bool is_local) const;
// Converts a string representation of time to a Time object.
// An example of a time string which is converted is as below:-
// "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
// in the input string, local time |is_local = true| or
// UTC |is_local = false| is assumed. A timezone that cannot be parsed
// (e.g. "UTC" which is not specified in RFC822) is treated as if the
// timezone is not specified.
[[nodiscard]] static bool FromStringInternal(const char* time_string,
bool is_local,
Time* parsed_time);
// Comparison does not consider |day_of_week| when doing the operation.
[[nodiscard]] static bool ExplodedMostlyEquals(const Exploded& lhs,
const Exploded& rhs);
// Converts the provided time in milliseconds since the Unix epoch (1970) to a
// Time object, avoiding overflows.
[[nodiscard]] static bool FromMillisecondsSinceUnixEpoch(
int64_t unix_milliseconds,
Time* time);
// Returns the milliseconds since the Unix epoch (1970), rounding the
// microseconds towards -infinity.
int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
};
// Factory methods that return a TimeDelta of the given unit.
// WARNING: Floating point arithmetic is such that XXX(t.InXXXF()) may not
// precisely equal |t|. Hence, floating point values should not be used for
// storage.
template <typename T>
constexpr TimeDelta Days(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerDay);
}
template <typename T>
constexpr TimeDelta Hours(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerHour);
}
template <typename T>
constexpr TimeDelta Minutes(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerMinute);
}
template <typename T>
constexpr TimeDelta Seconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerSecond);
}
template <typename T>
constexpr TimeDelta Milliseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerMillisecond);
}
template <typename T>
constexpr TimeDelta Microseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n));
}
template <typename T>
constexpr TimeDelta Nanoseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) /
Time::kNanosecondsPerMicrosecond);
}
template <typename T>
constexpr TimeDelta Hertz(T n) {
return n ? TimeDelta::FromInternalValue(Time::kMicrosecondsPerSecond /
MakeClampedNum(n))
: TimeDelta::Max();
}
// TimeDelta functions that must appear below the declarations of Time/TimeDelta
constexpr double TimeDelta::ToHz() const {
return Seconds(1) / *this;
}
constexpr int TimeDelta::InHours() const {
// saturated_cast<> is necessary since very large (but still less than
// min/max) deltas would result in overflow.
return saturated_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
constexpr int TimeDelta::InMinutes() const {
// saturated_cast<> is necessary since very large (but still less than
// min/max) deltas would result in overflow.
return saturated_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
constexpr double TimeDelta::InSecondsF() const {
if (!is_inf())
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
constexpr int64_t TimeDelta::InSeconds() const {
return is_inf() ? delta_ : (delta_ / Time::kMicrosecondsPerSecond);
}
constexpr int64_t TimeDelta::InNanoseconds() const {
return base::ClampMul(delta_, Time::kNanosecondsPerMicrosecond);
}
// static
constexpr TimeDelta TimeDelta::Max() {
return TimeDelta(std::numeric_limits<int64_t>::max());
}
// static
constexpr TimeDelta TimeDelta::Min() {
return TimeDelta(std::numeric_limits<int64_t>::min());
}
// static
constexpr TimeDelta TimeDelta::FiniteMax() {
return TimeDelta(std::numeric_limits<int64_t>::max() - 1);
}
// static
constexpr TimeDelta TimeDelta::FiniteMin() {
return TimeDelta(std::numeric_limits<int64_t>::min() + 1);
}
// TimeBase functions that must appear below the declarations of Time/TimeDelta
namespace time_internal {
template <class TimeClass>
constexpr TimeDelta TimeBase<TimeClass>::since_origin() const {
return Microseconds(us_);
}
template <class TimeClass>
constexpr TimeDelta TimeBase<TimeClass>::operator-(
const TimeBase<TimeClass>& other) const {
return Microseconds(us_ - other.us_);
}
template <class TimeClass>
constexpr TimeClass TimeBase<TimeClass>::operator+(TimeDelta delta) const {
return TimeClass((Microseconds(us_) + delta).InMicroseconds());
}
template <class TimeClass>
constexpr TimeClass TimeBase<TimeClass>::operator-(TimeDelta delta) const {
return TimeClass((Microseconds(us_) - delta).InMicroseconds());
}
} // namespace time_internal
// Time functions that must appear below the declarations of Time/TimeDelta
// static
constexpr Time Time::FromTimeT(time_t tt) {
if (tt == 0)
return Time(); // Preserve 0 so we can tell it doesn't exist.
return (tt == std::numeric_limits<time_t>::max())
? Max()
: (UnixEpoch() + Seconds(tt));
}
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
// TimeTicks ------------------------------------------------------------------
// Represents monotonically non-decreasing clock time.
class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
public:
// The underlying clock used to generate new TimeTicks.
enum class Clock {
FUCHSIA_ZX_CLOCK_MONOTONIC,
LINUX_CLOCK_MONOTONIC,
IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
MAC_MACH_ABSOLUTE_TIME,
WIN_QPC,
WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
};
constexpr TimeTicks() : TimeBase(0) {}
// Platform-dependent tick count representing "right now." When
// IsHighResolution() returns false, the resolution of the clock could be
// as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
// microsecond.
static TimeTicks Now();
// Returns true if the high resolution clock is working on this system and
// Now() will return high resolution values. Note that, on systems where the
// high resolution clock works but is deemed inefficient, the low resolution
// clock will be used instead.
[[nodiscard]] static bool IsHighResolution();
// Returns true if TimeTicks is consistent across processes, meaning that
// timestamps taken on different processes can be safely compared with one
// another. (Note that, even on platforms where this returns true, time values
// from different threads that are within one tick of each other must be
// considered to have an ambiguous ordering.)
[[nodiscard]] static bool IsConsistentAcrossProcesses();
#if BUILDFLAG(IS_FUCHSIA)
// Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
zx_time_t ToZxTime() const;
#endif
#if BUILDFLAG(IS_WIN)
// Translates an absolute QPC timestamp into a TimeTicks value. The returned
// value has the same origin as Now(). Do NOT attempt to use this if
// IsHighResolution() returns false.
static TimeTicks FromQPCValue(LONGLONG qpc_value);
#endif
#if BUILDFLAG(IS_APPLE)
#if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
// Sets the current Mach timebase to `timebase`. Returns the old timebase.
static mach_timebase_info_data_t SetMachTimebaseInfoForTesting(
mach_timebase_info_data_t timebase);
#endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
#endif // BUILDFLAG(IS_APPLE)
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
// Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
// Note: this conversion may be non-monotonic in relation to previously
// obtained TimeTicks::Now() values because of the truncation (to
// milliseconds) performed by uptimeMillis().
static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
#endif // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
#if BUILDFLAG(IS_ANDROID)
// Converts to TimeTicks the value obtained from System.nanoTime(). This
// conversion will be monotonic in relation to previously obtained
// TimeTicks::Now() values as the clocks are based on the same posix monotonic
// clock, with nanoTime() potentially providing higher resolution.
static TimeTicks FromJavaNanoTime(int64_t nano_time_value);
// Truncates the TimeTicks value to the precision of SystemClock#uptimeMillis.
// Note that the clocks already share the same monotonic clock source.
jlong ToUptimeMillis() const;
// Returns the TimeTicks value as microseconds in the timebase of
// SystemClock#uptimeMillis.
// Note that the clocks already share the same monotonic clock source.
//
// System.nanoTime() may be used to get sub-millisecond precision in Java code
// and may be compared against this value as the two share the same clock
// source (though be sure to convert nanos to micros).
jlong ToUptimeMicros() const;
#endif // BUILDFLAG(IS_ANDROID)
// Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
// Time and TimeTicks respond differently to user-set time and NTP
// adjustments, this number is only an estimate. Nevertheless, this can be
// useful when you need to relate the value of TimeTicks to a real time and
// date. Note: Upon first invocation, this function takes a snapshot of the
// realtime clock to establish a reference point. This function will return
// the same value for the duration of the application, but will be different
// in future application runs.
static TimeTicks UnixEpoch();
static void SetSharedUnixEpoch(TimeTicks);
// Returns |this| snapped to the next tick, given a |tick_phase| and
// repeating |tick_interval| in both directions. |this| may be before,
// after, or equal to the |tick_phase|.
TimeTicks SnappedToNextTick(TimeTicks tick_phase,
TimeDelta tick_interval) const;
// Returns an enum indicating the underlying clock being used to generate
// TimeTicks timestamps. This function should only be used for debugging and
// logging purposes.
static Clock GetClock();
// Converts an integer value representing TimeTicks to a class. This may be
// used when deserializing a |TimeTicks| structure, using a value known to be
// compatible. It is not provided as a constructor because the integer type
// may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
// prefer TimeTicks + TimeDelta(); however, be aware that the origin is not
// fixed and may vary. Serializing for persistence is strongly discouraged.
// http://crbug.com/634507
static constexpr TimeTicks FromInternalValue(int64_t us) {
return TimeTicks(us);
}
protected:
#if BUILDFLAG(IS_WIN)
typedef DWORD (*TickFunctionType)(void);
static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
#endif
private:
friend class time_internal::TimeBase<TimeTicks>;
// Please use Now() to create a new object. This is for internal use
// and testing.
constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
};
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
// ThreadTicks ----------------------------------------------------------------
// Represents a clock, specific to a particular thread, than runs only while the
// thread is running.
class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
public:
constexpr ThreadTicks() : TimeBase(0) {}
// Returns true if ThreadTicks::Now() is supported on this system.
[[nodiscard]] static bool IsSupported() {
#if defined(STARBOARD)
return starboard::CurrentMonotonicThreadTime() != 0;
#elif (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA)
return true;
#elif BUILDFLAG(IS_WIN)
return IsSupportedWin();
#else
return false;
#endif
}
// Waits until the initialization is completed. Needs to be guarded with a
// call to IsSupported().
static void WaitUntilInitialized() {
#if BUILDFLAG(IS_WIN)
WaitUntilInitializedWin();
#endif
}
// Returns thread-specific CPU-time on systems that support this feature.
// Needs to be guarded with a call to IsSupported(). Use this timer
// to (approximately) measure how much time the calling thread spent doing
// actual work vs. being de-scheduled. May return bogus results if the thread
// migrates to another CPU between two calls. Returns an empty ThreadTicks
// object until the initialization is completed. If a clock reading is
// absolutely needed, call WaitUntilInitialized() before this method.
static ThreadTicks Now();
#if BUILDFLAG(IS_WIN)
// Similar to Now() above except this returns thread-specific CPU time for an
// arbitrary thread. All comments for Now() method above apply apply to this
// method as well.
static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
#endif
// Converts an integer value representing ThreadTicks to a class. This may be
// used when deserializing a |ThreadTicks| structure, using a value known to
// be compatible. It is not provided as a constructor because the integer type
// may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
// prefer ThreadTicks + TimeDelta(); however, be aware that the origin is not
// fixed and may vary. Serializing for persistence is strongly
// discouraged. http://crbug.com/634507
static constexpr ThreadTicks FromInternalValue(int64_t us) {
return ThreadTicks(us);
}
private:
friend class time_internal::TimeBase<ThreadTicks>;
// Please use Now() or GetForThread() to create a new object. This is for
// internal use and testing.
constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
#if BUILDFLAG(IS_WIN)
[[nodiscard]] static bool IsSupportedWin();
static void WaitUntilInitializedWin();
#endif
};
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
// Returns a string representation of the given time in the IMF-fixdate format
// defined by RFC 7231 (satisfying its HTTP-date format).
BASE_EXPORT std::string TimeFormatHTTP(base::Time time);
} // namespace base
#endif // BASE_TIME_TIME_H_