blob: 7684d61e1e62eaf3b69999bf015b50d2f855d931 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <windows.h>
#include <mmsystem.h>
#include <process.h>
#include <stdint.h>
#include <windows.foundation.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <vector>
#include "base/strings/string_piece.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "base/win/registry.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
// For TimeDelta::ConstexprInitialization
constexpr int kExpectedDeltaInMilliseconds = 10;
constexpr TimeDelta kConstexprTimeDelta =
Milliseconds(kExpectedDeltaInMilliseconds);
class MockTimeTicks : public TimeTicks {
public:
static DWORD Ticker() {
return static_cast<int>(InterlockedIncrement(&ticker_));
}
static void InstallTicker() {
old_tick_function_ = SetMockTickFunction(&Ticker);
ticker_ = -5;
}
static void UninstallTicker() { SetMockTickFunction(old_tick_function_); }
private:
static volatile LONG ticker_;
static TickFunctionType old_tick_function_;
};
volatile LONG MockTimeTicks::ticker_;
MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
HANDLE g_rollover_test_start;
unsigned __stdcall RolloverTestThreadMain(void* param) {
int64_t counter = reinterpret_cast<int64_t>(param);
DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
EXPECT_EQ(rv, WAIT_OBJECT_0);
TimeTicks last = TimeTicks::Now();
for (int index = 0; index < counter; index++) {
TimeTicks now = TimeTicks::Now();
int64_t milliseconds = (now - last).InMilliseconds();
// This is a tight loop; we could have looped faster than our
// measurements, so the time might be 0 millis.
EXPECT_GE(milliseconds, 0);
EXPECT_LT(milliseconds, 250);
last = now;
}
return 0;
}
#if defined(_M_ARM64) && defined(__clang__)
#define ReadCycleCounter() _ReadStatusReg(ARM64_PMCCNTR_EL0)
#else
#define ReadCycleCounter() __rdtsc()
#endif
// Measure the performance of the CPU cycle counter so that we can compare it to
// the overhead of QueryPerformanceCounter. A hard-coded frequency is used
// because we don't care about the accuracy of the results, we just need to do
// the work. The amount of work is not exactly the same as in TimeTicks::Now
// (some steps are skipped) but that doesn't seem to materially affect the
// results.
TimeTicks GetTSC() {
// Using a fake cycle counter frequency for test purposes.
return TimeTicks() + Microseconds(ReadCycleCounter() *
Time::kMicrosecondsPerSecond / 10000000);
}
} // namespace
// This test spawns many threads, and can occasionally fail due to resource
// exhaustion in the presence of ASan.
#if defined(ADDRESS_SANITIZER)
#define MAYBE_WinRollover DISABLED_WinRollover
#else
#define MAYBE_WinRollover WinRollover
#endif
TEST(TimeTicks, MAYBE_WinRollover) {
// The internal counter rolls over at ~49days. We'll use a mock
// timer to test this case.
// Basic test algorithm:
// 1) Set clock to rollover - N
// 2) Create N threads
// 3) Start the threads
// 4) Each thread loops through TimeTicks() N times
// 5) Each thread verifies integrity of result.
const int kThreads = 8;
// Use int64_t so we can cast into a void* without a compiler warning.
const int64_t kChecks = 10;
// It takes a lot of iterations to reproduce the bug!
// (See bug 1081395)
for (int loop = 0; loop < 4096; loop++) {
// Setup
MockTimeTicks::InstallTicker();
g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
HANDLE threads[kThreads];
for (int index = 0; index < kThreads; index++) {
void* argument = reinterpret_cast<void*>(kChecks);
unsigned thread_id;
threads[index] = reinterpret_cast<HANDLE>(_beginthreadex(
NULL, 0, RolloverTestThreadMain, argument, 0, &thread_id));
EXPECT_NE((HANDLE)NULL, threads[index]);
}
// Start!
SetEvent(g_rollover_test_start);
// Wait for threads to finish
for (int index = 0; index < kThreads; index++) {
DWORD rv = WaitForSingleObject(threads[index], INFINITE);
EXPECT_EQ(rv, WAIT_OBJECT_0);
// Since using _beginthreadex() (as opposed to _beginthread),
// an explicit CloseHandle() is supposed to be called.
CloseHandle(threads[index]);
}
CloseHandle(g_rollover_test_start);
// Teardown
MockTimeTicks::UninstallTicker();
}
}
TEST(TimeTicks, SubMillisecondTimers) {
// IsHighResolution() is false on some systems. Since the product still works
// even if it's false, it makes this entire test questionable.
if (!TimeTicks::IsHighResolution())
return;
// Run kRetries attempts to see a sub-millisecond timer.
constexpr int kRetries = 1000;
for (int index = 0; index < kRetries; index++) {
const TimeTicks start_time = TimeTicks::Now();
TimeDelta delta;
// Spin until the clock has detected a change.
do {
delta = TimeTicks::Now() - start_time;
} while (delta.is_zero());
if (!delta.InMilliseconds())
return;
}
ADD_FAILURE() << "Never saw a sub-millisecond timer.";
}
TEST(TimeTicks, TimeGetTimeCaps) {
// Test some basic assumptions that we expect about how timeGetDevCaps works.
TIMECAPS caps;
MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
ASSERT_EQ(static_cast<MMRESULT>(MMSYSERR_NOERROR), status);
EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, caps.wPeriodMax);
}
TEST(TimeTicks, QueryPerformanceFrequency) {
// Test some basic assumptions that we expect about QPC.
LARGE_INTEGER frequency;
BOOL rv = QueryPerformanceFrequency(&frequency);
EXPECT_EQ(TRUE, rv);
EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz
printf("QueryPerformanceFrequency is %5.2fMHz\n",
frequency.QuadPart / 1000000.0);
}
TEST(TimeTicks, TimerPerformance) {
// Verify that various timer mechanisms can always complete quickly.
// Note: This is a somewhat arbitrary test.
const int kLoops = 500000;
typedef TimeTicks (*TestFunc)();
struct TestCase {
TestFunc func;
const char* description;
};
// Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time)
// in order to create a single test case list.
static_assert(sizeof(TimeTicks) == sizeof(Time),
"TimeTicks and Time must be the same size");
std::vector<TestCase> cases;
cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"});
cases.push_back({&TimeTicks::Now, "TimeTicks::Now"});
cases.push_back({&GetTSC, "CPUCycleCounter"});
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
cases.push_back(
{reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"});
}
// Warm up the CPU to its full clock rate so that we get accurate timing
// information.
DWORD start_tick = GetTickCount();
const DWORD kWarmupMs = 50;
for (;;) {
DWORD elapsed = GetTickCount() - start_tick;
if (elapsed > kWarmupMs)
break;
}
for (const auto& test_case : cases) {
TimeTicks start = TimeTicks::Now();
for (int index = 0; index < kLoops; index++)
test_case.func();
TimeTicks stop = TimeTicks::Now();
// Turning off the check for acceptible delays. Without this check,
// the test really doesn't do much other than measure. But the
// measurements are still useful for testing timers on various platforms.
// The reason to remove the check is because the tests run on many
// buildbots, some of which are VMs. These machines can run horribly
// slow, and there is really no value for checking against a max timer.
// const int kMaxTime = 35; // Maximum acceptible milliseconds for test.
// EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
printf("%s: %1.2fus per call\n", test_case.description,
(stop - start).InMillisecondsF() * 1000 / kLoops);
}
}
#if !defined(ARCH_CPU_ARM64)
// This test is disabled on Windows ARM64 systems because TSCTicksPerSecond is
// only used in Chromium for QueryThreadCycleTime, and QueryThreadCycleTime
// doesn't use a constant-rate timer on ARM64.
TEST(TimeTicks, TSCTicksPerSecond) {
if (time_internal::HasConstantRateTSC()) {
ThreadTicks::WaitUntilInitialized();
// Read the CPU frequency from the registry.
base::win::RegKey processor_key(
HKEY_LOCAL_MACHINE,
L"Hardware\\Description\\System\\CentralProcessor\\0", KEY_QUERY_VALUE);
ASSERT_TRUE(processor_key.Valid());
DWORD processor_mhz_from_registry;
ASSERT_EQ(ERROR_SUCCESS,
processor_key.ReadValueDW(L"~MHz", &processor_mhz_from_registry));
// Expect the measured TSC frequency to be similar to the processor
// frequency from the registry (0.5% error).
double tsc_mhz_measured = time_internal::TSCTicksPerSecond() / 1e6;
EXPECT_NEAR(tsc_mhz_measured, processor_mhz_from_registry,
0.005 * processor_mhz_from_registry);
}
}
#endif
TEST(TimeTicks, FromQPCValue) {
if (!TimeTicks::IsHighResolution())
return;
LARGE_INTEGER frequency;
ASSERT_TRUE(QueryPerformanceFrequency(&frequency));
const int64_t ticks_per_second = frequency.QuadPart;
ASSERT_GT(ticks_per_second, 0);
// Generate the tick values to convert, advancing the tick count by varying
// amounts. These values will ensure that both the fast and overflow-safe
// conversion logic in FromQPCValue() is tested, and across the entire range
// of possible QPC tick values.
std::vector<int64_t> test_cases;
test_cases.push_back(0);
// Build the test cases.
{
const int kNumAdvancements = 100;
int64_t ticks = 0;
int64_t ticks_increment = 10;
for (int i = 0; i < kNumAdvancements; ++i) {
test_cases.push_back(ticks);
ticks += ticks_increment;
ticks_increment = ticks_increment * 6 / 5;
}
test_cases.push_back(Time::kQPCOverflowThreshold - 1);
test_cases.push_back(Time::kQPCOverflowThreshold);
test_cases.push_back(Time::kQPCOverflowThreshold + 1);
ticks = Time::kQPCOverflowThreshold + 10;
ticks_increment = 10;
for (int i = 0; i < kNumAdvancements; ++i) {
test_cases.push_back(ticks);
ticks += ticks_increment;
ticks_increment = ticks_increment * 6 / 5;
}
test_cases.push_back(std::numeric_limits<int64_t>::max());
}
// Test that the conversions using FromQPCValue() match those computed here
// using simple floating-point arithmetic. The floating-point math provides
// enough precision for all reasonable values to confirm that the
// implementation is correct to the microsecond, and for "very large" values
// it confirms that the answer is very close to correct.
for (int64_t ticks : test_cases) {
const double expected_microseconds_since_origin =
(static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) /
ticks_per_second;
const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks);
const double converted_microseconds_since_origin =
(converted_value - TimeTicks()).InMicrosecondsF();
// When we test with very large numbers we end up in a range where adjacent
// double values are far apart - 512.0 apart in one test failure. In that
// situation it makes no sense for our epsilon to be 1.0 - it should be
// the difference between adjacent doubles.
double epsilon = nextafter(expected_microseconds_since_origin, INFINITY) -
expected_microseconds_since_origin;
// Epsilon must be at least 1.0 because converted_microseconds_since_origin
// comes from an integral value, and expected_microseconds_since_origin is
// a double that is expected to be up to 0.999 larger. In addition, due to
// multiple roundings in the double calculation the actual error can be
// slightly larger than 1.0, even when the converted value is perfect. This
// epsilon value was chosen because it is slightly larger than the error
// seen in a test failure caused by the double rounding.
epsilon = std::max(epsilon, 1.002);
EXPECT_NEAR(expected_microseconds_since_origin,
converted_microseconds_since_origin, epsilon)
<< "ticks=" << ticks << ", to be converted via logic path: "
<< (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE");
}
}
TEST(TimeDelta, ConstexprInitialization) {
// Make sure that TimeDelta works around crbug.com/635974
EXPECT_EQ(kExpectedDeltaInMilliseconds, kConstexprTimeDelta.InMilliseconds());
}
TEST(TimeDelta, FromFileTime) {
FILETIME ft;
ft.dwLowDateTime = 1001;
ft.dwHighDateTime = 0;
// 100100 ns ~= 100 us.
EXPECT_EQ(Microseconds(100), TimeDelta::FromFileTime(ft));
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 1;
// 2^32 * 100 ns ~= 2^32 * 10 us.
EXPECT_EQ(Microseconds((1ull << 32) / 10), TimeDelta::FromFileTime(ft));
}
TEST(TimeDelta, FromWinrtDateTime) {
ABI::Windows::Foundation::DateTime dt;
dt.UniversalTime = 0;
// 0 UniversalTime = no delta since epoch.
EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtDateTime(dt));
dt.UniversalTime = 101;
// 101 * 100 ns ~= 10.1 microseconds.
EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtDateTime(dt));
}
TEST(TimeDelta, ToWinrtDateTime) {
auto time_delta = Seconds(0);
// No delta since epoch = 0 DateTime.
EXPECT_EQ(0, time_delta.ToWinrtDateTime().UniversalTime);
time_delta = Microseconds(10);
// 10 microseconds = 100 * 100 ns.
EXPECT_EQ(100, time_delta.ToWinrtDateTime().UniversalTime);
}
TEST(TimeDelta, FromWinrtTimeSpan) {
ABI::Windows::Foundation::TimeSpan ts;
ts.Duration = 0;
// 0.
EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtTimeSpan(ts));
ts.Duration = 101;
// 101 * 100 ns ~= 10.1 microseconds.
EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtTimeSpan(ts));
}
TEST(TimeDelta, ToWinrtTimeSpan) {
auto time_delta = Seconds(0);
// 0.
EXPECT_EQ(0, time_delta.ToWinrtTimeSpan().Duration);
time_delta = Microseconds(10);
// 10 microseconds = 100 * 100 ns.
EXPECT_EQ(100, time_delta.ToWinrtTimeSpan().Duration);
}
TEST(HighResolutionTimer, GetUsage) {
Time::ResetHighResolutionTimerUsage();
// 0% usage since the timer isn't activated regardless of how much time has
// elapsed.
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
Sleep(10);
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
Time::ActivateHighResolutionTimer(true);
Time::ResetHighResolutionTimerUsage();
Sleep(20);
// 100% usage since the timer has been activated entire time.
EXPECT_EQ(100.0, Time::GetHighResolutionTimerUsage());
Time::ActivateHighResolutionTimer(false);
Sleep(20);
double usage1 = Time::GetHighResolutionTimerUsage();
// usage1 should be about 50%.
EXPECT_LT(usage1, 100.0);
EXPECT_GT(usage1, 0.0);
Time::ActivateHighResolutionTimer(true);
Sleep(10);
Time::ActivateHighResolutionTimer(false);
double usage2 = Time::GetHighResolutionTimerUsage();
// usage2 should be about 60%.
EXPECT_LT(usage2, 100.0);
EXPECT_GT(usage2, usage1);
Time::ResetHighResolutionTimerUsage();
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
}
} // namespace base