blob: 1696cc0838f3eb2c20f9d2d9d1a8f38e50fc515a [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/pulse/pulse_output.h"
#include <pulse/pulseaudio.h>
#include <stdint.h>
#include "base/compiler_specific.h"
#include "base/strings/stringprintf.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/time.h"
#include "media/audio/audio_device_description.h"
#include "media/audio/audio_manager_base.h"
#include "media/audio/pulse/pulse_util.h"
#include "media/base/audio_sample_types.h"
namespace media {
using pulse::AutoPulseLock;
using pulse::WaitForOperationCompletion;
// static, pa_stream_notify_cb
void PulseAudioOutputStream::StreamNotifyCallback(pa_stream* s, void* p_this) {
PulseAudioOutputStream* stream = static_cast<PulseAudioOutputStream*>(p_this);
// Forward unexpected failures to the AudioSourceCallback if available. All
// these variables are only modified under pa_threaded_mainloop_lock() so this
// should be thread safe.
if (s && stream->source_callback_ &&
pa_stream_get_state(s) == PA_STREAM_FAILED) {
stream->source_callback_->OnError(AudioSourceCallback::ErrorType::kUnknown);
}
pa_threaded_mainloop_signal(stream->pa_mainloop_, 0);
}
// static, pa_stream_request_cb_t
void PulseAudioOutputStream::StreamRequestCallback(pa_stream* s, size_t len,
void* p_this) {
// Fulfill write request; must always result in a pa_stream_write() call.
static_cast<PulseAudioOutputStream*>(p_this)->FulfillWriteRequest(len);
}
PulseAudioOutputStream::PulseAudioOutputStream(
const AudioParameters& params,
const std::string& device_id,
AudioManagerBase* manager,
AudioManager::LogCallback log_callback)
: params_(AudioParameters(params.format(),
params.channel_layout_config(),
params.sample_rate(),
params.frames_per_buffer())),
device_id_(device_id),
manager_(manager),
log_callback_(std::move(log_callback)),
pa_context_(nullptr),
pa_mainloop_(nullptr),
pa_stream_(nullptr),
volume_(1.0f),
source_callback_(nullptr),
buffer_size_(params_.GetBytesPerBuffer(kSampleFormatF32)),
peak_detector_(base::BindRepeating(&AudioManager::TraceAmplitudePeak,
base::Unretained(manager_),
/*trace_start=*/false)) {
CHECK(params_.IsValid());
SendLogMessage("%s({device_id=%s}, {params=[%s]})", __func__,
device_id.c_str(), params.AsHumanReadableString().c_str());
audio_bus_ = AudioBus::Create(params_);
}
PulseAudioOutputStream::~PulseAudioOutputStream() {
// All internal structures should already have been freed in Close(), which
// calls AudioManagerBase::ReleaseOutputStream() which deletes this object.
DCHECK(!pa_stream_);
DCHECK(!pa_context_);
DCHECK(!pa_mainloop_);
}
bool PulseAudioOutputStream::Open() {
DCHECK(thread_checker_.CalledOnValidThread());
SendLogMessage("%s()", __func__);
bool result = pulse::CreateOutputStream(
&pa_mainloop_, &pa_context_, &pa_stream_, params_, device_id_,
AudioManager::GetGlobalAppName(), &StreamNotifyCallback,
&StreamRequestCallback, this);
if (!result) {
SendLogMessage("%s => (ERROR: failed to open PA stream)", __func__);
}
return result;
}
void PulseAudioOutputStream::Reset() {
if (!pa_mainloop_) {
DCHECK(!pa_stream_);
DCHECK(!pa_context_);
return;
}
{
AutoPulseLock auto_lock(pa_mainloop_);
// Close the stream.
if (pa_stream_) {
// Ensure all samples are played out before shutdown.
pa_operation* operation = pa_stream_flush(
pa_stream_, &pulse::StreamSuccessCallback, pa_mainloop_);
WaitForOperationCompletion(pa_mainloop_, operation, pa_context_,
pa_stream_);
// Release PulseAudio structures.
pa_stream_disconnect(pa_stream_);
pa_stream_set_write_callback(pa_stream_, nullptr, nullptr);
pa_stream_set_state_callback(pa_stream_, nullptr, nullptr);
pa_stream_unref(pa_stream_);
pa_stream_ = nullptr;
}
if (pa_context_) {
pa_context_disconnect(pa_context_);
pa_context_set_state_callback(pa_context_, nullptr, nullptr);
pa_context_unref(pa_context_);
pa_context_ = nullptr;
}
}
pa_threaded_mainloop_stop(pa_mainloop_);
pa_threaded_mainloop_free(pa_mainloop_);
pa_mainloop_ = nullptr;
}
void PulseAudioOutputStream::Close() {
DCHECK(thread_checker_.CalledOnValidThread());
SendLogMessage("%s()", __func__);
Reset();
// Signal to the manager that we're closed and can be removed.
// This should be the last call in the function as it deletes "this".
manager_->ReleaseOutputStream(this);
}
// This stream is always used with sub second buffer sizes, where it's
// sufficient to simply always flush upon Start().
void PulseAudioOutputStream::Flush() {}
void PulseAudioOutputStream::SendLogMessage(const char* format, ...) {
if (log_callback_.is_null())
return;
va_list args;
va_start(args, format);
log_callback_.Run("PAOS::" + base::StringPrintV(format, args) +
base::StringPrintf(" [this=%p]", this));
va_end(args);
}
void PulseAudioOutputStream::FulfillWriteRequest(size_t requested_bytes) {
int bytes_remaining = requested_bytes;
while (bytes_remaining > 0) {
void* pa_buffer = nullptr;
size_t pa_buffer_size = buffer_size_;
CHECK_GE(pa_stream_begin_write(pa_stream_, &pa_buffer, &pa_buffer_size), 0);
if (!source_callback_) {
memset(pa_buffer, 0, pa_buffer_size);
pa_stream_write(pa_stream_, pa_buffer, pa_buffer_size, nullptr, 0LL,
PA_SEEK_RELATIVE);
bytes_remaining -= pa_buffer_size;
continue;
}
size_t unwritten_frames_in_bus = audio_bus_->frames();
size_t frames_filled = source_callback_->OnMoreData(
pulse::GetHardwareLatency(pa_stream_), base::TimeTicks::Now(), {},
audio_bus_.get());
// Zero any unfilled data so it plays back as silence.
if (frames_filled < unwritten_frames_in_bus) {
audio_bus_->ZeroFramesPartial(frames_filled,
unwritten_frames_in_bus - frames_filled);
}
// TODO(tguilbert): Consider moving this before each of the individual
// `pa_stream_write()` calls in the loop below, to improve the accuracy of
// the latency measurements.
peak_detector_.FindPeak(audio_bus_.get());
audio_bus_->Scale(volume_);
size_t frame_size = buffer_size_ / unwritten_frames_in_bus;
size_t frames_to_copy = pa_buffer_size / frame_size;
size_t frame_offset_in_bus = 0;
do {
// Grab frames and get the count.
frames_to_copy =
std::min(audio_bus_->frames() - frame_offset_in_bus, frames_to_copy);
// We skip clipping since that occurs at the shared memory boundary.
audio_bus_->ToInterleavedPartial<Float32SampleTypeTraitsNoClip>(
frame_offset_in_bus, frames_to_copy,
reinterpret_cast<float*>(pa_buffer));
frame_offset_in_bus += frames_to_copy;
unwritten_frames_in_bus -= frames_to_copy;
if (pa_stream_write(pa_stream_, pa_buffer, pa_buffer_size, nullptr, 0LL,
PA_SEEK_RELATIVE) < 0) {
source_callback_->OnError(AudioSourceCallback::ErrorType::kUnknown);
return;
}
bytes_remaining -= pa_buffer_size;
if (unwritten_frames_in_bus) {
// Reset the buffer and the size:
// - If pa_buffer isn't nulled out, then it will get re-used, and
// there will be a race between PA reading and us writing.
// - If we don't shrink the pa_buffer_size to a small value, we get
// stuttering as the memory allocation can take far too long. This
// also means that we will never get more than we want, and we
// dont need to memset.
pa_buffer = nullptr;
pa_buffer_size = unwritten_frames_in_bus * frame_size;
CHECK_GE(pa_stream_begin_write(pa_stream_, &pa_buffer, &pa_buffer_size),
0);
frames_to_copy = pa_buffer_size / frame_size;
}
} while (unwritten_frames_in_bus);
}
}
void PulseAudioOutputStream::Start(AudioSourceCallback* callback) {
DCHECK(thread_checker_.CalledOnValidThread());
CHECK(callback);
CHECK(pa_stream_);
SendLogMessage("%s()", __func__);
AutoPulseLock auto_lock(pa_mainloop_);
// Ensure the context and stream are ready.
if (pa_context_get_state(pa_context_) != PA_CONTEXT_READY &&
pa_stream_get_state(pa_stream_) != PA_STREAM_READY) {
callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
return;
}
source_callback_ = callback;
// Uncork (resume) the stream.
pa_operation* operation = pa_stream_cork(
pa_stream_, 0, &pulse::StreamSuccessCallback, pa_mainloop_);
if (!WaitForOperationCompletion(pa_mainloop_, operation, pa_context_,
pa_stream_)) {
callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
}
}
void PulseAudioOutputStream::Stop() {
DCHECK(thread_checker_.CalledOnValidThread());
SendLogMessage("%s()", __func__);
// Cork (pause) the stream. Waiting for the main loop lock will ensure
// outstanding callbacks have completed.
AutoPulseLock auto_lock(pa_mainloop_);
if (!source_callback_)
return;
// Set |source_callback_| to nullptr so all FulfillWriteRequest() calls which
// may occur while waiting on the flush and cork exit immediately.
auto* callback = source_callback_.get();
source_callback_ = nullptr;
// Flush the stream prior to cork, doing so after will cause hangs. Write
// callbacks are suspended while inside pa_threaded_mainloop_lock() so this
// is all thread safe.
pa_operation* operation =
pa_stream_flush(pa_stream_, &pulse::StreamSuccessCallback, pa_mainloop_);
if (!WaitForOperationCompletion(pa_mainloop_, operation, pa_context_,
pa_stream_)) {
callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
}
operation = pa_stream_cork(pa_stream_, 1, &pulse::StreamSuccessCallback,
pa_mainloop_);
if (!WaitForOperationCompletion(pa_mainloop_, operation, pa_context_,
pa_stream_)) {
callback->OnError(AudioSourceCallback::ErrorType::kUnknown);
}
}
void PulseAudioOutputStream::SetVolume(double volume) {
DCHECK(thread_checker_.CalledOnValidThread());
// Waiting for the main loop lock will ensure outstanding callbacks have
// completed and |volume_| is not accessed from them.
AutoPulseLock auto_lock(pa_mainloop_);
volume_ = static_cast<float>(volume);
}
void PulseAudioOutputStream::GetVolume(double* volume) {
DCHECK(thread_checker_.CalledOnValidThread());
*volume = volume_;
}
} // namespace media