| // Copyright 2018 The Abseil Authors. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "absl/hash/hash.h" |
| |
| #include <algorithm> |
| #include <array> |
| #include <bitset> |
| #include <cstdint> |
| #include <cstring> |
| #include <deque> |
| #include <forward_list> |
| #include <functional> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <numeric> |
| #include <random> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <type_traits> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "gmock/gmock.h" |
| #include "gtest/gtest.h" |
| #include "absl/container/btree_map.h" |
| #include "absl/container/btree_set.h" |
| #include "absl/container/flat_hash_map.h" |
| #include "absl/container/flat_hash_set.h" |
| #include "absl/container/node_hash_map.h" |
| #include "absl/container/node_hash_set.h" |
| #include "absl/hash/hash_testing.h" |
| #include "absl/hash/internal/spy_hash_state.h" |
| #include "absl/meta/type_traits.h" |
| #include "absl/numeric/int128.h" |
| #include "absl/strings/cord_test_helpers.h" |
| |
| #ifdef ABSL_HAVE_STD_STRING_VIEW |
| #include <string_view> |
| #endif |
| |
| namespace { |
| |
| // Utility wrapper of T for the purposes of testing the `AbslHash` type erasure |
| // mechanism. `TypeErasedValue<T>` can be constructed with a `T`, and can |
| // be compared and hashed. However, all hashing goes through the hashing |
| // type-erasure framework. |
| template <typename T> |
| class TypeErasedValue { |
| public: |
| TypeErasedValue() = default; |
| TypeErasedValue(const TypeErasedValue&) = default; |
| TypeErasedValue(TypeErasedValue&&) = default; |
| explicit TypeErasedValue(const T& n) : n_(n) {} |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const TypeErasedValue& v) { |
| v.HashValue(absl::HashState::Create(&hash_state)); |
| return hash_state; |
| } |
| |
| void HashValue(absl::HashState state) const { |
| absl::HashState::combine(std::move(state), n_); |
| } |
| |
| bool operator==(const TypeErasedValue& rhs) const { return n_ == rhs.n_; } |
| bool operator!=(const TypeErasedValue& rhs) const { return !(*this == rhs); } |
| |
| private: |
| T n_; |
| }; |
| |
| // A TypeErasedValue refinement, for containers. It exposes the wrapped |
| // `value_type` and is constructible from an initializer list. |
| template <typename T> |
| class TypeErasedContainer : public TypeErasedValue<T> { |
| public: |
| using value_type = typename T::value_type; |
| TypeErasedContainer() = default; |
| TypeErasedContainer(const TypeErasedContainer&) = default; |
| TypeErasedContainer(TypeErasedContainer&&) = default; |
| explicit TypeErasedContainer(const T& n) : TypeErasedValue<T>(n) {} |
| TypeErasedContainer(std::initializer_list<value_type> init_list) |
| : TypeErasedContainer(T(init_list.begin(), init_list.end())) {} |
| // one-argument constructor of value type T, to appease older toolchains that |
| // get confused by one-element initializer lists in some contexts |
| explicit TypeErasedContainer(const value_type& v) |
| : TypeErasedContainer(T(&v, &v + 1)) {} |
| }; |
| |
| template <typename T> |
| using TypeErasedVector = TypeErasedContainer<std::vector<T>>; |
| |
| using absl::Hash; |
| using absl::hash_internal::SpyHashState; |
| |
| template <typename T> |
| class HashValueIntTest : public testing::Test { |
| }; |
| TYPED_TEST_SUITE_P(HashValueIntTest); |
| |
| template <typename T> |
| SpyHashState SpyHash(const T& value) { |
| return SpyHashState::combine(SpyHashState(), value); |
| } |
| |
| // Helper trait to verify if T is hashable. We use absl::Hash's poison status to |
| // detect it. |
| template <typename T> |
| using is_hashable = std::is_default_constructible<absl::Hash<T>>; |
| |
| TYPED_TEST_P(HashValueIntTest, BasicUsage) { |
| EXPECT_TRUE((is_hashable<TypeParam>::value)); |
| |
| TypeParam n = 42; |
| EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42})); |
| EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0})); |
| EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()), |
| SpyHash(std::numeric_limits<TypeParam>::min())); |
| } |
| |
| TYPED_TEST_P(HashValueIntTest, FastPath) { |
| // Test the fast-path to make sure the values are the same. |
| TypeParam n = 42; |
| EXPECT_EQ(absl::Hash<TypeParam>{}(n), |
| absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n))); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(HashValueIntTest, BasicUsage, FastPath); |
| using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, |
| uint32_t, uint64_t, size_t>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueIntTest, IntTypes); |
| |
| enum LegacyEnum { kValue1, kValue2, kValue3 }; |
| |
| enum class EnumClass { kValue4, kValue5, kValue6 }; |
| |
| TEST(HashValueTest, EnumAndBool) { |
| EXPECT_TRUE((is_hashable<LegacyEnum>::value)); |
| EXPECT_TRUE((is_hashable<EnumClass>::value)); |
| EXPECT_TRUE((is_hashable<bool>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3))); |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6))); |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(true, false))); |
| } |
| |
| TEST(HashValueTest, FloatingPoint) { |
| EXPECT_TRUE((is_hashable<float>::value)); |
| EXPECT_TRUE((is_hashable<double>::value)); |
| EXPECT_TRUE((is_hashable<long double>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(), |
| -std::numeric_limits<float>::infinity()))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(), |
| -std::numeric_limits<double>::infinity()))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| // Add some values with small exponent to test that NORMAL values also |
| // append their category. |
| .5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L, |
| 17 * static_cast<long double>(std::numeric_limits<double>::max()), |
| std::numeric_limits<long double>::infinity(), |
| -std::numeric_limits<long double>::infinity()))); |
| } |
| |
| TEST(HashValueTest, Pointer) { |
| EXPECT_TRUE((is_hashable<int*>::value)); |
| EXPECT_TRUE((is_hashable<int(*)(char, float)>::value)); |
| EXPECT_TRUE((is_hashable<void(*)(int, int, ...)>::value)); |
| |
| int i; |
| int* ptr = &i; |
| int* n = nullptr; |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(&i, ptr, nullptr, ptr + 1, n))); |
| } |
| |
| TEST(HashValueTest, PointerAlignment) { |
| // We want to make sure that pointer alignment will not cause bits to be |
| // stuck. |
| |
| constexpr size_t kTotalSize = 1 << 20; |
| std::unique_ptr<char[]> data(new char[kTotalSize]); |
| constexpr size_t kLog2NumValues = 5; |
| constexpr size_t kNumValues = 1 << kLog2NumValues; |
| |
| for (size_t align = 1; align < kTotalSize / kNumValues; |
| align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) { |
| SCOPED_TRACE(align); |
| ASSERT_LE(align * kNumValues, kTotalSize); |
| |
| size_t bits_or = 0; |
| size_t bits_and = ~size_t{}; |
| |
| for (size_t i = 0; i < kNumValues; ++i) { |
| size_t hash = absl::Hash<void*>()(data.get() + i * align); |
| bits_or |= hash; |
| bits_and &= hash; |
| } |
| |
| // Limit the scope to the bits we would be using for Swisstable. |
| constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1; |
| size_t stuck_bits = (~bits_or | bits_and) & kMask; |
| EXPECT_EQ(stuck_bits, 0u) << "0x" << std::hex << stuck_bits; |
| } |
| } |
| |
| TEST(HashValueTest, PointerToMember) { |
| struct Bass { |
| void q() {} |
| }; |
| |
| struct A : Bass { |
| virtual ~A() = default; |
| virtual void vfa() {} |
| |
| static auto pq() -> void (A::*)() { return &A::q; } |
| }; |
| |
| struct B : Bass { |
| virtual ~B() = default; |
| virtual void vfb() {} |
| |
| static auto pq() -> void (B::*)() { return &B::q; } |
| }; |
| |
| struct Foo : A, B { |
| void f1() {} |
| void f2() const {} |
| |
| int g1() & { return 0; } |
| int g2() const & { return 0; } |
| int g3() && { return 0; } |
| int g4() const && { return 0; } |
| |
| int h1() & { return 0; } |
| int h2() const & { return 0; } |
| int h3() && { return 0; } |
| int h4() const && { return 0; } |
| |
| int a; |
| int b; |
| |
| const int c = 11; |
| const int d = 22; |
| }; |
| |
| EXPECT_TRUE((is_hashable<float Foo::*>::value)); |
| EXPECT_TRUE((is_hashable<double (Foo::*)(int, int)&&>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(&Foo::a, &Foo::b, static_cast<int Foo::*>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(&Foo::c, &Foo::d, static_cast<const int Foo::*>(nullptr), |
| &Foo::a, &Foo::b))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| &Foo::f1, static_cast<void (Foo::*)()>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| &Foo::f2, static_cast<void (Foo::*)() const>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| &Foo::g1, &Foo::h1, static_cast<int (Foo::*)() &>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| &Foo::g2, &Foo::h2, static_cast<int (Foo::*)() const &>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| &Foo::g3, &Foo::h3, static_cast<int (Foo::*)() &&>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| &Foo::g4, &Foo::h4, static_cast<int (Foo::*)() const &&>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(static_cast<void (Foo::*)()>(&Foo::vfa), |
| static_cast<void (Foo::*)()>(&Foo::vfb), |
| static_cast<void (Foo::*)()>(nullptr)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(static_cast<void (Foo::*)()>(Foo::A::pq()), |
| static_cast<void (Foo::*)()>(Foo::B::pq()), |
| static_cast<void (Foo::*)()>(nullptr)))); |
| } |
| |
| TEST(HashValueTest, PairAndTuple) { |
| EXPECT_TRUE((is_hashable<std::pair<int, int>>::value)); |
| EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value)); |
| EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value)); |
| EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0), |
| std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42), |
| std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0), |
| std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9), |
| std::make_tuple(0, 0, -42)))); |
| |
| // Test that tuples of lvalue references work (so we need a few lvalues): |
| int a = 0, b = 1, c = 17, d = 23; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d)))); |
| |
| // Test that tuples of rvalue references work: |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42), |
| std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0), |
| std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9), |
| std::forward_as_tuple(0, 0, -42)))); |
| } |
| |
| TEST(HashValueTest, CombineContiguousWorks) { |
| std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)}; |
| std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)}; |
| |
| auto vh1 = SpyHash(v1); |
| auto vh2 = SpyHash(v2); |
| EXPECT_NE(vh1, vh2); |
| } |
| |
| struct DummyDeleter { |
| template <typename T> |
| void operator() (T* ptr) {} |
| }; |
| |
| struct SmartPointerEq { |
| template <typename T, typename U> |
| bool operator()(const T& t, const U& u) const { |
| return GetPtr(t) == GetPtr(u); |
| } |
| |
| template <typename T> |
| static auto GetPtr(const T& t) -> decltype(&*t) { |
| return t ? &*t : nullptr; |
| } |
| |
| static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; } |
| }; |
| |
| TEST(HashValueTest, SmartPointers) { |
| EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value)); |
| EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value)); |
| EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value)); |
| |
| int i, j; |
| std::unique_ptr<int, DummyDeleter> unique1(&i); |
| std::unique_ptr<int, DummyDeleter> unique2(&i); |
| std::unique_ptr<int, DummyDeleter> unique_other(&j); |
| std::unique_ptr<int, DummyDeleter> unique_null; |
| |
| std::shared_ptr<int> shared1(&i, DummyDeleter()); |
| std::shared_ptr<int> shared2(&i, DummyDeleter()); |
| std::shared_ptr<int> shared_other(&j, DummyDeleter()); |
| std::shared_ptr<int> shared_null; |
| |
| // Sanity check of the Eq function. |
| ASSERT_TRUE(SmartPointerEq{}(unique1, shared1)); |
| ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other)); |
| ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr)); |
| ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::forward_as_tuple(&i, nullptr, // |
| unique1, unique2, unique_null, // |
| absl::make_unique<int>(), // |
| shared1, shared2, shared_null, // |
| std::make_shared<int>()), |
| SmartPointerEq{})); |
| } |
| |
| TEST(HashValueTest, FunctionPointer) { |
| using Func = int (*)(); |
| EXPECT_TRUE(is_hashable<Func>::value); |
| |
| Func p1 = [] { return 2; }, p2 = [] { return 1; }; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(p1, p2, nullptr))); |
| } |
| |
| struct WrapInTuple { |
| template <typename T> |
| std::tuple<int, T, size_t> operator()(const T& t) const { |
| return std::make_tuple(7, t, 0xdeadbeef); |
| } |
| }; |
| |
| absl::Cord FlatCord(absl::string_view sv) { |
| absl::Cord c(sv); |
| c.Flatten(); |
| return c; |
| } |
| |
| absl::Cord FragmentedCord(absl::string_view sv) { |
| if (sv.size() < 2) { |
| return absl::Cord(sv); |
| } |
| size_t halfway = sv.size() / 2; |
| std::vector<absl::string_view> parts = {sv.substr(0, halfway), |
| sv.substr(halfway)}; |
| return absl::MakeFragmentedCord(parts); |
| } |
| |
| TEST(HashValueTest, Strings) { |
| EXPECT_TRUE((is_hashable<std::string>::value)); |
| |
| const std::string small = "foo"; |
| const std::string dup = "foofoo"; |
| const std::string large = std::string(2048, 'x'); // multiple of chunk size |
| const std::string huge = std::string(5000, 'a'); // not a multiple |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // |
| std::string(), absl::string_view(), absl::Cord(), // |
| std::string(""), absl::string_view(""), absl::Cord(""), // |
| std::string(small), absl::string_view(small), absl::Cord(small), // |
| std::string(dup), absl::string_view(dup), absl::Cord(dup), // |
| std::string(large), absl::string_view(large), absl::Cord(large), // |
| std::string(huge), absl::string_view(huge), FlatCord(huge), // |
| FragmentedCord(huge)))); |
| |
| // Also check that nested types maintain the same hash. |
| const WrapInTuple t{}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // |
| t(std::string()), t(absl::string_view()), t(absl::Cord()), // |
| t(std::string("")), t(absl::string_view("")), t(absl::Cord("")), // |
| t(std::string(small)), t(absl::string_view(small)), // |
| t(absl::Cord(small)), // |
| t(std::string(dup)), t(absl::string_view(dup)), t(absl::Cord(dup)), // |
| t(std::string(large)), t(absl::string_view(large)), // |
| t(absl::Cord(large)), // |
| t(std::string(huge)), t(absl::string_view(huge)), // |
| t(FlatCord(huge)), t(FragmentedCord(huge))))); |
| |
| // Make sure that hashing a `const char*` does not use its string-value. |
| EXPECT_NE(SpyHash(static_cast<const char*>("ABC")), |
| SpyHash(absl::string_view("ABC"))); |
| } |
| |
| TEST(HashValueTest, WString) { |
| EXPECT_TRUE((is_hashable<std::wstring>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"), |
| std::wstring(L"Some other different string"), |
| std::wstring(L"Iñtërnâtiônà lizætiøn")))); |
| } |
| |
| TEST(HashValueTest, U16String) { |
| EXPECT_TRUE((is_hashable<std::u16string>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"), |
| std::u16string(u"Some other different string"), |
| std::u16string(u"Iñtërnâtiônà lizætiøn")))); |
| } |
| |
| TEST(HashValueTest, U32String) { |
| EXPECT_TRUE((is_hashable<std::u32string>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"), |
| std::u32string(U"Some other different string"), |
| std::u32string(U"Iñtërnâtiônà lizætiøn")))); |
| } |
| |
| TEST(HashValueTest, WStringView) { |
| #ifndef ABSL_HAVE_STD_STRING_VIEW |
| GTEST_SKIP(); |
| #else |
| EXPECT_TRUE((is_hashable<std::wstring_view>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| std::wstring_view(), std::wstring_view(L"ABC"), std::wstring_view(L"ABC"), |
| std::wstring_view(L"Some other different string_view"), |
| std::wstring_view(L"Iñtërnâtiônà lizætiøn")))); |
| #endif |
| } |
| |
| TEST(HashValueTest, U16StringView) { |
| #ifndef ABSL_HAVE_STD_STRING_VIEW |
| GTEST_SKIP(); |
| #else |
| EXPECT_TRUE((is_hashable<std::u16string_view>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::u16string_view(), std::u16string_view(u"ABC"), |
| std::u16string_view(u"ABC"), |
| std::u16string_view(u"Some other different string_view"), |
| std::u16string_view(u"Iñtërnâtiônà lizætiøn")))); |
| #endif |
| } |
| |
| TEST(HashValueTest, U32StringView) { |
| #ifndef ABSL_HAVE_STD_STRING_VIEW |
| GTEST_SKIP(); |
| #else |
| EXPECT_TRUE((is_hashable<std::u32string_view>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::u32string_view(), std::u32string_view(U"ABC"), |
| std::u32string_view(U"ABC"), |
| std::u32string_view(U"Some other different string_view"), |
| std::u32string_view(U"Iñtërnâtiônà lizætiøn")))); |
| #endif |
| } |
| |
| TEST(HashValueTest, StdArray) { |
| EXPECT_TRUE((is_hashable<std::array<int, 3>>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}}))); |
| } |
| |
| TEST(HashValueTest, StdBitset) { |
| EXPECT_TRUE((is_hashable<std::bitset<257>>::value)); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| {std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"), |
| std::bitset<2>("11")})); |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| {std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()})); |
| |
| constexpr int kNumBits = 256; |
| std::array<std::string, 6> bit_strings; |
| bit_strings.fill(std::string(kNumBits, '1')); |
| bit_strings[1][0] = '0'; |
| bit_strings[2][1] = '0'; |
| bit_strings[3][kNumBits / 3] = '0'; |
| bit_strings[4][kNumBits - 2] = '0'; |
| bit_strings[5][kNumBits - 1] = '0'; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| {std::bitset<kNumBits>(bit_strings[0].c_str()), |
| std::bitset<kNumBits>(bit_strings[1].c_str()), |
| std::bitset<kNumBits>(bit_strings[2].c_str()), |
| std::bitset<kNumBits>(bit_strings[3].c_str()), |
| std::bitset<kNumBits>(bit_strings[4].c_str()), |
| std::bitset<kNumBits>(bit_strings[5].c_str())})); |
| } // namespace |
| |
| // Dummy type with unordered equality and hashing semantics. This preserves |
| // input order internally, and is used below to ensure we get test coverage |
| // for equal sequences with different iteraton orders. |
| template <typename T> |
| class UnorderedSequence { |
| public: |
| UnorderedSequence() = default; |
| template <typename TT> |
| UnorderedSequence(std::initializer_list<TT> l) |
| : values_(l.begin(), l.end()) {} |
| template <typename ForwardIterator, |
| typename std::enable_if<!std::is_integral<ForwardIterator>::value, |
| bool>::type = true> |
| UnorderedSequence(ForwardIterator begin, ForwardIterator end) |
| : values_(begin, end) {} |
| // one-argument constructor of value type T, to appease older toolchains that |
| // get confused by one-element initializer lists in some contexts |
| explicit UnorderedSequence(const T& v) : values_(&v, &v + 1) {} |
| |
| using value_type = T; |
| |
| size_t size() const { return values_.size(); } |
| typename std::vector<T>::const_iterator begin() const { |
| return values_.begin(); |
| } |
| typename std::vector<T>::const_iterator end() const { return values_.end(); } |
| |
| friend bool operator==(const UnorderedSequence& lhs, |
| const UnorderedSequence& rhs) { |
| return lhs.size() == rhs.size() && |
| std::is_permutation(lhs.begin(), lhs.end(), rhs.begin()); |
| } |
| friend bool operator!=(const UnorderedSequence& lhs, |
| const UnorderedSequence& rhs) { |
| return !(lhs == rhs); |
| } |
| template <typename H> |
| friend H AbslHashValue(H h, const UnorderedSequence& u) { |
| return H::combine(H::combine_unordered(std::move(h), u.begin(), u.end()), |
| u.size()); |
| } |
| |
| private: |
| std::vector<T> values_; |
| }; |
| |
| template <typename T> |
| class HashValueSequenceTest : public testing::Test { |
| }; |
| TYPED_TEST_SUITE_P(HashValueSequenceTest); |
| |
| TYPED_TEST_P(HashValueSequenceTest, BasicUsage) { |
| EXPECT_TRUE((is_hashable<TypeParam>::value)); |
| |
| using IntType = typename TypeParam::value_type; |
| auto a = static_cast<IntType>(0); |
| auto b = static_cast<IntType>(23); |
| auto c = static_cast<IntType>(42); |
| |
| std::vector<TypeParam> exemplars = { |
| TypeParam(), TypeParam(), TypeParam{a, b, c}, |
| TypeParam{a, c, b}, TypeParam{c, a, b}, TypeParam{a}, |
| TypeParam{a, a}, TypeParam{a, a, a}, TypeParam{a, a, b}, |
| TypeParam{a, b, a}, TypeParam{b, a, a}, TypeParam{a, b}, |
| TypeParam{b, c}}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(HashValueSequenceTest, BasicUsage); |
| using IntSequenceTypes = testing::Types< |
| std::deque<int>, std::forward_list<int>, std::list<int>, std::vector<int>, |
| std::vector<bool>, TypeErasedContainer<std::vector<int>>, std::set<int>, |
| std::multiset<int>, UnorderedSequence<int>, |
| TypeErasedContainer<UnorderedSequence<int>>, std::unordered_set<int>, |
| std::unordered_multiset<int>, absl::flat_hash_set<int>, |
| absl::node_hash_set<int>, absl::btree_set<int>>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueSequenceTest, IntSequenceTypes); |
| |
| template <typename T> |
| class HashValueNestedSequenceTest : public testing::Test {}; |
| TYPED_TEST_SUITE_P(HashValueNestedSequenceTest); |
| |
| TYPED_TEST_P(HashValueNestedSequenceTest, BasicUsage) { |
| using T = TypeParam; |
| using V = typename T::value_type; |
| std::vector<T> exemplars = { |
| // empty case |
| T{}, |
| // sets of empty sets |
| T{V{}}, T{V{}, V{}}, T{V{}, V{}, V{}}, |
| // multisets of different values |
| T{V{1}}, T{V{1, 1}, V{1, 1}}, T{V{1, 1, 1}, V{1, 1, 1}, V{1, 1, 1}}, |
| // various orderings of same nested sets |
| T{V{}, V{1, 2}}, T{V{}, V{2, 1}}, T{V{1, 2}, V{}}, T{V{2, 1}, V{}}, |
| // various orderings of various nested sets, case 2 |
| T{V{1, 2}, V{3, 4}}, T{V{1, 2}, V{4, 3}}, T{V{1, 3}, V{2, 4}}, |
| T{V{1, 3}, V{4, 2}}, T{V{1, 4}, V{2, 3}}, T{V{1, 4}, V{3, 2}}, |
| T{V{2, 3}, V{1, 4}}, T{V{2, 3}, V{4, 1}}, T{V{2, 4}, V{1, 3}}, |
| T{V{2, 4}, V{3, 1}}, T{V{3, 4}, V{1, 2}}, T{V{3, 4}, V{2, 1}}}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(HashValueNestedSequenceTest, BasicUsage); |
| template <typename T> |
| using TypeErasedSet = TypeErasedContainer<UnorderedSequence<T>>; |
| |
| using NestedIntSequenceTypes = testing::Types< |
| std::vector<std::vector<int>>, std::vector<UnorderedSequence<int>>, |
| std::vector<TypeErasedSet<int>>, UnorderedSequence<std::vector<int>>, |
| UnorderedSequence<UnorderedSequence<int>>, |
| UnorderedSequence<TypeErasedSet<int>>, TypeErasedSet<std::vector<int>>, |
| TypeErasedSet<UnorderedSequence<int>>, TypeErasedSet<TypeErasedSet<int>>>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueNestedSequenceTest, |
| NestedIntSequenceTypes); |
| |
| // Private type that only supports AbslHashValue to make sure our chosen hash |
| // implementation is recursive within absl::Hash. |
| // It uses std::abs() on the value to provide different bitwise representations |
| // of the same logical value. |
| struct Private { |
| int i; |
| template <typename H> |
| friend H AbslHashValue(H h, Private p) { |
| return H::combine(std::move(h), std::abs(p.i)); |
| } |
| |
| friend bool operator==(Private a, Private b) { |
| return std::abs(a.i) == std::abs(b.i); |
| } |
| |
| friend std::ostream& operator<<(std::ostream& o, Private p) { |
| return o << p.i; |
| } |
| }; |
| |
| // Test helper for combine_piecewise_buffer. It holds a string_view to the |
| // buffer-to-be-hashed. Its AbslHashValue specialization will split up its |
| // contents at the character offsets requested. |
| class PiecewiseHashTester { |
| public: |
| // Create a hash view of a buffer to be hashed contiguously. |
| explicit PiecewiseHashTester(absl::string_view buf) |
| : buf_(buf), piecewise_(false), split_locations_() {} |
| |
| // Create a hash view of a buffer to be hashed piecewise, with breaks at the |
| // given locations. |
| PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations) |
| : buf_(buf), |
| piecewise_(true), |
| split_locations_(std::move(split_locations)) {} |
| |
| template <typename H> |
| friend H AbslHashValue(H h, const PiecewiseHashTester& p) { |
| if (!p.piecewise_) { |
| return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size()); |
| } |
| absl::hash_internal::PiecewiseCombiner combiner; |
| if (p.split_locations_.empty()) { |
| h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size()); |
| return combiner.finalize(std::move(h)); |
| } |
| size_t begin = 0; |
| for (size_t next : p.split_locations_) { |
| absl::string_view chunk = p.buf_.substr(begin, next - begin); |
| h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size()); |
| begin = next; |
| } |
| absl::string_view last_chunk = p.buf_.substr(begin); |
| if (!last_chunk.empty()) { |
| h = combiner.add_buffer(std::move(h), last_chunk.data(), |
| last_chunk.size()); |
| } |
| return combiner.finalize(std::move(h)); |
| } |
| |
| private: |
| absl::string_view buf_; |
| bool piecewise_; |
| std::set<size_t> split_locations_; |
| }; |
| |
| // Dummy object that hashes as two distinct contiguous buffers, "foo" followed |
| // by "bar" |
| struct DummyFooBar { |
| template <typename H> |
| friend H AbslHashValue(H h, const DummyFooBar&) { |
| const char* foo = "foo"; |
| const char* bar = "bar"; |
| h = H::combine_contiguous(std::move(h), foo, 3); |
| h = H::combine_contiguous(std::move(h), bar, 3); |
| return h; |
| } |
| }; |
| |
| TEST(HashValueTest, CombinePiecewiseBuffer) { |
| absl::Hash<PiecewiseHashTester> hash; |
| |
| // Check that hashing an empty buffer through the piecewise API works. |
| EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {}))); |
| |
| // Similarly, small buffers should give consistent results |
| EXPECT_EQ(hash(PiecewiseHashTester("foobar")), |
| hash(PiecewiseHashTester("foobar", {}))); |
| EXPECT_EQ(hash(PiecewiseHashTester("foobar")), |
| hash(PiecewiseHashTester("foobar", {3}))); |
| |
| // But hashing "foobar" in pieces gives a different answer than hashing "foo" |
| // contiguously, then "bar" contiguously. |
| EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})), |
| absl::Hash<DummyFooBar>()(DummyFooBar{})); |
| |
| // Test hashing a large buffer incrementally, broken up in several different |
| // ways. Arrange for breaks on and near the stride boundaries to look for |
| // off-by-one errors in the implementation. |
| // |
| // This test is run on a buffer that is a multiple of the stride size, and one |
| // that isn't. |
| for (size_t big_buffer_size : {1024u * 2 + 512u, 1024u * 3}) { |
| SCOPED_TRACE(big_buffer_size); |
| std::string big_buffer; |
| for (size_t i = 0; i < big_buffer_size; ++i) { |
| // Arbitrary string |
| big_buffer.push_back(32 + (i * (i / 3)) % 64); |
| } |
| auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer)); |
| |
| const int possible_breaks = 9; |
| size_t breaks[possible_breaks] = {1, 512, 1023, 1024, 1025, |
| 1536, 2047, 2048, 2049}; |
| for (unsigned test_mask = 0; test_mask < (1u << possible_breaks); |
| ++test_mask) { |
| SCOPED_TRACE(test_mask); |
| std::set<size_t> break_locations; |
| for (int j = 0; j < possible_breaks; ++j) { |
| if (test_mask & (1u << j)) { |
| break_locations.insert(breaks[j]); |
| } |
| } |
| EXPECT_EQ( |
| hash(PiecewiseHashTester(big_buffer, std::move(break_locations))), |
| big_buffer_hash); |
| } |
| } |
| } |
| |
| TEST(HashValueTest, PrivateSanity) { |
| // Sanity check that Private is working as the tests below expect it to work. |
| EXPECT_TRUE(is_hashable<Private>::value); |
| EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1})); |
| EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1})); |
| } |
| |
| TEST(HashValueTest, Optional) { |
| EXPECT_TRUE(is_hashable<absl::optional<Private>>::value); |
| |
| using O = absl::optional<Private>; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}}))); |
| } |
| |
| TEST(HashValueTest, Variant) { |
| using V = absl::variant<Private, std::string>; |
| EXPECT_TRUE(is_hashable<V>::value); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD")))); |
| |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| struct S {}; |
| EXPECT_FALSE(is_hashable<absl::variant<S>>::value); |
| #endif |
| } |
| |
| template <typename T> |
| class HashValueAssociativeMapTest : public testing::Test {}; |
| TYPED_TEST_SUITE_P(HashValueAssociativeMapTest); |
| |
| TYPED_TEST_P(HashValueAssociativeMapTest, BasicUsage) { |
| using M = TypeParam; |
| using V = typename M::value_type; |
| std::vector<M> exemplars{M{}, |
| M{V{0, "foo"}}, |
| M{V{1, "foo"}}, |
| M{V{0, "bar"}}, |
| M{V{1, "bar"}}, |
| M{V{0, "foo"}, V{42, "bar"}}, |
| M{V{42, "bar"}, V{0, "foo"}}, |
| M{V{1, "foo"}, V{42, "bar"}}, |
| M{V{1, "foo"}, V{43, "bar"}}, |
| M{V{1, "foo"}, V{43, "baz"}}}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMapTest, BasicUsage); |
| using AssociativeMapTypes = testing::Types< |
| std::map<int, std::string>, std::unordered_map<int, std::string>, |
| absl::flat_hash_map<int, std::string>, |
| absl::node_hash_map<int, std::string>, absl::btree_map<int, std::string>, |
| UnorderedSequence<std::pair<const int, std::string>>>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMapTest, |
| AssociativeMapTypes); |
| |
| template <typename T> |
| class HashValueAssociativeMultimapTest : public testing::Test {}; |
| TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest); |
| |
| TYPED_TEST_P(HashValueAssociativeMultimapTest, BasicUsage) { |
| using MM = TypeParam; |
| using V = typename MM::value_type; |
| std::vector<MM> exemplars{MM{}, |
| MM{V{0, "foo"}}, |
| MM{V{1, "foo"}}, |
| MM{V{0, "bar"}}, |
| MM{V{1, "bar"}}, |
| MM{V{0, "foo"}, V{0, "bar"}}, |
| MM{V{0, "bar"}, V{0, "foo"}}, |
| MM{V{0, "foo"}, V{42, "bar"}}, |
| MM{V{1, "foo"}, V{42, "bar"}}, |
| MM{V{1, "foo"}, V{1, "foo"}, V{43, "bar"}}, |
| MM{V{1, "foo"}, V{43, "bar"}, V{1, "foo"}}, |
| MM{V{1, "foo"}, V{43, "baz"}}}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest, BasicUsage); |
| using AssociativeMultimapTypes = |
| testing::Types<std::multimap<int, std::string>, |
| std::unordered_multimap<int, std::string>>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMultimapTest, |
| AssociativeMultimapTypes); |
| |
| TEST(HashValueTest, ReferenceWrapper) { |
| EXPECT_TRUE(is_hashable<std::reference_wrapper<Private>>::value); |
| |
| Private p1{1}, p10{10}; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| p1, p10, std::ref(p1), std::ref(p10), std::cref(p1), std::cref(p10)))); |
| |
| EXPECT_TRUE(is_hashable<std::reference_wrapper<int>>::value); |
| int one = 1, ten = 10; |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
| one, ten, std::ref(one), std::ref(ten), std::cref(one), std::cref(ten)))); |
| |
| EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
| std::make_tuple(std::tuple<std::reference_wrapper<int>>(std::ref(one)), |
| std::tuple<std::reference_wrapper<int>>(std::ref(ten)), |
| std::tuple<int>(one), std::tuple<int>(ten)))); |
| } |
| |
| template <typename T, typename = void> |
| struct IsHashCallable : std::false_type {}; |
| |
| template <typename T> |
| struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()( |
| std::declval<const T&>()))>> : std::true_type {}; |
| |
| template <typename T, typename = void> |
| struct IsAggregateInitializable : std::false_type {}; |
| |
| template <typename T> |
| struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>> |
| : std::true_type {}; |
| |
| TEST(IsHashableTest, ValidHash) { |
| EXPECT_TRUE((is_hashable<int>::value)); |
| EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value); |
| EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value); |
| EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value); |
| EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value); |
| EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value); |
| EXPECT_TRUE(IsHashCallable<int>::value); |
| EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value); |
| } |
| |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| TEST(IsHashableTest, PoisonHash) { |
| struct X {}; |
| EXPECT_FALSE((is_hashable<X>::value)); |
| EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value); |
| EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value); |
| EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value); |
| EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value); |
| EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value); |
| EXPECT_FALSE(IsHashCallable<X>::value); |
| #if !defined(__GNUC__) || defined(__clang__) |
| // TODO(b/144368551): As of GCC 8.4 this does not compile. |
| EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value); |
| #endif |
| } |
| #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| |
| // Hashable types |
| // |
| // These types exist simply to exercise various AbslHashValue behaviors, so |
| // they are named by what their AbslHashValue overload does. |
| struct NoOp { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, NoOp n) { |
| return h; |
| } |
| }; |
| |
| struct EmptyCombine { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, EmptyCombine e) { |
| return HashCode::combine(std::move(h)); |
| } |
| }; |
| |
| template <typename Int> |
| struct CombineIterative { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, CombineIterative c) { |
| for (int i = 0; i < 5; ++i) { |
| h = HashCode::combine(std::move(h), Int(i)); |
| } |
| return h; |
| } |
| }; |
| |
| template <typename Int> |
| struct CombineVariadic { |
| template <typename HashCode> |
| friend HashCode AbslHashValue(HashCode h, CombineVariadic c) { |
| return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3), |
| Int(4)); |
| } |
| }; |
| enum class InvokeTag { |
| kUniquelyRepresented, |
| kHashValue, |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| kLegacyHash, |
| #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| kStdHash, |
| kNone |
| }; |
| |
| template <InvokeTag T> |
| using InvokeTagConstant = std::integral_constant<InvokeTag, T>; |
| |
| template <InvokeTag... Tags> |
| struct MinTag; |
| |
| template <InvokeTag a, InvokeTag b, InvokeTag... Tags> |
| struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {}; |
| |
| template <InvokeTag a> |
| struct MinTag<a> : InvokeTagConstant<a> {}; |
| |
| template <InvokeTag... Tags> |
| struct CustomHashType { |
| explicit CustomHashType(size_t val) : value(val) {} |
| size_t value; |
| }; |
| |
| template <InvokeTag allowed, InvokeTag... tags> |
| struct EnableIfContained |
| : std::enable_if<absl::disjunction< |
| std::integral_constant<bool, allowed == tags>...>::value> {}; |
| |
| template < |
| typename H, InvokeTag... Tags, |
| typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type> |
| H AbslHashValue(H state, CustomHashType<Tags...> t) { |
| static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, ""); |
| return H::combine(std::move(state), |
| t.value + static_cast<int>(InvokeTag::kHashValue)); |
| } |
| |
| } // namespace |
| |
| namespace absl { |
| ABSL_NAMESPACE_BEGIN |
| namespace hash_internal { |
| template <InvokeTag... Tags> |
| struct is_uniquely_represented< |
| CustomHashType<Tags...>, |
| typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type> |
| : std::true_type {}; |
| } // namespace hash_internal |
| ABSL_NAMESPACE_END |
| } // namespace absl |
| |
| #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE { |
| template <InvokeTag... Tags> |
| struct hash<CustomHashType<Tags...>> { |
| template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
| InvokeTag::kLegacyHash, TagsIn...>::type> |
| size_t operator()(CustomHashType<TagsIn...> t) const { |
| static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, ""); |
| return t.value + static_cast<int>(InvokeTag::kLegacyHash); |
| } |
| }; |
| } // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE |
| #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
| |
| namespace std { |
| template <InvokeTag... Tags> // NOLINT |
| struct hash<CustomHashType<Tags...>> { |
| template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
| InvokeTag::kStdHash, TagsIn...>::type> |
| size_t operator()(CustomHashType<TagsIn...> t) const { |
| static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, ""); |
| return t.value + static_cast<int>(InvokeTag::kStdHash); |
| } |
| }; |
| } // namespace std |
| |
| namespace { |
| |
| template <typename... T> |
| void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) { |
| using type = CustomHashType<T::value...>; |
| SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...})); |
| EXPECT_TRUE(is_hashable<type>()); |
| EXPECT_TRUE(is_hashable<const type>()); |
| EXPECT_TRUE(is_hashable<const type&>()); |
| |
| const size_t offset = static_cast<int>(std::min({T::value...})); |
| EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset})); |
| } |
| |
| void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) { |
| #if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| // is_hashable is false if we don't support any of the hooks. |
| using type = CustomHashType<>; |
| EXPECT_FALSE(is_hashable<type>()); |
| EXPECT_FALSE(is_hashable<const type>()); |
| EXPECT_FALSE(is_hashable<const type&>()); |
| #endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
| } |
| |
| template <InvokeTag Tag, typename... T> |
| void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) { |
| constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1); |
| TestCustomHashType(InvokeTagConstant<next>(), tag, t...); |
| TestCustomHashType(InvokeTagConstant<next>(), t...); |
| } |
| |
| TEST(HashTest, CustomHashType) { |
| TestCustomHashType(InvokeTagConstant<InvokeTag{}>()); |
| } |
| |
| TEST(HashTest, NoOpsAreEquivalent) { |
| EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({})); |
| EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({})); |
| } |
| |
| template <typename T> |
| class HashIntTest : public testing::Test { |
| }; |
| TYPED_TEST_SUITE_P(HashIntTest); |
| |
| TYPED_TEST_P(HashIntTest, BasicUsage) { |
| EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0)); |
| EXPECT_NE(Hash<NoOp>()({}), |
| Hash<TypeParam>()(std::numeric_limits<TypeParam>::max())); |
| if (std::numeric_limits<TypeParam>::min() != 0) { |
| EXPECT_NE(Hash<NoOp>()({}), |
| Hash<TypeParam>()(std::numeric_limits<TypeParam>::min())); |
| } |
| |
| EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}), |
| Hash<CombineVariadic<TypeParam>>()({})); |
| } |
| |
| REGISTER_TYPED_TEST_SUITE_P(HashIntTest, BasicUsage); |
| using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, |
| uint32_t, uint64_t, size_t>; |
| INSTANTIATE_TYPED_TEST_SUITE_P(My, HashIntTest, IntTypes); |
| |
| struct StructWithPadding { |
| char c; |
| int i; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const StructWithPadding& s) { |
| return H::combine(std::move(hash_state), s.c, s.i); |
| } |
| }; |
| |
| static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int), |
| "StructWithPadding doesn't have padding"); |
| static_assert(std::is_standard_layout<StructWithPadding>::value, ""); |
| |
| // This check has to be disabled because libstdc++ doesn't support it. |
| // static_assert(std::is_trivially_constructible<StructWithPadding>::value, ""); |
| |
| template <typename T> |
| struct ArraySlice { |
| T* begin; |
| T* end; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, const ArraySlice& slice) { |
| for (auto t = slice.begin; t != slice.end; ++t) { |
| hash_state = H::combine(std::move(hash_state), *t); |
| } |
| return hash_state; |
| } |
| }; |
| |
| TEST(HashTest, HashNonUniquelyRepresentedType) { |
| // Create equal StructWithPadding objects that are known to have non-equal |
| // padding bytes. |
| static const size_t kNumStructs = 10; |
| unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)]; |
| std::memset(buffer1, 0, sizeof(buffer1)); |
| auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1); |
| |
| unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)]; |
| std::memset(buffer2, 255, sizeof(buffer2)); |
| auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2); |
| for (size_t i = 0; i < kNumStructs; ++i) { |
| SCOPED_TRACE(i); |
| s1[i].c = s2[i].c = static_cast<char>('0' + i); |
| s1[i].i = s2[i].i = static_cast<int>(i); |
| ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding), |
| buffer2 + i * sizeof(StructWithPadding), |
| sizeof(StructWithPadding)) == 0) |
| << "Bug in test code: objects do not have unequal" |
| << " object representations"; |
| } |
| |
| EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0])); |
| EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}), |
| Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs})); |
| } |
| |
| TEST(HashTest, StandardHashContainerUsage) { |
| std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"}, |
| {42, "bar"}}; |
| |
| EXPECT_NE(map.find(0), map.end()); |
| EXPECT_EQ(map.find(1), map.end()); |
| EXPECT_NE(map.find(0u), map.end()); |
| } |
| |
| struct ConvertibleFromNoOp { |
| ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit) |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) { |
| return H::combine(std::move(hash_state), 1); |
| } |
| }; |
| |
| TEST(HashTest, HeterogeneousCall) { |
| EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()), |
| Hash<NoOp>()(NoOp())); |
| } |
| |
| TEST(IsUniquelyRepresentedTest, SanityTest) { |
| using absl::hash_internal::is_uniquely_represented; |
| |
| EXPECT_TRUE(is_uniquely_represented<unsigned char>::value); |
| EXPECT_TRUE(is_uniquely_represented<int>::value); |
| EXPECT_FALSE(is_uniquely_represented<bool>::value); |
| EXPECT_FALSE(is_uniquely_represented<int*>::value); |
| } |
| |
| struct IntAndString { |
| int i; |
| std::string s; |
| |
| template <typename H> |
| friend H AbslHashValue(H hash_state, IntAndString int_and_string) { |
| return H::combine(std::move(hash_state), int_and_string.s, |
| int_and_string.i); |
| } |
| }; |
| |
| TEST(HashTest, SmallValueOn64ByteBoundary) { |
| Hash<IntAndString>()(IntAndString{0, std::string(63, '0')}); |
| } |
| |
| TEST(HashTest, TypeErased) { |
| EXPECT_TRUE((is_hashable<TypeErasedValue<size_t>>::value)); |
| EXPECT_TRUE((is_hashable<std::pair<TypeErasedValue<size_t>, int>>::value)); |
| |
| EXPECT_EQ(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{7})); |
| EXPECT_NE(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{13})); |
| |
| EXPECT_EQ(SpyHash(std::make_pair(TypeErasedValue<size_t>(7), 17)), |
| SpyHash(std::make_pair(size_t{7}, 17))); |
| |
| absl::flat_hash_set<absl::flat_hash_set<int>> ss = {{1, 2}, {3, 4}}; |
| TypeErasedContainer<absl::flat_hash_set<absl::flat_hash_set<int>>> es = { |
| absl::flat_hash_set<int>{1, 2}, {3, 4}}; |
| absl::flat_hash_set<TypeErasedContainer<absl::flat_hash_set<int>>> se = { |
| {1, 2}, {3, 4}}; |
| EXPECT_EQ(SpyHash(ss), SpyHash(es)); |
| EXPECT_EQ(SpyHash(ss), SpyHash(se)); |
| } |
| |
| struct ValueWithBoolConversion { |
| operator bool() const { return false; } |
| int i; |
| }; |
| |
| } // namespace |
| namespace std { |
| template <> |
| struct hash<ValueWithBoolConversion> { |
| size_t operator()(ValueWithBoolConversion v) { |
| return static_cast<size_t>(v.i); |
| } |
| }; |
| } // namespace std |
| |
| namespace { |
| |
| TEST(HashTest, DoesNotUseImplicitConversionsToBool) { |
| EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}), |
| absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1})); |
| } |
| |
| TEST(HashOf, MatchesHashForSingleArgument) { |
| std::string s = "forty two"; |
| double d = 42.0; |
| std::tuple<int, int> t{4, 2}; |
| int i = 42; |
| int neg_i = -42; |
| int16_t i16 = 42; |
| int16_t neg_i16 = -42; |
| int8_t i8 = 42; |
| int8_t neg_i8 = -42; |
| |
| EXPECT_EQ(absl::HashOf(s), absl::Hash<std::string>{}(s)); |
| EXPECT_EQ(absl::HashOf(d), absl::Hash<double>{}(d)); |
| EXPECT_EQ(absl::HashOf(t), (absl::Hash<std::tuple<int, int>>{}(t))); |
| EXPECT_EQ(absl::HashOf(i), absl::Hash<int>{}(i)); |
| EXPECT_EQ(absl::HashOf(neg_i), absl::Hash<int>{}(neg_i)); |
| EXPECT_EQ(absl::HashOf(i16), absl::Hash<int16_t>{}(i16)); |
| EXPECT_EQ(absl::HashOf(neg_i16), absl::Hash<int16_t>{}(neg_i16)); |
| EXPECT_EQ(absl::HashOf(i8), absl::Hash<int8_t>{}(i8)); |
| EXPECT_EQ(absl::HashOf(neg_i8), absl::Hash<int8_t>{}(neg_i8)); |
| } |
| |
| TEST(HashOf, MatchesHashOfTupleForMultipleArguments) { |
| std::string hello = "hello"; |
| std::string world = "world"; |
| |
| EXPECT_EQ(absl::HashOf(), absl::HashOf(std::make_tuple())); |
| EXPECT_EQ(absl::HashOf(hello), absl::HashOf(std::make_tuple(hello))); |
| EXPECT_EQ(absl::HashOf(hello, world), |
| absl::HashOf(std::make_tuple(hello, world))); |
| } |
| |
| template <typename T> |
| std::true_type HashOfExplicitParameter(decltype(absl::HashOf<T>(0))) { |
| return {}; |
| } |
| template <typename T> |
| std::false_type HashOfExplicitParameter(size_t) { |
| return {}; |
| } |
| |
| TEST(HashOf, CantPassExplicitTemplateParameters) { |
| EXPECT_FALSE(HashOfExplicitParameter<int>(0)); |
| } |
| |
| } // namespace |