blob: 5a75b5e5172868743c68f4fd1b78bb7b3ab9341e [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/ssl.h>
#include <assert.h>
#include <limits.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../crypto/internal.h"
BSSL_NAMESPACE_BEGIN
bool ssl_is_key_type_supported(int key_type) {
return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
key_type == EVP_PKEY_ED25519;
}
static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
if (!ssl_is_key_type_supported(EVP_PKEY_id(pkey))) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
return false;
}
if (cert->chain != nullptr &&
sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr &&
// Sanity-check that the private key and the certificate match.
!ssl_cert_check_private_key(cert, pkey)) {
return false;
}
cert->privatekey = UpRef(pkey);
return true;
}
typedef struct {
uint16_t sigalg;
int pkey_type;
int curve;
const EVP_MD *(*digest_func)(void);
bool is_rsa_pss;
} SSL_SIGNATURE_ALGORITHM;
static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
false},
{SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
{SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
{SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
{SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
{SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
{SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
{SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
{SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
{SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
&EVP_sha256, false},
{SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
false},
{SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
false},
{SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
};
static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
if (kSignatureAlgorithms[i].sigalg == sigalg) {
return &kSignatureAlgorithms[i];
}
}
return NULL;
}
bool ssl_has_private_key(const SSL_HANDSHAKE *hs) {
if (hs->config->cert->privatekey != nullptr ||
hs->config->cert->key_method != nullptr ||
ssl_signing_with_dc(hs)) {
return true;
}
return false;
}
static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
if (alg == NULL ||
EVP_PKEY_id(pkey) != alg->pkey_type) {
return false;
}
if (ssl_protocol_version(ssl) < TLS1_2_VERSION) {
// TLS 1.0 and 1.1 do not negotiate algorithms and always sign one of two
// hardcoded algorithms.
return sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1 ||
sigalg == SSL_SIGN_ECDSA_SHA1;
}
// |SSL_SIGN_RSA_PKCS1_MD5_SHA1| is not a real SignatureScheme for TLS 1.2 and
// higher. It is an internal value we use to represent TLS 1.0/1.1's MD5/SHA1
// concatenation.
if (sigalg == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
return false;
}
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
// RSA keys may only be used with RSA-PSS.
if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
return false;
}
// EC keys have a curve requirement.
if (alg->pkey_type == EVP_PKEY_EC &&
(alg->curve == NID_undef ||
EC_GROUP_get_curve_name(
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
return false;
}
}
return true;
}
static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
uint16_t sigalg, bool is_verify) {
if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return false;
}
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
EVP_PKEY_CTX *pctx;
if (is_verify) {
if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
return false;
}
} else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
return false;
}
if (alg->is_rsa_pss) {
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
return false;
}
}
return true;
}
enum ssl_private_key_result_t ssl_private_key_sign(
SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t sigalg, Span<const uint8_t> in) {
SSL *const ssl = hs->ssl;
SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
Array<uint8_t> spki;
if (hints) {
ScopedCBB spki_cbb;
if (!CBB_init(spki_cbb.get(), 64) ||
!EVP_marshal_public_key(spki_cbb.get(), hs->local_pubkey.get()) ||
!CBBFinishArray(spki_cbb.get(), &spki)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_private_key_failure;
}
}
// Replay the signature from handshake hints if available.
if (hints && !hs->hints_requested && //
sigalg == hints->signature_algorithm && //
in == hints->signature_input &&
MakeConstSpan(spki) == hints->signature_spki &&
!hints->signature.empty() && //
hints->signature.size() <= max_out) {
// Signature algorithm and input both match. Reuse the signature from hints.
*out_len = hints->signature.size();
OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size());
return ssl_private_key_success;
}
const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method;
EVP_PKEY *privatekey = hs->config->cert->privatekey.get();
assert(!hs->can_release_private_key);
if (ssl_signing_with_dc(hs)) {
key_method = hs->config->cert->dc_key_method;
privatekey = hs->config->cert->dc_privatekey.get();
}
if (key_method != NULL) {
enum ssl_private_key_result_t ret;
if (hs->pending_private_key_op) {
ret = key_method->complete(ssl, out, out_len, max_out);
} else {
ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(),
in.size());
}
if (ret == ssl_private_key_failure) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
}
hs->pending_private_key_op = ret == ssl_private_key_retry;
if (ret != ssl_private_key_success) {
return ret;
}
} else {
*out_len = max_out;
ScopedEVP_MD_CTX ctx;
if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) ||
!EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
return ssl_private_key_failure;
}
}
// Save the hint if applicable.
if (hints && hs->hints_requested) {
hints->signature_algorithm = sigalg;
hints->signature_spki = std::move(spki);
if (!hints->signature_input.CopyFrom(in) ||
!hints->signature.CopyFrom(MakeConstSpan(out, *out_len))) {
return ssl_private_key_failure;
}
}
return ssl_private_key_success;
}
bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
uint16_t sigalg, EVP_PKEY *pkey,
Span<const uint8_t> in) {
ScopedEVP_MD_CTX ctx;
if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
return false;
}
bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
in.data(), in.size());
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
ok = true;
ERR_clear_error();
#endif
return ok;
}
enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
uint8_t *out,
size_t *out_len,
size_t max_out,
Span<const uint8_t> in) {
SSL *const ssl = hs->ssl;
assert(!hs->can_release_private_key);
if (hs->config->cert->key_method != NULL) {
enum ssl_private_key_result_t ret;
if (hs->pending_private_key_op) {
ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out);
} else {
ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out,
in.data(), in.size());
}
if (ret == ssl_private_key_failure) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
}
hs->pending_private_key_op = ret == ssl_private_key_retry;
return ret;
}
RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get());
if (rsa == NULL) {
// Decrypt operations are only supported for RSA keys.
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return ssl_private_key_failure;
}
// Decrypt with no padding. PKCS#1 padding will be removed as part of the
// timing-sensitive code by the caller.
if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
return ssl_private_key_success;
}
bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
uint16_t sigalg) {
SSL *const ssl = hs->ssl;
if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
return false;
}
// Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
// emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
// hash in TLS. Reasonable RSA key sizes are large enough for the largest
// defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
// SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
// size so that we can fall back to another algorithm in that case.
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
2 * EVP_MD_size(alg->digest_func()) + 2) {
return false;
}
return true;
}
BSSL_NAMESPACE_END
using namespace bssl;
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
if (rsa == NULL || ssl->config == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (!pkey ||
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
return ssl_set_pkey(ssl->config->cert.get(), pkey.get());
}
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
if (!rsa) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_use_RSAPrivateKey(ssl, rsa.get());
}
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
if (pkey == NULL || ssl->config == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_pkey(ssl->config->cert.get(), pkey);
}
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
if (!pkey || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_use_PrivateKey(ssl, pkey.get());
}
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (!pkey ||
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
return ssl_set_pkey(ctx->cert.get(), pkey.get());
}
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
if (!rsa) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
}
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_pkey(ctx->cert.get(), pkey);
}
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
if (!pkey || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_CTX_use_PrivateKey(ctx, pkey.get());
}
void SSL_set_private_key_method(SSL *ssl,
const SSL_PRIVATE_KEY_METHOD *key_method) {
if (!ssl->config) {
return;
}
ssl->config->cert->key_method = key_method;
}
void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
const SSL_PRIVATE_KEY_METHOD *key_method) {
ctx->cert->key_method = key_method;
}
static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
// This was "constexpr" rather than "const", but that triggered a bug in MSVC
// where it didn't pad the strings to the correct length.
static const struct {
uint16_t signature_algorithm;
const char name[kMaxSignatureAlgorithmNameLen];
} kSignatureAlgorithmNames[] = {
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
{SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
{SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
{SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
{SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
{SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
{SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
{SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
{SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
{SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
{SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
{SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
{SSL_SIGN_ED25519, "ed25519"},
};
const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
int include_curve) {
if (!include_curve) {
switch (sigalg) {
case SSL_SIGN_ECDSA_SECP256R1_SHA256:
return "ecdsa_sha256";
case SSL_SIGN_ECDSA_SECP384R1_SHA384:
return "ecdsa_sha384";
case SSL_SIGN_ECDSA_SECP521R1_SHA512:
return "ecdsa_sha512";
}
}
for (const auto &candidate : kSignatureAlgorithmNames) {
if (candidate.signature_algorithm == sigalg) {
return candidate.name;
}
}
return NULL;
}
int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
}
const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
if (alg == nullptr || alg->digest_func == nullptr) {
return nullptr;
}
return alg->digest_func();
}
int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
return alg != nullptr && alg->is_rsa_pss;
}
static int compare_uint16_t(const void *p1, const void *p2) {
uint16_t u1 = *((const uint16_t *)p1);
uint16_t u2 = *((const uint16_t *)p2);
if (u1 < u2) {
return -1;
} else if (u1 > u2) {
return 1;
} else {
return 0;
}
}
static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
if (in_sigalgs.size() < 2) {
return true;
}
Array<uint16_t> sigalgs;
if (!sigalgs.CopyFrom(in_sigalgs)) {
return false;
}
qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
for (size_t i = 1; i < sigalgs.size(); i++) {
if (sigalgs[i - 1] == sigalgs[i]) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
return false;
}
}
return true;
}
static bool set_sigalg_prefs(Array<uint16_t> *out, Span<const uint16_t> prefs) {
if (!sigalgs_unique(prefs)) {
return false;
}
// Check for invalid algorithms, and filter out |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
Array<uint16_t> filtered;
if (!filtered.Init(prefs.size())) {
return false;
}
size_t added = 0;
for (uint16_t pref : prefs) {
if (pref == SSL_SIGN_RSA_PKCS1_MD5_SHA1) {
// Though not intended to be used with this API, we treat
// |SSL_SIGN_RSA_PKCS1_MD5_SHA1| as a real signature algorithm in
// |SSL_PRIVATE_KEY_METHOD|. Not accepting it here makes for a confusing
// abstraction.
continue;
}
if (get_signature_algorithm(pref) == nullptr) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
return false;
}
filtered[added] = pref;
added++;
}
filtered.Shrink(added);
// This can happen if |prefs| contained only |SSL_SIGN_RSA_PKCS1_MD5_SHA1|.
// Leaving it empty would revert to the default, so treat this as an error
// condition.
if (!prefs.empty() && filtered.empty()) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
return false;
}
*out = std::move(filtered);
return true;
}
int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
size_t num_prefs) {
return set_sigalg_prefs(&ctx->cert->sigalgs, MakeConstSpan(prefs, num_prefs));
}
int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
size_t num_prefs) {
if (!ssl->config) {
return 0;
}
return set_sigalg_prefs(&ssl->config->cert->sigalgs,
MakeConstSpan(prefs, num_prefs));
}
static constexpr struct {
int pkey_type;
int hash_nid;
uint16_t signature_algorithm;
} kSignatureAlgorithmsMapping[] = {
{EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
{EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
{EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
{EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
{EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
{EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
{EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
{EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
{EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
{EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
{EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
{EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
};
static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
size_t num_values) {
if ((num_values & 1) == 1) {
return false;
}
const size_t num_pairs = num_values / 2;
if (!out->Init(num_pairs)) {
return false;
}
for (size_t i = 0; i < num_values; i += 2) {
const int hash_nid = values[i];
const int pkey_type = values[i+1];
bool found = false;
for (const auto &candidate : kSignatureAlgorithmsMapping) {
if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
(*out)[i / 2] = candidate.signature_algorithm;
found = true;
break;
}
}
if (!found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
return false;
}
}
return true;
}
int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
Array<uint16_t> sigalgs;
if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
return 0;
}
if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size()) ||
!SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size())) {
return 0;
}
return 1;
}
int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
if (!ssl->config) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
Array<uint16_t> sigalgs;
if (!parse_sigalg_pairs(&sigalgs, values, num_values)) {
return 0;
}
if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
!SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
return 0;
}
return 1;
}
static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
// str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
// Count colons to give the number of output elements from any successful
// parse.
size_t num_elements = 1;
size_t len = 0;
for (const char *p = str; *p; p++) {
len++;
if (*p == ':') {
num_elements++;
}
}
if (!out->Init(num_elements)) {
return false;
}
size_t out_i = 0;
enum {
pkey_or_name,
hash_name,
} state = pkey_or_name;
char buf[kMaxSignatureAlgorithmNameLen];
// buf_used is always < sizeof(buf). I.e. it's always safe to write
// buf[buf_used] = 0.
size_t buf_used = 0;
int pkey_type = 0, hash_nid = 0;
// Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
for (size_t offset = 0; offset < len+1; offset++) {
const unsigned char c = str[offset];
switch (c) {
case '+':
if (state == hash_name) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
return false;
}
if (buf_used == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("empty public key type at offset %zu", offset);
return false;
}
buf[buf_used] = 0;
if (strcmp(buf, "RSA") == 0) {
pkey_type = EVP_PKEY_RSA;
} else if (strcmp(buf, "RSA-PSS") == 0 ||
strcmp(buf, "PSS") == 0) {
pkey_type = EVP_PKEY_RSA_PSS;
} else if (strcmp(buf, "ECDSA") == 0) {
pkey_type = EVP_PKEY_EC;
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown public key type '%s'", buf);
return false;
}
state = hash_name;
buf_used = 0;
break;
case ':':
OPENSSL_FALLTHROUGH;
case 0:
if (buf_used == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("empty element at offset %zu", offset);
return false;
}
buf[buf_used] = 0;
if (state == pkey_or_name) {
// No '+' was seen thus this is a TLS 1.3-style name.
bool found = false;
for (const auto &candidate : kSignatureAlgorithmNames) {
if (strcmp(candidate.name, buf) == 0) {
assert(out_i < num_elements);
(*out)[out_i++] = candidate.signature_algorithm;
found = true;
break;
}
}
if (!found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
return false;
}
} else {
if (strcmp(buf, "SHA1") == 0) {
hash_nid = NID_sha1;
} else if (strcmp(buf, "SHA256") == 0) {
hash_nid = NID_sha256;
} else if (strcmp(buf, "SHA384") == 0) {
hash_nid = NID_sha384;
} else if (strcmp(buf, "SHA512") == 0) {
hash_nid = NID_sha512;
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown hash function '%s'", buf);
return false;
}
bool found = false;
for (const auto &candidate : kSignatureAlgorithmsMapping) {
if (candidate.pkey_type == pkey_type &&
candidate.hash_nid == hash_nid) {
assert(out_i < num_elements);
(*out)[out_i++] = candidate.signature_algorithm;
found = true;
break;
}
}
if (!found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
return false;
}
}
state = pkey_or_name;
buf_used = 0;
break;
default:
if (buf_used == sizeof(buf) - 1) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("substring too long at offset %zu", offset);
return false;
}
if (OPENSSL_isalnum(c) || c == '-' || c == '_') {
buf[buf_used++] = c;
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
offset);
return false;
}
}
}
assert(out_i == out->size());
return true;
}
int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
Array<uint16_t> sigalgs;
if (!parse_sigalgs_list(&sigalgs, str)) {
return 0;
}
if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size()) ||
!SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size())) {
return 0;
}
return 1;
}
int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
if (!ssl->config) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
Array<uint16_t> sigalgs;
if (!parse_sigalgs_list(&sigalgs, str)) {
return 0;
}
if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
!SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
return 0;
}
return 1;
}
int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
size_t num_prefs) {
return set_sigalg_prefs(&ctx->verify_sigalgs,
MakeConstSpan(prefs, num_prefs));
}
int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
size_t num_prefs) {
if (!ssl->config) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return set_sigalg_prefs(&ssl->config->verify_sigalgs,
MakeConstSpan(prefs, num_prefs));
}