| /* Copyright 2013 Google Inc. All Rights Reserved. |
| |
| Distributed under MIT license. |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| */ |
| |
| /* Utilities for building Huffman decoding tables. */ |
| |
| #include "huffman.h" |
| |
| #include <string.h> /* memcpy, memset */ |
| |
| #include "../common/constants.h" |
| #include "../common/platform.h" |
| #include <brotli/types.h> |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| extern "C" { |
| #endif |
| |
| #define BROTLI_REVERSE_BITS_MAX 8 |
| |
| #if defined(BROTLI_RBIT) |
| #define BROTLI_REVERSE_BITS_BASE \ |
| ((sizeof(brotli_reg_t) << 3) - BROTLI_REVERSE_BITS_MAX) |
| #else |
| #define BROTLI_REVERSE_BITS_BASE 0 |
| static uint8_t kReverseBits[1 << BROTLI_REVERSE_BITS_MAX] = { |
| 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, |
| 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, |
| 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, |
| 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, |
| 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, |
| 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, |
| 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, |
| 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, |
| 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, |
| 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, |
| 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, |
| 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, |
| 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, |
| 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, |
| 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, |
| 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, |
| 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, |
| 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, |
| 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, |
| 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, |
| 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, |
| 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, |
| 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, |
| 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, |
| 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, |
| 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, |
| 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, |
| 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, |
| 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, |
| 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, |
| 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, |
| 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF |
| }; |
| #endif /* BROTLI_RBIT */ |
| |
| #define BROTLI_REVERSE_BITS_LOWEST \ |
| ((brotli_reg_t)1 << (BROTLI_REVERSE_BITS_MAX - 1 + BROTLI_REVERSE_BITS_BASE)) |
| |
| /* Returns reverse(num >> BROTLI_REVERSE_BITS_BASE, BROTLI_REVERSE_BITS_MAX), |
| where reverse(value, len) is the bit-wise reversal of the len least |
| significant bits of value. */ |
| static BROTLI_INLINE brotli_reg_t BrotliReverseBits(brotli_reg_t num) { |
| #if defined(BROTLI_RBIT) |
| return BROTLI_RBIT(num); |
| #else |
| return kReverseBits[num]; |
| #endif |
| } |
| |
| /* Stores code in table[0], table[step], table[2*step], ..., table[end] */ |
| /* Assumes that end is an integer multiple of step */ |
| static BROTLI_INLINE void ReplicateValue(HuffmanCode* table, |
| int step, int end, |
| HuffmanCode code) { |
| do { |
| end -= step; |
| table[end] = code; |
| } while (end > 0); |
| } |
| |
| /* Returns the table width of the next 2nd level table. |count| is the histogram |
| of bit lengths for the remaining symbols, |len| is the code length of the |
| next processed symbol. */ |
| static BROTLI_INLINE int NextTableBitSize(const uint16_t* const count, |
| int len, int root_bits) { |
| int left = 1 << (len - root_bits); |
| while (len < BROTLI_HUFFMAN_MAX_CODE_LENGTH) { |
| left -= count[len]; |
| if (left <= 0) break; |
| ++len; |
| left <<= 1; |
| } |
| return len - root_bits; |
| } |
| |
| void BrotliBuildCodeLengthsHuffmanTable(HuffmanCode* table, |
| const uint8_t* const code_lengths, |
| uint16_t* count) { |
| HuffmanCode code; /* current table entry */ |
| int symbol; /* symbol index in original or sorted table */ |
| brotli_reg_t key; /* prefix code */ |
| brotli_reg_t key_step; /* prefix code addend */ |
| int step; /* step size to replicate values in current table */ |
| int table_size; /* size of current table */ |
| int sorted[BROTLI_CODE_LENGTH_CODES]; /* symbols sorted by code length */ |
| /* offsets in sorted table for each length */ |
| int offset[BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH + 1]; |
| int bits; |
| int bits_count; |
| BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH <= |
| BROTLI_REVERSE_BITS_MAX); |
| |
| /* Generate offsets into sorted symbol table by code length. */ |
| symbol = -1; |
| bits = 1; |
| BROTLI_REPEAT(BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH, { |
| symbol += count[bits]; |
| offset[bits] = symbol; |
| bits++; |
| }); |
| /* Symbols with code length 0 are placed after all other symbols. */ |
| offset[0] = BROTLI_CODE_LENGTH_CODES - 1; |
| |
| /* Sort symbols by length, by symbol order within each length. */ |
| symbol = BROTLI_CODE_LENGTH_CODES; |
| do { |
| BROTLI_REPEAT(6, { |
| symbol--; |
| sorted[offset[code_lengths[symbol]]--] = symbol; |
| }); |
| } while (symbol != 0); |
| |
| table_size = 1 << BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH; |
| |
| /* Special case: all symbols but one have 0 code length. */ |
| if (offset[0] == 0) { |
| code = ConstructHuffmanCode(0, (uint16_t)sorted[0]); |
| for (key = 0; key < (brotli_reg_t)table_size; ++key) { |
| table[key] = code; |
| } |
| return; |
| } |
| |
| /* Fill in table. */ |
| key = 0; |
| key_step = BROTLI_REVERSE_BITS_LOWEST; |
| symbol = 0; |
| bits = 1; |
| step = 2; |
| do { |
| for (bits_count = count[bits]; bits_count != 0; --bits_count) { |
| code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)sorted[symbol++]); |
| ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code); |
| key += key_step; |
| } |
| step <<= 1; |
| key_step >>= 1; |
| } while (++bits <= BROTLI_HUFFMAN_MAX_CODE_LENGTH_CODE_LENGTH); |
| } |
| |
| uint32_t BrotliBuildHuffmanTable(HuffmanCode* root_table, |
| int root_bits, |
| const uint16_t* const symbol_lists, |
| uint16_t* count) { |
| HuffmanCode code; /* current table entry */ |
| HuffmanCode* table; /* next available space in table */ |
| int len; /* current code length */ |
| int symbol; /* symbol index in original or sorted table */ |
| brotli_reg_t key; /* prefix code */ |
| brotli_reg_t key_step; /* prefix code addend */ |
| brotli_reg_t sub_key; /* 2nd level table prefix code */ |
| brotli_reg_t sub_key_step; /* 2nd level table prefix code addend */ |
| int step; /* step size to replicate values in current table */ |
| int table_bits; /* key length of current table */ |
| int table_size; /* size of current table */ |
| int total_size; /* sum of root table size and 2nd level table sizes */ |
| int max_length = -1; |
| int bits; |
| int bits_count; |
| |
| BROTLI_DCHECK(root_bits <= BROTLI_REVERSE_BITS_MAX); |
| BROTLI_DCHECK(BROTLI_HUFFMAN_MAX_CODE_LENGTH - root_bits <= |
| BROTLI_REVERSE_BITS_MAX); |
| |
| while (symbol_lists[max_length] == 0xFFFF) max_length--; |
| max_length += BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1; |
| |
| table = root_table; |
| table_bits = root_bits; |
| table_size = 1 << table_bits; |
| total_size = table_size; |
| |
| /* Fill in the root table. Reduce the table size to if possible, |
| and create the repetitions by memcpy. */ |
| if (table_bits > max_length) { |
| table_bits = max_length; |
| table_size = 1 << table_bits; |
| } |
| key = 0; |
| key_step = BROTLI_REVERSE_BITS_LOWEST; |
| bits = 1; |
| step = 2; |
| do { |
| symbol = bits - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1); |
| for (bits_count = count[bits]; bits_count != 0; --bits_count) { |
| symbol = symbol_lists[symbol]; |
| code = ConstructHuffmanCode((uint8_t)bits, (uint16_t)symbol); |
| ReplicateValue(&table[BrotliReverseBits(key)], step, table_size, code); |
| key += key_step; |
| } |
| step <<= 1; |
| key_step >>= 1; |
| } while (++bits <= table_bits); |
| |
| /* If root_bits != table_bits then replicate to fill the remaining slots. */ |
| while (total_size != table_size) { |
| memcpy(&table[table_size], &table[0], |
| (size_t)table_size * sizeof(table[0])); |
| table_size <<= 1; |
| } |
| |
| /* Fill in 2nd level tables and add pointers to root table. */ |
| key_step = BROTLI_REVERSE_BITS_LOWEST >> (root_bits - 1); |
| sub_key = (BROTLI_REVERSE_BITS_LOWEST << 1); |
| sub_key_step = BROTLI_REVERSE_BITS_LOWEST; |
| for (len = root_bits + 1, step = 2; len <= max_length; ++len) { |
| symbol = len - (BROTLI_HUFFMAN_MAX_CODE_LENGTH + 1); |
| for (; count[len] != 0; --count[len]) { |
| if (sub_key == (BROTLI_REVERSE_BITS_LOWEST << 1U)) { |
| table += table_size; |
| table_bits = NextTableBitSize(count, len, root_bits); |
| table_size = 1 << table_bits; |
| total_size += table_size; |
| sub_key = BrotliReverseBits(key); |
| key += key_step; |
| root_table[sub_key] = ConstructHuffmanCode( |
| (uint8_t)(table_bits + root_bits), |
| (uint16_t)(((size_t)(table - root_table)) - sub_key)); |
| sub_key = 0; |
| } |
| symbol = symbol_lists[symbol]; |
| code = ConstructHuffmanCode((uint8_t)(len - root_bits), (uint16_t)symbol); |
| ReplicateValue( |
| &table[BrotliReverseBits(sub_key)], step, table_size, code); |
| sub_key += sub_key_step; |
| } |
| step <<= 1; |
| sub_key_step >>= 1; |
| } |
| return (uint32_t)total_size; |
| } |
| |
| uint32_t BrotliBuildSimpleHuffmanTable(HuffmanCode* table, |
| int root_bits, |
| uint16_t* val, |
| uint32_t num_symbols) { |
| uint32_t table_size = 1; |
| const uint32_t goal_size = 1U << root_bits; |
| switch (num_symbols) { |
| case 0: |
| table[0] = ConstructHuffmanCode(0, val[0]); |
| break; |
| case 1: |
| if (val[1] > val[0]) { |
| table[0] = ConstructHuffmanCode(1, val[0]); |
| table[1] = ConstructHuffmanCode(1, val[1]); |
| } else { |
| table[0] = ConstructHuffmanCode(1, val[1]); |
| table[1] = ConstructHuffmanCode(1, val[0]); |
| } |
| table_size = 2; |
| break; |
| case 2: |
| table[0] = ConstructHuffmanCode(1, val[0]); |
| table[2] = ConstructHuffmanCode(1, val[0]); |
| if (val[2] > val[1]) { |
| table[1] = ConstructHuffmanCode(2, val[1]); |
| table[3] = ConstructHuffmanCode(2, val[2]); |
| } else { |
| table[1] = ConstructHuffmanCode(2, val[2]); |
| table[3] = ConstructHuffmanCode(2, val[1]); |
| } |
| table_size = 4; |
| break; |
| case 3: { |
| int i, k; |
| for (i = 0; i < 3; ++i) { |
| for (k = i + 1; k < 4; ++k) { |
| if (val[k] < val[i]) { |
| uint16_t t = val[k]; |
| val[k] = val[i]; |
| val[i] = t; |
| } |
| } |
| } |
| table[0] = ConstructHuffmanCode(2, val[0]); |
| table[2] = ConstructHuffmanCode(2, val[1]); |
| table[1] = ConstructHuffmanCode(2, val[2]); |
| table[3] = ConstructHuffmanCode(2, val[3]); |
| table_size = 4; |
| break; |
| } |
| case 4: { |
| if (val[3] < val[2]) { |
| uint16_t t = val[3]; |
| val[3] = val[2]; |
| val[2] = t; |
| } |
| table[0] = ConstructHuffmanCode(1, val[0]); |
| table[1] = ConstructHuffmanCode(2, val[1]); |
| table[2] = ConstructHuffmanCode(1, val[0]); |
| table[3] = ConstructHuffmanCode(3, val[2]); |
| table[4] = ConstructHuffmanCode(1, val[0]); |
| table[5] = ConstructHuffmanCode(2, val[1]); |
| table[6] = ConstructHuffmanCode(1, val[0]); |
| table[7] = ConstructHuffmanCode(3, val[3]); |
| table_size = 8; |
| break; |
| } |
| } |
| while (table_size != goal_size) { |
| memcpy(&table[table_size], &table[0], |
| (size_t)table_size * sizeof(table[0])); |
| table_size <<= 1; |
| } |
| return goal_size; |
| } |
| |
| #if defined(__cplusplus) || defined(c_plusplus) |
| } /* extern "C" */ |
| #endif |