| /* NOLINT(build/header_guard) */ |
| /* Copyright 2013 Google Inc. All Rights Reserved. |
| |
| Distributed under MIT license. |
| See file LICENSE for detail or copy at https://opensource.org/licenses/MIT |
| */ |
| |
| /* template parameters: FN, DataType */ |
| |
| #define HistogramType FN(Histogram) |
| |
| static void FN(InitialEntropyCodes)(const DataType* data, size_t length, |
| size_t stride, |
| size_t num_histograms, |
| HistogramType* histograms) { |
| uint32_t seed = 7; |
| size_t block_length = length / num_histograms; |
| size_t i; |
| FN(ClearHistograms)(histograms, num_histograms); |
| for (i = 0; i < num_histograms; ++i) { |
| size_t pos = length * i / num_histograms; |
| if (i != 0) { |
| pos += MyRand(&seed) % block_length; |
| } |
| if (pos + stride >= length) { |
| pos = length - stride - 1; |
| } |
| FN(HistogramAddVector)(&histograms[i], data + pos, stride); |
| } |
| } |
| |
| static void FN(RandomSample)(uint32_t* seed, |
| const DataType* data, |
| size_t length, |
| size_t stride, |
| HistogramType* sample) { |
| size_t pos = 0; |
| if (stride >= length) { |
| stride = length; |
| } else { |
| pos = MyRand(seed) % (length - stride + 1); |
| } |
| FN(HistogramAddVector)(sample, data + pos, stride); |
| } |
| |
| static void FN(RefineEntropyCodes)(const DataType* data, size_t length, |
| size_t stride, |
| size_t num_histograms, |
| HistogramType* histograms, |
| HistogramType* tmp) { |
| size_t iters = |
| kIterMulForRefining * length / stride + kMinItersForRefining; |
| uint32_t seed = 7; |
| size_t iter; |
| iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms; |
| for (iter = 0; iter < iters; ++iter) { |
| FN(HistogramClear)(tmp); |
| FN(RandomSample)(&seed, data, length, stride, tmp); |
| FN(HistogramAddHistogram)(&histograms[iter % num_histograms], tmp); |
| } |
| } |
| |
| /* Assigns a block id from the range [0, num_histograms) to each data element |
| in data[0..length) and fills in block_id[0..length) with the assigned values. |
| Returns the number of blocks, i.e. one plus the number of block switches. */ |
| static size_t FN(FindBlocks)(const DataType* data, const size_t length, |
| const double block_switch_bitcost, |
| const size_t num_histograms, |
| const HistogramType* histograms, |
| double* insert_cost, |
| double* cost, |
| uint8_t* switch_signal, |
| uint8_t* block_id) { |
| const size_t alphabet_size = FN(HistogramDataSize)(); |
| const size_t bitmap_len = (num_histograms + 7) >> 3; |
| size_t num_blocks = 1; |
| size_t byte_ix; |
| size_t i; |
| size_t j; |
| BROTLI_DCHECK(num_histograms <= 256); |
| |
| /* Trivial case: single historgram -> single block type. */ |
| if (num_histograms <= 1) { |
| for (i = 0; i < length; ++i) { |
| block_id[i] = 0; |
| } |
| return 1; |
| } |
| |
| /* Fill bitcost for each symbol of all histograms. |
| * Non-existing symbol cost: 2 + log2(total_count). |
| * Regular symbol cost: -log2(symbol_count / total_count). */ |
| memset(insert_cost, 0, |
| sizeof(insert_cost[0]) * alphabet_size * num_histograms); |
| for (i = 0; i < num_histograms; ++i) { |
| insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_); |
| } |
| for (i = alphabet_size; i != 0;) { |
| /* Reverse order to use the 0-th row as a temporary storage. */ |
| --i; |
| for (j = 0; j < num_histograms; ++j) { |
| insert_cost[i * num_histograms + j] = |
| insert_cost[j] - BitCost(histograms[j].data_[i]); |
| } |
| } |
| |
| /* After each iteration of this loop, cost[k] will contain the difference |
| between the minimum cost of arriving at the current byte position using |
| entropy code k, and the minimum cost of arriving at the current byte |
| position. This difference is capped at the block switch cost, and if it |
| reaches block switch cost, it means that when we trace back from the last |
| position, we need to switch here. */ |
| memset(cost, 0, sizeof(cost[0]) * num_histograms); |
| memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmap_len); |
| for (byte_ix = 0; byte_ix < length; ++byte_ix) { |
| size_t ix = byte_ix * bitmap_len; |
| size_t symbol = data[byte_ix]; |
| size_t insert_cost_ix = symbol * num_histograms; |
| double min_cost = 1e99; |
| double block_switch_cost = block_switch_bitcost; |
| size_t k; |
| for (k = 0; k < num_histograms; ++k) { |
| /* We are coding the symbol with entropy code k. */ |
| cost[k] += insert_cost[insert_cost_ix + k]; |
| if (cost[k] < min_cost) { |
| min_cost = cost[k]; |
| block_id[byte_ix] = (uint8_t)k; |
| } |
| } |
| /* More blocks for the beginning. */ |
| if (byte_ix < 2000) { |
| block_switch_cost *= 0.77 + 0.07 * (double)byte_ix / 2000; |
| } |
| for (k = 0; k < num_histograms; ++k) { |
| cost[k] -= min_cost; |
| if (cost[k] >= block_switch_cost) { |
| const uint8_t mask = (uint8_t)(1u << (k & 7)); |
| cost[k] = block_switch_cost; |
| BROTLI_DCHECK((k >> 3) < bitmap_len); |
| switch_signal[ix + (k >> 3)] |= mask; |
| } |
| } |
| } |
| |
| byte_ix = length - 1; |
| { /* Trace back from the last position and switch at the marked places. */ |
| size_t ix = byte_ix * bitmap_len; |
| uint8_t cur_id = block_id[byte_ix]; |
| while (byte_ix > 0) { |
| const uint8_t mask = (uint8_t)(1u << (cur_id & 7)); |
| BROTLI_DCHECK(((size_t)cur_id >> 3) < bitmap_len); |
| --byte_ix; |
| ix -= bitmap_len; |
| if (switch_signal[ix + (cur_id >> 3)] & mask) { |
| if (cur_id != block_id[byte_ix]) { |
| cur_id = block_id[byte_ix]; |
| ++num_blocks; |
| } |
| } |
| block_id[byte_ix] = cur_id; |
| } |
| } |
| return num_blocks; |
| } |
| |
| static size_t FN(RemapBlockIds)(uint8_t* block_ids, const size_t length, |
| uint16_t* new_id, const size_t num_histograms) { |
| static const uint16_t kInvalidId = 256; |
| uint16_t next_id = 0; |
| size_t i; |
| for (i = 0; i < num_histograms; ++i) { |
| new_id[i] = kInvalidId; |
| } |
| for (i = 0; i < length; ++i) { |
| BROTLI_DCHECK(block_ids[i] < num_histograms); |
| if (new_id[block_ids[i]] == kInvalidId) { |
| new_id[block_ids[i]] = next_id++; |
| } |
| } |
| for (i = 0; i < length; ++i) { |
| block_ids[i] = (uint8_t)new_id[block_ids[i]]; |
| BROTLI_DCHECK(block_ids[i] < num_histograms); |
| } |
| BROTLI_DCHECK(next_id <= num_histograms); |
| return next_id; |
| } |
| |
| static void FN(BuildBlockHistograms)(const DataType* data, const size_t length, |
| const uint8_t* block_ids, |
| const size_t num_histograms, |
| HistogramType* histograms) { |
| size_t i; |
| FN(ClearHistograms)(histograms, num_histograms); |
| for (i = 0; i < length; ++i) { |
| FN(HistogramAdd)(&histograms[block_ids[i]], data[i]); |
| } |
| } |
| |
| /* Given the initial partitioning build partitioning with limited number |
| * of histograms (and block types). */ |
| static void FN(ClusterBlocks)(MemoryManager* m, |
| const DataType* data, const size_t length, |
| const size_t num_blocks, |
| uint8_t* block_ids, |
| BlockSplit* split) { |
| uint32_t* histogram_symbols = BROTLI_ALLOC(m, uint32_t, num_blocks); |
| uint32_t* u32 = |
| BROTLI_ALLOC(m, uint32_t, num_blocks + 4 * HISTOGRAMS_PER_BATCH); |
| const size_t expected_num_clusters = CLUSTERS_PER_BATCH * |
| (num_blocks + HISTOGRAMS_PER_BATCH - 1) / HISTOGRAMS_PER_BATCH; |
| size_t all_histograms_size = 0; |
| size_t all_histograms_capacity = expected_num_clusters; |
| HistogramType* all_histograms = |
| BROTLI_ALLOC(m, HistogramType, all_histograms_capacity); |
| size_t cluster_size_size = 0; |
| size_t cluster_size_capacity = expected_num_clusters; |
| uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, cluster_size_capacity); |
| size_t num_clusters = 0; |
| HistogramType* histograms = BROTLI_ALLOC(m, HistogramType, |
| BROTLI_MIN(size_t, num_blocks, HISTOGRAMS_PER_BATCH)); |
| size_t max_num_pairs = |
| HISTOGRAMS_PER_BATCH * HISTOGRAMS_PER_BATCH / 2; |
| size_t pairs_capacity = max_num_pairs + 1; |
| HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity); |
| size_t pos = 0; |
| uint32_t* clusters; |
| size_t num_final_clusters; |
| static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX; |
| uint32_t* new_index; |
| size_t i; |
| uint32_t* BROTLI_RESTRICT const sizes = u32 + 0 * HISTOGRAMS_PER_BATCH; |
| uint32_t* BROTLI_RESTRICT const new_clusters = u32 + 1 * HISTOGRAMS_PER_BATCH; |
| uint32_t* BROTLI_RESTRICT const symbols = u32 + 2 * HISTOGRAMS_PER_BATCH; |
| uint32_t* BROTLI_RESTRICT const remap = u32 + 3 * HISTOGRAMS_PER_BATCH; |
| uint32_t* BROTLI_RESTRICT const block_lengths = |
| u32 + 4 * HISTOGRAMS_PER_BATCH; |
| /* TODO(eustas): move to arena? */ |
| HistogramType* tmp = BROTLI_ALLOC(m, HistogramType, 2); |
| |
| if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(histogram_symbols) || |
| BROTLI_IS_NULL(u32) || BROTLI_IS_NULL(all_histograms) || |
| BROTLI_IS_NULL(cluster_size) || BROTLI_IS_NULL(histograms) || |
| BROTLI_IS_NULL(pairs) || BROTLI_IS_NULL(tmp)) { |
| return; |
| } |
| |
| memset(u32, 0, (num_blocks + 4 * HISTOGRAMS_PER_BATCH) * sizeof(uint32_t)); |
| |
| /* Calculate block lengths (convert repeating values -> series length). */ |
| { |
| size_t block_idx = 0; |
| for (i = 0; i < length; ++i) { |
| BROTLI_DCHECK(block_idx < num_blocks); |
| ++block_lengths[block_idx]; |
| if (i + 1 == length || block_ids[i] != block_ids[i + 1]) { |
| ++block_idx; |
| } |
| } |
| BROTLI_DCHECK(block_idx == num_blocks); |
| } |
| |
| /* Pre-cluster blocks (cluster batches). */ |
| for (i = 0; i < num_blocks; i += HISTOGRAMS_PER_BATCH) { |
| const size_t num_to_combine = |
| BROTLI_MIN(size_t, num_blocks - i, HISTOGRAMS_PER_BATCH); |
| size_t num_new_clusters; |
| size_t j; |
| for (j = 0; j < num_to_combine; ++j) { |
| size_t k; |
| size_t block_length = block_lengths[i + j]; |
| FN(HistogramClear)(&histograms[j]); |
| for (k = 0; k < block_length; ++k) { |
| FN(HistogramAdd)(&histograms[j], data[pos++]); |
| } |
| histograms[j].bit_cost_ = FN(BrotliPopulationCost)(&histograms[j]); |
| new_clusters[j] = (uint32_t)j; |
| symbols[j] = (uint32_t)j; |
| sizes[j] = 1; |
| } |
| num_new_clusters = FN(BrotliHistogramCombine)( |
| histograms, tmp, sizes, symbols, new_clusters, pairs, num_to_combine, |
| num_to_combine, HISTOGRAMS_PER_BATCH, max_num_pairs); |
| BROTLI_ENSURE_CAPACITY(m, HistogramType, all_histograms, |
| all_histograms_capacity, all_histograms_size + num_new_clusters); |
| BROTLI_ENSURE_CAPACITY(m, uint32_t, cluster_size, |
| cluster_size_capacity, cluster_size_size + num_new_clusters); |
| if (BROTLI_IS_OOM(m)) return; |
| for (j = 0; j < num_new_clusters; ++j) { |
| all_histograms[all_histograms_size++] = histograms[new_clusters[j]]; |
| cluster_size[cluster_size_size++] = sizes[new_clusters[j]]; |
| remap[new_clusters[j]] = (uint32_t)j; |
| } |
| for (j = 0; j < num_to_combine; ++j) { |
| histogram_symbols[i + j] = (uint32_t)num_clusters + remap[symbols[j]]; |
| } |
| num_clusters += num_new_clusters; |
| BROTLI_DCHECK(num_clusters == cluster_size_size); |
| BROTLI_DCHECK(num_clusters == all_histograms_size); |
| } |
| BROTLI_FREE(m, histograms); |
| |
| /* Final clustering. */ |
| max_num_pairs = |
| BROTLI_MIN(size_t, 64 * num_clusters, (num_clusters / 2) * num_clusters); |
| if (pairs_capacity < max_num_pairs + 1) { |
| BROTLI_FREE(m, pairs); |
| pairs = BROTLI_ALLOC(m, HistogramPair, max_num_pairs + 1); |
| if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(pairs)) return; |
| } |
| clusters = BROTLI_ALLOC(m, uint32_t, num_clusters); |
| if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(clusters)) return; |
| for (i = 0; i < num_clusters; ++i) { |
| clusters[i] = (uint32_t)i; |
| } |
| num_final_clusters = FN(BrotliHistogramCombine)( |
| all_histograms, tmp, cluster_size, histogram_symbols, clusters, pairs, |
| num_clusters, num_blocks, BROTLI_MAX_NUMBER_OF_BLOCK_TYPES, |
| max_num_pairs); |
| BROTLI_FREE(m, pairs); |
| BROTLI_FREE(m, cluster_size); |
| |
| /* Assign blocks to final histograms. */ |
| new_index = BROTLI_ALLOC(m, uint32_t, num_clusters); |
| if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(new_index)) return; |
| for (i = 0; i < num_clusters; ++i) new_index[i] = kInvalidIndex; |
| pos = 0; |
| { |
| uint32_t next_index = 0; |
| for (i = 0; i < num_blocks; ++i) { |
| size_t j; |
| uint32_t best_out; |
| double best_bits; |
| FN(HistogramClear)(tmp); |
| for (j = 0; j < block_lengths[i]; ++j) { |
| FN(HistogramAdd)(tmp, data[pos++]); |
| } |
| /* Among equally good histograms prefer last used. */ |
| /* TODO(eustas): should we give a block-switch discount here? */ |
| best_out = (i == 0) ? histogram_symbols[0] : histogram_symbols[i - 1]; |
| best_bits = FN(BrotliHistogramBitCostDistance)( |
| tmp, &all_histograms[best_out], tmp + 1); |
| for (j = 0; j < num_final_clusters; ++j) { |
| const double cur_bits = FN(BrotliHistogramBitCostDistance)( |
| tmp, &all_histograms[clusters[j]], tmp + 1); |
| if (cur_bits < best_bits) { |
| best_bits = cur_bits; |
| best_out = clusters[j]; |
| } |
| } |
| histogram_symbols[i] = best_out; |
| if (new_index[best_out] == kInvalidIndex) { |
| new_index[best_out] = next_index++; |
| } |
| } |
| } |
| BROTLI_FREE(m, tmp); |
| BROTLI_FREE(m, clusters); |
| BROTLI_FREE(m, all_histograms); |
| BROTLI_ENSURE_CAPACITY( |
| m, uint8_t, split->types, split->types_alloc_size, num_blocks); |
| BROTLI_ENSURE_CAPACITY( |
| m, uint32_t, split->lengths, split->lengths_alloc_size, num_blocks); |
| if (BROTLI_IS_OOM(m)) return; |
| |
| /* Rewrite final assignment to block-split. There might be less blocks |
| * than |num_blocks| due to clustering. */ |
| { |
| uint32_t cur_length = 0; |
| size_t block_idx = 0; |
| uint8_t max_type = 0; |
| for (i = 0; i < num_blocks; ++i) { |
| cur_length += block_lengths[i]; |
| if (i + 1 == num_blocks || |
| histogram_symbols[i] != histogram_symbols[i + 1]) { |
| const uint8_t id = (uint8_t)new_index[histogram_symbols[i]]; |
| split->types[block_idx] = id; |
| split->lengths[block_idx] = cur_length; |
| max_type = BROTLI_MAX(uint8_t, max_type, id); |
| cur_length = 0; |
| ++block_idx; |
| } |
| } |
| split->num_blocks = block_idx; |
| split->num_types = (size_t)max_type + 1; |
| } |
| BROTLI_FREE(m, new_index); |
| BROTLI_FREE(m, u32); |
| BROTLI_FREE(m, histogram_symbols); |
| } |
| |
| /* Create BlockSplit (partitioning) given the limits, estimates and "effort" |
| * parameters. |
| * |
| * NB: max_histograms is often less than number of histograms allowed by format; |
| * this is done intentionally, to save some "space" for context-aware |
| * clustering (here entropy is estimated for context-free symbols). */ |
| static void FN(SplitByteVector)(MemoryManager* m, |
| const DataType* data, const size_t length, |
| const size_t symbols_per_histogram, |
| const size_t max_histograms, |
| const size_t sampling_stride_length, |
| const double block_switch_cost, |
| const BrotliEncoderParams* params, |
| BlockSplit* split) { |
| const size_t data_size = FN(HistogramDataSize)(); |
| HistogramType* histograms; |
| HistogramType* tmp; |
| /* Calculate number of histograms; initial estimate is one histogram per |
| * specified amount of symbols; however, this value is capped. */ |
| size_t num_histograms = length / symbols_per_histogram + 1; |
| if (num_histograms > max_histograms) { |
| num_histograms = max_histograms; |
| } |
| |
| /* Corner case: no input. */ |
| if (length == 0) { |
| split->num_types = 1; |
| return; |
| } |
| |
| if (length < kMinLengthForBlockSplitting) { |
| BROTLI_ENSURE_CAPACITY(m, uint8_t, |
| split->types, split->types_alloc_size, split->num_blocks + 1); |
| BROTLI_ENSURE_CAPACITY(m, uint32_t, |
| split->lengths, split->lengths_alloc_size, split->num_blocks + 1); |
| if (BROTLI_IS_OOM(m)) return; |
| split->num_types = 1; |
| split->types[split->num_blocks] = 0; |
| split->lengths[split->num_blocks] = (uint32_t)length; |
| split->num_blocks++; |
| return; |
| } |
| histograms = BROTLI_ALLOC(m, HistogramType, num_histograms + 1); |
| tmp = histograms + num_histograms; |
| if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(histograms)) return; |
| /* Find good entropy codes. */ |
| FN(InitialEntropyCodes)(data, length, |
| sampling_stride_length, |
| num_histograms, histograms); |
| FN(RefineEntropyCodes)(data, length, |
| sampling_stride_length, |
| num_histograms, histograms, tmp); |
| { |
| /* Find a good path through literals with the good entropy codes. */ |
| uint8_t* block_ids = BROTLI_ALLOC(m, uint8_t, length); |
| size_t num_blocks = 0; |
| const size_t bitmaplen = (num_histograms + 7) >> 3; |
| double* insert_cost = BROTLI_ALLOC(m, double, data_size * num_histograms); |
| double* cost = BROTLI_ALLOC(m, double, num_histograms); |
| uint8_t* switch_signal = BROTLI_ALLOC(m, uint8_t, length * bitmaplen); |
| uint16_t* new_id = BROTLI_ALLOC(m, uint16_t, num_histograms); |
| const size_t iters = params->quality < HQ_ZOPFLIFICATION_QUALITY ? 3 : 10; |
| size_t i; |
| if (BROTLI_IS_OOM(m) || BROTLI_IS_NULL(block_ids) || |
| BROTLI_IS_NULL(insert_cost) || BROTLI_IS_NULL(cost) || |
| BROTLI_IS_NULL(switch_signal) || BROTLI_IS_NULL(new_id)) { |
| return; |
| } |
| for (i = 0; i < iters; ++i) { |
| num_blocks = FN(FindBlocks)(data, length, |
| block_switch_cost, |
| num_histograms, histograms, |
| insert_cost, cost, switch_signal, |
| block_ids); |
| num_histograms = FN(RemapBlockIds)(block_ids, length, |
| new_id, num_histograms); |
| FN(BuildBlockHistograms)(data, length, block_ids, |
| num_histograms, histograms); |
| } |
| BROTLI_FREE(m, insert_cost); |
| BROTLI_FREE(m, cost); |
| BROTLI_FREE(m, switch_signal); |
| BROTLI_FREE(m, new_id); |
| BROTLI_FREE(m, histograms); |
| FN(ClusterBlocks)(m, data, length, num_blocks, block_ids, split); |
| if (BROTLI_IS_OOM(m)) return; |
| BROTLI_FREE(m, block_ids); |
| } |
| } |
| |
| #undef HistogramType |