blob: 9330150a838514b5fb1dcda12bb82c28c8e81b3d [file] [log] [blame]
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_ALLOCATOR_H
#define TEST_ALLOCATOR_H
#include <type_traits>
#include <new>
#include <memory>
#include <utility>
#include <cstddef>
#include <cstdlib>
#include <climits>
#include <cassert>
#include "test_macros.h"
template <class Alloc>
TEST_CONSTEXPR_CXX20 inline typename std::allocator_traits<Alloc>::size_type alloc_max_size(Alloc const& a) {
typedef std::allocator_traits<Alloc> AT;
return AT::max_size(a);
}
struct test_allocator_statistics {
int time_to_throw = 0;
int throw_after = INT_MAX;
int count = 0;
int alloc_count = 0;
int construct_count = 0; // the number of times that ::construct was called
int destroy_count = 0; // the number of times that ::destroy was called
int copied = 0;
int moved = 0;
int converted = 0;
TEST_CONSTEXPR_CXX14 void clear() {
assert(count == 0 && "clearing leaking allocator data?");
count = 0;
time_to_throw = 0;
alloc_count = 0;
construct_count = 0;
destroy_count = 0;
throw_after = INT_MAX;
clear_ctor_counters();
}
TEST_CONSTEXPR_CXX14 void clear_ctor_counters() {
copied = 0;
moved = 0;
converted = 0;
}
};
struct test_alloc_base {
TEST_CONSTEXPR static const int destructed_value = -1;
TEST_CONSTEXPR static const int moved_value = INT_MAX;
};
template <class T>
class test_allocator {
int data_ = 0; // participates in equality
int id_ = 0; // unique identifier, doesn't participate in equality
test_allocator_statistics* stats_ = nullptr;
template <class U>
friend class test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef typename std::add_lvalue_reference<value_type>::type reference;
typedef typename std::add_lvalue_reference<const value_type>::type const_reference;
template <class U>
struct rebind {
typedef test_allocator<U> other;
};
TEST_CONSTEXPR test_allocator() TEST_NOEXCEPT = default;
TEST_CONSTEXPR_CXX14 explicit test_allocator(test_allocator_statistics* stats) TEST_NOEXCEPT : stats_(stats) {
if (stats_ != nullptr)
++stats_->count;
}
TEST_CONSTEXPR explicit test_allocator(int data) TEST_NOEXCEPT : data_(data) {}
TEST_CONSTEXPR_CXX14 explicit test_allocator(int data, test_allocator_statistics* stats) TEST_NOEXCEPT
: data_(data), stats_(stats) {
if (stats != nullptr)
++stats_->count;
}
TEST_CONSTEXPR explicit test_allocator(int data, int id) TEST_NOEXCEPT : data_(data), id_(id) {}
TEST_CONSTEXPR_CXX14 explicit test_allocator(int data, int id, test_allocator_statistics* stats) TEST_NOEXCEPT
: data_(data), id_(id), stats_(stats) {
if (stats_ != nullptr)
++stats_->count;
}
TEST_CONSTEXPR_CXX14 test_allocator(const test_allocator& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_), stats_(a.stats_) {
assert(a.data_ != test_alloc_base::destructed_value && a.id_ != test_alloc_base::destructed_value &&
"copying from destroyed allocator");
if (stats_ != nullptr) {
++stats_->count;
++stats_->copied;
}
}
TEST_CONSTEXPR_CXX14 test_allocator(test_allocator&& a) TEST_NOEXCEPT : data_(a.data_), id_(a.id_), stats_(a.stats_) {
if (stats_ != nullptr) {
++stats_->count;
++stats_->moved;
}
assert(a.data_ != test_alloc_base::destructed_value && a.id_ != test_alloc_base::destructed_value &&
"moving from destroyed allocator");
a.data_ = test_alloc_base::moved_value;
a.id_ = test_alloc_base::moved_value;
}
template <class U>
TEST_CONSTEXPR_CXX14 test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_), stats_(a.stats_) {
if (stats_ != nullptr) {
++stats_->count;
++stats_->converted;
}
}
TEST_CONSTEXPR_CXX20 ~test_allocator() TEST_NOEXCEPT {
assert(data_ != test_alloc_base::destructed_value);
assert(id_ != test_alloc_base::destructed_value);
if (stats_ != nullptr)
--stats_->count;
data_ = test_alloc_base::destructed_value;
id_ = test_alloc_base::destructed_value;
}
TEST_CONSTEXPR pointer address(reference x) const { return &x; }
TEST_CONSTEXPR const_pointer address(const_reference x) const { return &x; }
TEST_CONSTEXPR_CXX14 pointer allocate(size_type n, const void* = nullptr) {
assert(data_ != test_alloc_base::destructed_value);
if (stats_ != nullptr) {
if (stats_->time_to_throw >= stats_->throw_after)
TEST_THROW(std::bad_alloc());
++stats_->time_to_throw;
++stats_->alloc_count;
}
return std::allocator<value_type>().allocate(n);
}
TEST_CONSTEXPR_CXX14 void deallocate(pointer p, size_type s) {
assert(data_ != test_alloc_base::destructed_value);
if (stats_ != nullptr)
--stats_->alloc_count;
std::allocator<value_type>().deallocate(p, s);
}
TEST_CONSTEXPR size_type max_size() const TEST_NOEXCEPT { return UINT_MAX / sizeof(T); }
template <class U>
TEST_CONSTEXPR_CXX20 void construct(pointer p, U&& val) {
if (stats_ != nullptr)
++stats_->construct_count;
#if TEST_STD_VER > 17
std::construct_at(std::to_address(p), std::forward<U>(val));
#else
::new (static_cast<void*>(p)) T(std::forward<U>(val));
#endif
}
TEST_CONSTEXPR_CXX14 void destroy(pointer p) {
if (stats_ != nullptr)
++stats_->destroy_count;
p->~T();
}
TEST_CONSTEXPR friend bool operator==(const test_allocator& x, const test_allocator& y) { return x.data_ == y.data_; }
TEST_CONSTEXPR friend bool operator!=(const test_allocator& x, const test_allocator& y) { return !(x == y); }
TEST_CONSTEXPR int get_data() const { return data_; }
TEST_CONSTEXPR int get_id() const { return id_; }
};
template <>
class test_allocator<void> {
int data_ = 0;
int id_ = 0;
test_allocator_statistics* stats_ = nullptr;
template <class U>
friend class test_allocator;
public:
typedef unsigned size_type;
typedef int difference_type;
typedef void value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
template <class U>
struct rebind {
typedef test_allocator<U> other;
};
TEST_CONSTEXPR test_allocator() TEST_NOEXCEPT = default;
TEST_CONSTEXPR_CXX14 explicit test_allocator(test_allocator_statistics* stats) TEST_NOEXCEPT : stats_(stats) {}
TEST_CONSTEXPR explicit test_allocator(int data) TEST_NOEXCEPT : data_(data) {}
TEST_CONSTEXPR explicit test_allocator(int data, test_allocator_statistics* stats) TEST_NOEXCEPT
: data_(data), stats_(stats)
{}
TEST_CONSTEXPR explicit test_allocator(int data, int id) : data_(data), id_(id) {}
TEST_CONSTEXPR_CXX14 explicit test_allocator(int data, int id, test_allocator_statistics* stats) TEST_NOEXCEPT
: data_(data), id_(id), stats_(stats)
{}
TEST_CONSTEXPR_CXX14 explicit test_allocator(const test_allocator& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_), stats_(a.stats_)
{}
template <class U>
TEST_CONSTEXPR_CXX14 test_allocator(const test_allocator<U>& a) TEST_NOEXCEPT
: data_(a.data_), id_(a.id_), stats_(a.stats_)
{}
TEST_CONSTEXPR_CXX20 ~test_allocator() TEST_NOEXCEPT {
data_ = test_alloc_base::destructed_value;
id_ = test_alloc_base::destructed_value;
}
TEST_CONSTEXPR int get_id() const { return id_; }
TEST_CONSTEXPR int get_data() const { return data_; }
TEST_CONSTEXPR friend bool operator==(const test_allocator& x, const test_allocator& y) { return x.data_ == y.data_; }
TEST_CONSTEXPR friend bool operator!=(const test_allocator& x, const test_allocator& y) { return !(x == y); }
};
template <class T>
class other_allocator {
int data_ = -1;
template <class U>
friend class other_allocator;
public:
typedef T value_type;
TEST_CONSTEXPR_CXX14 other_allocator() {}
TEST_CONSTEXPR_CXX14 explicit other_allocator(int i) : data_(i) {}
template <class U>
TEST_CONSTEXPR_CXX14 other_allocator(const other_allocator<U>& a) : data_(a.data_) {}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) { return std::allocator<value_type>().allocate(n); }
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t s) { std::allocator<value_type>().deallocate(p, s); }
TEST_CONSTEXPR_CXX14 other_allocator select_on_container_copy_construction() const { return other_allocator(-2); }
TEST_CONSTEXPR_CXX14 friend bool operator==(const other_allocator& x, const other_allocator& y) {
return x.data_ == y.data_;
}
TEST_CONSTEXPR_CXX14 friend bool operator!=(const other_allocator& x, const other_allocator& y) { return !(x == y); }
typedef std::true_type propagate_on_container_copy_assignment;
typedef std::true_type propagate_on_container_move_assignment;
typedef std::true_type propagate_on_container_swap;
#if TEST_STD_VER < 11
std::size_t max_size() const { return UINT_MAX / sizeof(T); }
#endif
};
struct Ctor_Tag {};
template <typename T>
class TaggingAllocator;
struct Tag_X {
// All constructors must be passed the Tag type.
// DefaultInsertable into vector<X, TaggingAllocator<X>>,
TEST_CONSTEXPR Tag_X(Ctor_Tag) {}
// CopyInsertable into vector<X, TaggingAllocator<X>>,
TEST_CONSTEXPR Tag_X(Ctor_Tag, const Tag_X&) {}
// MoveInsertable into vector<X, TaggingAllocator<X>>, and
TEST_CONSTEXPR Tag_X(Ctor_Tag, Tag_X&&) {}
// EmplaceConstructible into vector<X, TaggingAllocator<X>> from args.
template <typename... Args>
TEST_CONSTEXPR Tag_X(Ctor_Tag, Args&&...) {}
// not DefaultConstructible, CopyConstructible or MoveConstructible.
Tag_X() = delete;
Tag_X(const Tag_X&) = delete;
Tag_X(Tag_X&&) = delete;
// CopyAssignable.
TEST_CONSTEXPR_CXX14 Tag_X& operator=(const Tag_X&) { return *this; };
// MoveAssignable.
TEST_CONSTEXPR_CXX14 Tag_X& operator=(Tag_X&&) { return *this; };
private:
~Tag_X() = default;
// Erasable from vector<X, TaggingAllocator<X>>.
friend class TaggingAllocator<Tag_X>;
};
template <typename T>
class TaggingAllocator {
public:
using value_type = T;
TaggingAllocator() = default;
template <typename U>
TEST_CONSTEXPR TaggingAllocator(const TaggingAllocator<U>&) {}
template <typename... Args>
TEST_CONSTEXPR_CXX20 void construct(Tag_X* p, Args&&... args) {
#if TEST_STD_VER > 17
std::construct_at(p, Ctor_Tag{}, std::forward<Args>(args)...);
#else
::new (static_cast<void*>(p)) Tag_X(Ctor_Tag(), std::forward<Args>(args)...);
#endif
}
template <typename U>
TEST_CONSTEXPR_CXX20 void destroy(U* p) {
p->~U();
}
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t n) { return std::allocator<T>().allocate(n); }
TEST_CONSTEXPR_CXX20 void deallocate(T* p, std::size_t n) { std::allocator<T>().deallocate(p, n); }
};
template <std::size_t MaxAllocs>
struct limited_alloc_handle {
std::size_t outstanding_ = 0;
void* last_alloc_ = nullptr;
template <class T>
TEST_CONSTEXPR_CXX20 T* allocate(std::size_t N) {
if (N + outstanding_ > MaxAllocs)
TEST_THROW(std::bad_alloc());
auto alloc = std::allocator<T>().allocate(N);
last_alloc_ = alloc;
outstanding_ += N;
return alloc;
}
template <class T>
TEST_CONSTEXPR_CXX20 void deallocate(T* ptr, std::size_t N) {
if (ptr == last_alloc_) {
last_alloc_ = nullptr;
assert(outstanding_ >= N);
outstanding_ -= N;
}
std::allocator<T>().deallocate(ptr, N);
}
};
namespace detail {
template <class T>
class thread_unsafe_shared_ptr {
public:
thread_unsafe_shared_ptr() = default;
TEST_CONSTEXPR_CXX14 thread_unsafe_shared_ptr(const thread_unsafe_shared_ptr& other) : block(other.block) {
++block->ref_count;
}
TEST_CONSTEXPR_CXX20 ~thread_unsafe_shared_ptr() {
--block->ref_count;
if (block->ref_count != 0)
return;
typedef std::allocator_traits<std::allocator<control_block> > allocator_traits;
std::allocator<control_block> alloc;
allocator_traits::destroy(alloc, block);
allocator_traits::deallocate(alloc, block, 1);
}
TEST_CONSTEXPR const T& operator*() const { return block->content; }
TEST_CONSTEXPR const T* operator->() const { return &block->content; }
TEST_CONSTEXPR_CXX14 T& operator*() { return block->content; }
TEST_CONSTEXPR_CXX14 T* operator->() { return &block->content; }
TEST_CONSTEXPR_CXX14 T* get() { return &block->content; }
TEST_CONSTEXPR const T* get() const { return &block->content; }
private:
struct control_block {
template <class... Args>
TEST_CONSTEXPR control_block(Args... args) : content(std::forward<Args>(args)...) {}
std::size_t ref_count = 1;
T content;
};
control_block* block = nullptr;
template <class U, class... Args>
friend TEST_CONSTEXPR_CXX20 thread_unsafe_shared_ptr<U> make_thread_unsafe_shared(Args...);
};
template <class T, class... Args>
TEST_CONSTEXPR_CXX20 thread_unsafe_shared_ptr<T> make_thread_unsafe_shared(Args... args) {
typedef typename thread_unsafe_shared_ptr<T>::control_block control_block_type;
typedef std::allocator_traits<std::allocator<control_block_type> > allocator_traits;
thread_unsafe_shared_ptr<T> ptr;
std::allocator<control_block_type> alloc;
ptr.block = allocator_traits::allocate(alloc, 1);
allocator_traits::construct(alloc, ptr.block, std::forward<Args>(args)...);
return ptr;
}
} // namespace detail
template <class T, std::size_t N>
class limited_allocator {
template <class U, std::size_t UN>
friend class limited_allocator;
typedef limited_alloc_handle<N> BuffT;
detail::thread_unsafe_shared_ptr<BuffT> handle_;
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
template <class U>
struct rebind {
typedef limited_allocator<U, N> other;
};
TEST_CONSTEXPR_CXX20 limited_allocator() : handle_(detail::make_thread_unsafe_shared<BuffT>()) {}
limited_allocator(limited_allocator const&) = default;
template <class U>
TEST_CONSTEXPR explicit limited_allocator(limited_allocator<U, N> const& other) : handle_(other.handle_) {}
limited_allocator& operator=(const limited_allocator&) = delete;
TEST_CONSTEXPR_CXX20 pointer allocate(size_type n) { return handle_->template allocate<T>(n); }
TEST_CONSTEXPR_CXX20 void deallocate(pointer p, size_type n) { handle_->template deallocate<T>(p, n); }
TEST_CONSTEXPR size_type max_size() const { return N; }
TEST_CONSTEXPR BuffT* getHandle() const { return handle_.get(); }
};
template <class T, class U, std::size_t N>
TEST_CONSTEXPR inline bool operator==(limited_allocator<T, N> const& LHS, limited_allocator<U, N> const& RHS) {
return LHS.getHandle() == RHS.getHandle();
}
template <class T, class U, std::size_t N>
TEST_CONSTEXPR inline bool operator!=(limited_allocator<T, N> const& LHS, limited_allocator<U, N> const& RHS) {
return !(LHS == RHS);
}
#endif // TEST_ALLOCATOR_H