| /* origin: FreeBSD /usr/src/lib/msun/src/s_atanl.c */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| /* |
| * See comments in atan.c. |
| * Converted to long double by David Schultz <das@FreeBSD.ORG>. |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double atanl(long double x) |
| { |
| return atan(x); |
| } |
| #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
| |
| #if LDBL_MANT_DIG == 64 |
| #define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff)) |
| |
| static const long double atanhi[] = { |
| 4.63647609000806116202e-01L, |
| 7.85398163397448309628e-01L, |
| 9.82793723247329067960e-01L, |
| 1.57079632679489661926e+00L, |
| }; |
| |
| static const long double atanlo[] = { |
| 1.18469937025062860669e-20L, |
| -1.25413940316708300586e-20L, |
| 2.55232234165405176172e-20L, |
| -2.50827880633416601173e-20L, |
| }; |
| |
| static const long double aT[] = { |
| 3.33333333333333333017e-01L, |
| -1.99999999999999632011e-01L, |
| 1.42857142857046531280e-01L, |
| -1.11111111100562372733e-01L, |
| 9.09090902935647302252e-02L, |
| -7.69230552476207730353e-02L, |
| 6.66661718042406260546e-02L, |
| -5.88158892835030888692e-02L, |
| 5.25499891539726639379e-02L, |
| -4.70119845393155721494e-02L, |
| 4.03539201366454414072e-02L, |
| -2.91303858419364158725e-02L, |
| 1.24822046299269234080e-02L, |
| }; |
| |
| static long double T_even(long double x) |
| { |
| return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + |
| x * (aT[8] + x * (aT[10] + x * aT[12]))))); |
| } |
| |
| static long double T_odd(long double x) |
| { |
| return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + |
| x * (aT[9] + x * aT[11])))); |
| } |
| #elif LDBL_MANT_DIG == 113 |
| #define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8) |
| |
| static const long double atanhi[] = { |
| 4.63647609000806116214256231461214397e-01L, |
| 7.85398163397448309615660845819875699e-01L, |
| 9.82793723247329067985710611014666038e-01L, |
| 1.57079632679489661923132169163975140e+00L, |
| }; |
| |
| static const long double atanlo[] = { |
| 4.89509642257333492668618435220297706e-36L, |
| 2.16795253253094525619926100651083806e-35L, |
| -2.31288434538183565909319952098066272e-35L, |
| 4.33590506506189051239852201302167613e-35L, |
| }; |
| |
| static const long double aT[] = { |
| 3.33333333333333333333333333333333125e-01L, |
| -1.99999999999999999999999999999180430e-01L, |
| 1.42857142857142857142857142125269827e-01L, |
| -1.11111111111111111111110834490810169e-01L, |
| 9.09090909090909090908522355708623681e-02L, |
| -7.69230769230769230696553844935357021e-02L, |
| 6.66666666666666660390096773046256096e-02L, |
| -5.88235294117646671706582985209643694e-02L, |
| 5.26315789473666478515847092020327506e-02L, |
| -4.76190476189855517021024424991436144e-02L, |
| 4.34782608678695085948531993458097026e-02L, |
| -3.99999999632663469330634215991142368e-02L, |
| 3.70370363987423702891250829918659723e-02L, |
| -3.44827496515048090726669907612335954e-02L, |
| 3.22579620681420149871973710852268528e-02L, |
| -3.03020767654269261041647570626778067e-02L, |
| 2.85641979882534783223403715930946138e-02L, |
| -2.69824879726738568189929461383741323e-02L, |
| 2.54194698498808542954187110873675769e-02L, |
| -2.35083879708189059926183138130183215e-02L, |
| 2.04832358998165364349957325067131428e-02L, |
| -1.54489555488544397858507248612362957e-02L, |
| 8.64492360989278761493037861575248038e-03L, |
| -2.58521121597609872727919154569765469e-03L, |
| }; |
| |
| static long double T_even(long double x) |
| { |
| return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] + |
| x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] + |
| x * (aT[18] + x * (aT[20] + x * aT[22]))))))))))); |
| } |
| |
| static long double T_odd(long double x) |
| { |
| return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] + |
| x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] + |
| x * (aT[19] + x * (aT[21] + x * aT[23]))))))))))); |
| } |
| #endif |
| |
| long double atanl(long double x) |
| { |
| union ldshape u = {x}; |
| long double w, s1, s2, z; |
| int id; |
| unsigned e = u.i.se & 0x7fff; |
| unsigned sign = u.i.se >> 15; |
| unsigned expman; |
| |
| if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */ |
| if (isnan(x)) |
| return x; |
| return sign ? -atanhi[3] : atanhi[3]; |
| } |
| /* Extract the exponent and the first few bits of the mantissa. */ |
| expman = EXPMAN(u); |
| if (expman < ((0x3fff - 2) << 8) + 0xc0) { /* |x| < 0.4375 */ |
| if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) { /* if |x| is small, atanl(x)~=x */ |
| /* raise underflow if subnormal */ |
| if (e == 0) |
| FORCE_EVAL((float)x); |
| return x; |
| } |
| id = -1; |
| } else { |
| x = fabsl(x); |
| if (expman < (0x3fff << 8) + 0x30) { /* |x| < 1.1875 */ |
| if (expman < ((0x3fff - 1) << 8) + 0x60) { /* 7/16 <= |x| < 11/16 */ |
| id = 0; |
| x = (2.0*x-1.0)/(2.0+x); |
| } else { /* 11/16 <= |x| < 19/16 */ |
| id = 1; |
| x = (x-1.0)/(x+1.0); |
| } |
| } else { |
| if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */ |
| id = 2; |
| x = (x-1.5)/(1.0+1.5*x); |
| } else { /* 2.4375 <= |x| */ |
| id = 3; |
| x = -1.0/x; |
| } |
| } |
| } |
| /* end of argument reduction */ |
| z = x*x; |
| w = z*z; |
| /* break sum aT[i]z**(i+1) into odd and even poly */ |
| s1 = z*T_even(w); |
| s2 = w*T_odd(w); |
| if (id < 0) |
| return x - x*(s1+s2); |
| z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); |
| return sign ? -z : z; |
| } |
| #endif |