| /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */ |
| /* |
| * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| * |
| * Permission to use, copy, modify, and distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| /* powl.c |
| * |
| * Power function, long double precision |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, z, powl(); |
| * |
| * z = powl( x, y ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Computes x raised to the yth power. Analytically, |
| * |
| * x**y = exp( y log(x) ). |
| * |
| * Following Cody and Waite, this program uses a lookup table |
| * of 2**-i/32 and pseudo extended precision arithmetic to |
| * obtain several extra bits of accuracy in both the logarithm |
| * and the exponential. |
| * |
| * |
| * ACCURACY: |
| * |
| * The relative error of pow(x,y) can be estimated |
| * by y dl ln(2), where dl is the absolute error of |
| * the internally computed base 2 logarithm. At the ends |
| * of the approximation interval the logarithm equal 1/32 |
| * and its relative error is about 1 lsb = 1.1e-19. Hence |
| * the predicted relative error in the result is 2.3e-21 y . |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * |
| * IEEE +-1000 40000 2.8e-18 3.7e-19 |
| * .001 < x < 1000, with log(x) uniformly distributed. |
| * -1000 < y < 1000, y uniformly distributed. |
| * |
| * IEEE 0,8700 60000 6.5e-18 1.0e-18 |
| * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. |
| * |
| * |
| * ERROR MESSAGES: |
| * |
| * message condition value returned |
| * pow overflow x**y > MAXNUM INFINITY |
| * pow underflow x**y < 1/MAXNUM 0.0 |
| * pow domain x<0 and y noninteger 0.0 |
| * |
| */ |
| |
| #include "libm.h" |
| |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double powl(long double x, long double y) |
| { |
| return pow(x, y); |
| } |
| #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| |
| /* Table size */ |
| #define NXT 32 |
| |
| /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) |
| * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 |
| */ |
| static const long double P[] = { |
| 8.3319510773868690346226E-4L, |
| 4.9000050881978028599627E-1L, |
| 1.7500123722550302671919E0L, |
| 1.4000100839971580279335E0L, |
| }; |
| static const long double Q[] = { |
| /* 1.0000000000000000000000E0L,*/ |
| 5.2500282295834889175431E0L, |
| 8.4000598057587009834666E0L, |
| 4.2000302519914740834728E0L, |
| }; |
| /* A[i] = 2^(-i/32), rounded to IEEE long double precision. |
| * If i is even, A[i] + B[i/2] gives additional accuracy. |
| */ |
| static const long double A[33] = { |
| 1.0000000000000000000000E0L, |
| 9.7857206208770013448287E-1L, |
| 9.5760328069857364691013E-1L, |
| 9.3708381705514995065011E-1L, |
| 9.1700404320467123175367E-1L, |
| 8.9735453750155359320742E-1L, |
| 8.7812608018664974155474E-1L, |
| 8.5930964906123895780165E-1L, |
| 8.4089641525371454301892E-1L, |
| 8.2287773907698242225554E-1L, |
| 8.0524516597462715409607E-1L, |
| 7.8799042255394324325455E-1L, |
| 7.7110541270397041179298E-1L, |
| 7.5458221379671136985669E-1L, |
| 7.3841307296974965571198E-1L, |
| 7.2259040348852331001267E-1L, |
| 7.0710678118654752438189E-1L, |
| 6.9195494098191597746178E-1L, |
| 6.7712777346844636413344E-1L, |
| 6.6261832157987064729696E-1L, |
| 6.4841977732550483296079E-1L, |
| 6.3452547859586661129850E-1L, |
| 6.2092890603674202431705E-1L, |
| 6.0762367999023443907803E-1L, |
| 5.9460355750136053334378E-1L, |
| 5.8186242938878875689693E-1L, |
| 5.6939431737834582684856E-1L, |
| 5.5719337129794626814472E-1L, |
| 5.4525386633262882960438E-1L, |
| 5.3357020033841180906486E-1L, |
| 5.2213689121370692017331E-1L, |
| 5.1094857432705833910408E-1L, |
| 5.0000000000000000000000E-1L, |
| }; |
| static const long double B[17] = { |
| 0.0000000000000000000000E0L, |
| 2.6176170809902549338711E-20L, |
| -1.0126791927256478897086E-20L, |
| 1.3438228172316276937655E-21L, |
| 1.2207982955417546912101E-20L, |
| -6.3084814358060867200133E-21L, |
| 1.3164426894366316434230E-20L, |
| -1.8527916071632873716786E-20L, |
| 1.8950325588932570796551E-20L, |
| 1.5564775779538780478155E-20L, |
| 6.0859793637556860974380E-21L, |
| -2.0208749253662532228949E-20L, |
| 1.4966292219224761844552E-20L, |
| 3.3540909728056476875639E-21L, |
| -8.6987564101742849540743E-22L, |
| -1.2327176863327626135542E-20L, |
| 0.0000000000000000000000E0L, |
| }; |
| |
| /* 2^x = 1 + x P(x), |
| * on the interval -1/32 <= x <= 0 |
| */ |
| static const long double R[] = { |
| 1.5089970579127659901157E-5L, |
| 1.5402715328927013076125E-4L, |
| 1.3333556028915671091390E-3L, |
| 9.6181291046036762031786E-3L, |
| 5.5504108664798463044015E-2L, |
| 2.4022650695910062854352E-1L, |
| 6.9314718055994530931447E-1L, |
| }; |
| |
| #define MEXP (NXT*16384.0L) |
| /* The following if denormal numbers are supported, else -MEXP: */ |
| #define MNEXP (-NXT*(16384.0L+64.0L)) |
| /* log2(e) - 1 */ |
| #define LOG2EA 0.44269504088896340735992L |
| |
| #define F W |
| #define Fa Wa |
| #define Fb Wb |
| #define G W |
| #define Ga Wa |
| #define Gb u |
| #define H W |
| #define Ha Wb |
| #define Hb Wb |
| |
| static const long double MAXLOGL = 1.1356523406294143949492E4L; |
| static const long double MINLOGL = -1.13994985314888605586758E4L; |
| static const long double LOGE2L = 6.9314718055994530941723E-1L; |
| static const long double huge = 0x1p10000L; |
| /* XXX Prevent gcc from erroneously constant folding this. */ |
| static const volatile long double twom10000 = 0x1p-10000L; |
| |
| static long double reducl(long double); |
| static long double powil(long double, int); |
| |
| long double powl(long double x, long double y) |
| { |
| /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ |
| int i, nflg, iyflg, yoddint; |
| long e; |
| volatile long double z=0; |
| long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0; |
| |
| /* make sure no invalid exception is raised by nan comparision */ |
| if (isnan(x)) { |
| if (!isnan(y) && y == 0.0) |
| return 1.0; |
| return x; |
| } |
| if (isnan(y)) { |
| if (x == 1.0) |
| return 1.0; |
| return y; |
| } |
| if (x == 1.0) |
| return 1.0; /* 1**y = 1, even if y is nan */ |
| if (x == -1.0 && !isfinite(y)) |
| return 1.0; /* -1**inf = 1 */ |
| if (y == 0.0) |
| return 1.0; /* x**0 = 1, even if x is nan */ |
| if (y == 1.0) |
| return x; |
| if (y >= LDBL_MAX) { |
| if (x > 1.0 || x < -1.0) |
| return INFINITY; |
| if (x != 0.0) |
| return 0.0; |
| } |
| if (y <= -LDBL_MAX) { |
| if (x > 1.0 || x < -1.0) |
| return 0.0; |
| if (x != 0.0 || y == -INFINITY) |
| return INFINITY; |
| } |
| if (x >= LDBL_MAX) { |
| if (y > 0.0) |
| return INFINITY; |
| return 0.0; |
| } |
| |
| w = floorl(y); |
| |
| /* Set iyflg to 1 if y is an integer. */ |
| iyflg = 0; |
| if (w == y) |
| iyflg = 1; |
| |
| /* Test for odd integer y. */ |
| yoddint = 0; |
| if (iyflg) { |
| ya = fabsl(y); |
| ya = floorl(0.5 * ya); |
| yb = 0.5 * fabsl(w); |
| if( ya != yb ) |
| yoddint = 1; |
| } |
| |
| if (x <= -LDBL_MAX) { |
| if (y > 0.0) { |
| if (yoddint) |
| return -INFINITY; |
| return INFINITY; |
| } |
| if (y < 0.0) { |
| if (yoddint) |
| return -0.0; |
| return 0.0; |
| } |
| } |
| nflg = 0; /* (x<0)**(odd int) */ |
| if (x <= 0.0) { |
| if (x == 0.0) { |
| if (y < 0.0) { |
| if (signbit(x) && yoddint) |
| /* (-0.0)**(-odd int) = -inf, divbyzero */ |
| return -1.0/0.0; |
| /* (+-0.0)**(negative) = inf, divbyzero */ |
| return 1.0/0.0; |
| } |
| if (signbit(x) && yoddint) |
| return -0.0; |
| return 0.0; |
| } |
| if (iyflg == 0) |
| return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ |
| /* (x<0)**(integer) */ |
| if (yoddint) |
| nflg = 1; /* negate result */ |
| x = -x; |
| } |
| /* (+integer)**(integer) */ |
| if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) { |
| w = powil(x, (int)y); |
| return nflg ? -w : w; |
| } |
| |
| /* separate significand from exponent */ |
| x = frexpl(x, &i); |
| e = i; |
| |
| /* find significand in antilog table A[] */ |
| i = 1; |
| if (x <= A[17]) |
| i = 17; |
| if (x <= A[i+8]) |
| i += 8; |
| if (x <= A[i+4]) |
| i += 4; |
| if (x <= A[i+2]) |
| i += 2; |
| if (x >= A[1]) |
| i = -1; |
| i += 1; |
| |
| /* Find (x - A[i])/A[i] |
| * in order to compute log(x/A[i]): |
| * |
| * log(x) = log( a x/a ) = log(a) + log(x/a) |
| * |
| * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a |
| */ |
| x -= A[i]; |
| x -= B[i/2]; |
| x /= A[i]; |
| |
| /* rational approximation for log(1+v): |
| * |
| * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) |
| */ |
| z = x*x; |
| w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3)); |
| w = w - 0.5*z; |
| |
| /* Convert to base 2 logarithm: |
| * multiply by log2(e) = 1 + LOG2EA |
| */ |
| z = LOG2EA * w; |
| z += w; |
| z += LOG2EA * x; |
| z += x; |
| |
| /* Compute exponent term of the base 2 logarithm. */ |
| w = -i; |
| w /= NXT; |
| w += e; |
| /* Now base 2 log of x is w + z. */ |
| |
| /* Multiply base 2 log by y, in extended precision. */ |
| |
| /* separate y into large part ya |
| * and small part yb less than 1/NXT |
| */ |
| ya = reducl(y); |
| yb = y - ya; |
| |
| /* (w+z)(ya+yb) |
| * = w*ya + w*yb + z*y |
| */ |
| F = z * y + w * yb; |
| Fa = reducl(F); |
| Fb = F - Fa; |
| |
| G = Fa + w * ya; |
| Ga = reducl(G); |
| Gb = G - Ga; |
| |
| H = Fb + Gb; |
| Ha = reducl(H); |
| w = (Ga + Ha) * NXT; |
| |
| /* Test the power of 2 for overflow */ |
| if (w > MEXP) |
| return huge * huge; /* overflow */ |
| if (w < MNEXP) |
| return twom10000 * twom10000; /* underflow */ |
| |
| e = w; |
| Hb = H - Ha; |
| |
| if (Hb > 0.0) { |
| e += 1; |
| Hb -= 1.0/NXT; /*0.0625L;*/ |
| } |
| |
| /* Now the product y * log2(x) = Hb + e/NXT. |
| * |
| * Compute base 2 exponential of Hb, |
| * where -0.0625 <= Hb <= 0. |
| */ |
| z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */ |
| |
| /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. |
| * Find lookup table entry for the fractional power of 2. |
| */ |
| if (e < 0) |
| i = 0; |
| else |
| i = 1; |
| i = e/NXT + i; |
| e = NXT*i - e; |
| w = A[e]; |
| z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ |
| z = z + w; |
| z = scalbnl(z, i); /* multiply by integer power of 2 */ |
| |
| if (nflg) |
| z = -z; |
| return z; |
| } |
| |
| |
| /* Find a multiple of 1/NXT that is within 1/NXT of x. */ |
| static long double reducl(long double x) |
| { |
| long double t; |
| |
| t = x * NXT; |
| t = floorl(t); |
| t = t / NXT; |
| return t; |
| } |
| |
| /* |
| * Positive real raised to integer power, long double precision |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, powil(); |
| * int n; |
| * |
| * y = powil( x, n ); |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns argument x>0 raised to the nth power. |
| * The routine efficiently decomposes n as a sum of powers of |
| * two. The desired power is a product of two-to-the-kth |
| * powers of x. Thus to compute the 32767 power of x requires |
| * 28 multiplications instead of 32767 multiplications. |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic x domain n domain # trials peak rms |
| * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 |
| * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 |
| * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 |
| * |
| * Returns MAXNUM on overflow, zero on underflow. |
| */ |
| |
| static long double powil(long double x, int nn) |
| { |
| long double ww, y; |
| long double s; |
| int n, e, sign, lx; |
| |
| if (nn == 0) |
| return 1.0; |
| |
| if (nn < 0) { |
| sign = -1; |
| n = -nn; |
| } else { |
| sign = 1; |
| n = nn; |
| } |
| |
| /* Overflow detection */ |
| |
| /* Calculate approximate logarithm of answer */ |
| s = x; |
| s = frexpl( s, &lx); |
| e = (lx - 1)*n; |
| if ((e == 0) || (e > 64) || (e < -64)) { |
| s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L); |
| s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L; |
| } else { |
| s = LOGE2L * e; |
| } |
| |
| if (s > MAXLOGL) |
| return huge * huge; /* overflow */ |
| |
| if (s < MINLOGL) |
| return twom10000 * twom10000; /* underflow */ |
| /* Handle tiny denormal answer, but with less accuracy |
| * since roundoff error in 1.0/x will be amplified. |
| * The precise demarcation should be the gradual underflow threshold. |
| */ |
| if (s < -MAXLOGL+2.0) { |
| x = 1.0/x; |
| sign = -sign; |
| } |
| |
| /* First bit of the power */ |
| if (n & 1) |
| y = x; |
| else |
| y = 1.0; |
| |
| ww = x; |
| n >>= 1; |
| while (n) { |
| ww = ww * ww; /* arg to the 2-to-the-kth power */ |
| if (n & 1) /* if that bit is set, then include in product */ |
| y *= ww; |
| n >>= 1; |
| } |
| |
| if (sign < 0) |
| y = 1.0/y; |
| return y; |
| } |
| #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| // TODO: broken implementation to make things compile |
| long double powl(long double x, long double y) |
| { |
| return pow(x, y); |
| } |
| #endif |