| /* |
| ** 2005 December 14 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ |
| ** |
| ** This file contains the implementation of an asynchronous IO backend |
| ** for SQLite. |
| */ |
| |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) |
| |
| #include "sqlite3async.h" |
| #include "sqlite3.h" |
| #include <stdarg.h> |
| #include <string.h> |
| #include <assert.h> |
| |
| /* Useful macros used in several places */ |
| #define MIN(x,y) ((x)<(y)?(x):(y)) |
| #define MAX(x,y) ((x)>(y)?(x):(y)) |
| |
| #ifndef SQLITE_AMALGAMATION |
| /* Macro to mark parameters as unused and silence compiler warnings. */ |
| #define UNUSED_PARAMETER(x) (void)(x) |
| #endif |
| |
| /* Forward references */ |
| typedef struct AsyncWrite AsyncWrite; |
| typedef struct AsyncFile AsyncFile; |
| typedef struct AsyncFileData AsyncFileData; |
| typedef struct AsyncFileLock AsyncFileLock; |
| typedef struct AsyncLock AsyncLock; |
| |
| /* Enable for debugging */ |
| #ifndef NDEBUG |
| #include <stdio.h> |
| static int sqlite3async_trace = 0; |
| # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X |
| static void asyncTrace(const char *zFormat, ...){ |
| char *z; |
| va_list ap; |
| va_start(ap, zFormat); |
| z = sqlite3_vmprintf(zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); |
| sqlite3_free(z); |
| } |
| #else |
| # define ASYNC_TRACE(X) |
| #endif |
| |
| /* |
| ** THREAD SAFETY NOTES |
| ** |
| ** Basic rules: |
| ** |
| ** * Both read and write access to the global write-op queue must be |
| ** protected by the async.queueMutex. As are the async.ioError and |
| ** async.nFile variables. |
| ** |
| ** * The async.pLock list and all AsyncLock and AsyncFileLock |
| ** structures must be protected by the async.lockMutex mutex. |
| ** |
| ** * The file handles from the underlying system are not assumed to |
| ** be thread safe. |
| ** |
| ** * See the last two paragraphs under "The Writer Thread" for |
| ** an assumption to do with file-handle synchronization by the Os. |
| ** |
| ** Deadlock prevention: |
| ** |
| ** There are three mutex used by the system: the "writer" mutex, |
| ** the "queue" mutex and the "lock" mutex. Rules are: |
| ** |
| ** * It is illegal to block on the writer mutex when any other mutex |
| ** are held, and |
| ** |
| ** * It is illegal to block on the queue mutex when the lock mutex |
| ** is held. |
| ** |
| ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". |
| ** |
| ** File system operations (invoked by SQLite thread): |
| ** |
| ** xOpen |
| ** xDelete |
| ** xFileExists |
| ** |
| ** File handle operations (invoked by SQLite thread): |
| ** |
| ** asyncWrite, asyncClose, asyncTruncate, asyncSync |
| ** |
| ** The operations above add an entry to the global write-op list. They |
| ** prepare the entry, acquire the async.queueMutex momentarily while |
| ** list pointers are manipulated to insert the new entry, then release |
| ** the mutex and signal the writer thread to wake up in case it happens |
| ** to be asleep. |
| ** |
| ** |
| ** asyncRead, asyncFileSize. |
| ** |
| ** Read operations. Both of these read from both the underlying file |
| ** first then adjust their result based on pending writes in the |
| ** write-op queue. So async.queueMutex is held for the duration |
| ** of these operations to prevent other threads from changing the |
| ** queue in mid operation. |
| ** |
| ** |
| ** asyncLock, asyncUnlock, asyncCheckReservedLock |
| ** |
| ** These primitives implement in-process locking using a hash table |
| ** on the file name. Files are locked correctly for connections coming |
| ** from the same process. But other processes cannot see these locks |
| ** and will therefore not honor them. |
| ** |
| ** |
| ** The writer thread: |
| ** |
| ** The async.writerMutex is used to make sure only there is only |
| ** a single writer thread running at a time. |
| ** |
| ** Inside the writer thread is a loop that works like this: |
| ** |
| ** WHILE (write-op list is not empty) |
| ** Do IO operation at head of write-op list |
| ** Remove entry from head of write-op list |
| ** END WHILE |
| ** |
| ** The async.queueMutex is always held during the <write-op list is |
| ** not empty> test, and when the entry is removed from the head |
| ** of the write-op list. Sometimes it is held for the interim |
| ** period (while the IO is performed), and sometimes it is |
| ** relinquished. It is relinquished if (a) the IO op is an |
| ** ASYNC_CLOSE or (b) when the file handle was opened, two of |
| ** the underlying systems handles were opened on the same |
| ** file-system entry. |
| ** |
| ** If condition (b) above is true, then one file-handle |
| ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the |
| ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() |
| ** threads to perform write() operations. This means that read |
| ** operations are not blocked by asynchronous writes (although |
| ** asynchronous writes may still be blocked by reads). |
| ** |
| ** This assumes that the OS keeps two handles open on the same file |
| ** properly in sync. That is, any read operation that starts after a |
| ** write operation on the same file system entry has completed returns |
| ** data consistent with the write. We also assume that if one thread |
| ** reads a file while another is writing it all bytes other than the |
| ** ones actually being written contain valid data. |
| ** |
| ** If the above assumptions are not true, set the preprocessor symbol |
| ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. |
| */ |
| |
| |
| #ifndef NDEBUG |
| # define TESTONLY( X ) X |
| #else |
| # define TESTONLY( X ) |
| #endif |
| |
| /* |
| ** PORTING FUNCTIONS |
| ** |
| ** There are two definitions of the following functions. One for pthreads |
| ** compatible systems and one for Win32. These functions isolate the OS |
| ** specific code required by each platform. |
| ** |
| ** The system uses three mutexes and a single condition variable. To |
| ** block on a mutex, async_mutex_enter() is called. The parameter passed |
| ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, |
| ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three |
| ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is |
| ** called with a parameter identifying the mutex being unlocked. Mutexes |
| ** are not recursive - it is an error to call async_mutex_enter() to |
| ** lock a mutex that is already locked, or to call async_mutex_leave() |
| ** to unlock a mutex that is not currently locked. |
| ** |
| ** The async_cond_wait() and async_cond_signal() functions are modelled |
| ** on the pthreads functions with similar names. The first parameter to |
| ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() |
| ** is called the mutex identified by the second parameter must be held. |
| ** The mutex is unlocked, and the calling thread simultaneously begins |
| ** waiting for the condition variable to be signalled by another thread. |
| ** After another thread signals the condition variable, the calling |
| ** thread stops waiting, locks mutex eMutex and returns. The |
| ** async_cond_signal() function is used to signal the condition variable. |
| ** It is assumed that the mutex used by the thread calling async_cond_wait() |
| ** is held by the caller of async_cond_signal() (otherwise there would be |
| ** a race condition). |
| ** |
| ** It is guaranteed that no other thread will call async_cond_wait() when |
| ** there is already a thread waiting on the condition variable. |
| ** |
| ** The async_sched_yield() function is called to suggest to the operating |
| ** system that it would be a good time to shift the current thread off the |
| ** CPU. The system will still work if this function is not implemented |
| ** (it is not currently implemented for win32), but it might be marginally |
| ** more efficient if it is. |
| */ |
| static void async_mutex_enter(int eMutex); |
| static void async_mutex_leave(int eMutex); |
| static void async_cond_wait(int eCond, int eMutex); |
| static void async_cond_signal(int eCond); |
| static void async_sched_yield(void); |
| |
| /* |
| ** There are also two definitions of the following. async_os_initialize() |
| ** is called when the asynchronous VFS is first installed, and os_shutdown() |
| ** is called when it is uninstalled (from within sqlite3async_shutdown()). |
| ** |
| ** For pthreads builds, both of these functions are no-ops. For win32, |
| ** they provide an opportunity to initialize and finalize the required |
| ** mutex and condition variables. |
| ** |
| ** If async_os_initialize() returns other than zero, then the initialization |
| ** fails and SQLITE_ERROR is returned to the user. |
| */ |
| static int async_os_initialize(void); |
| static void async_os_shutdown(void); |
| |
| /* Values for use as the 'eMutex' argument of the above functions. The |
| ** integer values assigned to these constants are important for assert() |
| ** statements that verify that mutexes are locked in the correct order. |
| ** Specifically, it is unsafe to try to lock mutex N while holding a lock |
| ** on mutex M if (M<=N). |
| */ |
| #define ASYNC_MUTEX_LOCK 0 |
| #define ASYNC_MUTEX_QUEUE 1 |
| #define ASYNC_MUTEX_WRITER 2 |
| |
| /* Values for use as the 'eCond' argument of the above functions. */ |
| #define ASYNC_COND_QUEUE 0 |
| |
| /************************************************************************* |
| ** Start of OS specific code. |
| */ |
| #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__) |
| |
| #include <windows.h> |
| |
| /* The following block contains the win32 specific code. */ |
| |
| #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) |
| |
| static struct AsyncPrimitives { |
| int isInit; |
| DWORD aHolder[3]; |
| CRITICAL_SECTION aMutex[3]; |
| HANDLE aCond[1]; |
| } primitives = { 0 }; |
| |
| static int async_os_initialize(void){ |
| if( !primitives.isInit ){ |
| primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); |
| if( primitives.aCond[0]==NULL ){ |
| return 1; |
| } |
| InitializeCriticalSection(&primitives.aMutex[0]); |
| InitializeCriticalSection(&primitives.aMutex[1]); |
| InitializeCriticalSection(&primitives.aMutex[2]); |
| primitives.isInit = 1; |
| } |
| return 0; |
| } |
| static void async_os_shutdown(void){ |
| if( primitives.isInit ){ |
| DeleteCriticalSection(&primitives.aMutex[0]); |
| DeleteCriticalSection(&primitives.aMutex[1]); |
| DeleteCriticalSection(&primitives.aMutex[2]); |
| CloseHandle(primitives.aCond[0]); |
| primitives.isInit = 0; |
| } |
| } |
| |
| /* The following block contains the Win32 specific code. */ |
| static void async_mutex_enter(int eMutex){ |
| assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
| assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
| assert( eMutex!=0 || (!mutex_held(0)) ); |
| EnterCriticalSection(&primitives.aMutex[eMutex]); |
| TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) |
| } |
| static void async_mutex_leave(int eMutex){ |
| assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| assert( mutex_held(eMutex) ); |
| TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| LeaveCriticalSection(&primitives.aMutex[eMutex]); |
| } |
| static void async_cond_wait(int eCond, int eMutex){ |
| ResetEvent(primitives.aCond[eCond]); |
| async_mutex_leave(eMutex); |
| WaitForSingleObject(primitives.aCond[eCond], INFINITE); |
| async_mutex_enter(eMutex); |
| } |
| static void async_cond_signal(int eCond){ |
| assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
| SetEvent(primitives.aCond[eCond]); |
| } |
| static void async_sched_yield(void){ |
| Sleep(0); |
| } |
| #else |
| |
| /* The following block contains the pthreads specific code. */ |
| #include <pthread.h> |
| #include <sched.h> |
| |
| #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) |
| |
| static int async_os_initialize(void) {return 0;} |
| static void async_os_shutdown(void) {} |
| |
| static struct AsyncPrimitives { |
| pthread_mutex_t aMutex[3]; |
| pthread_cond_t aCond[1]; |
| pthread_t aHolder[3]; |
| } primitives = { |
| { PTHREAD_MUTEX_INITIALIZER, |
| PTHREAD_MUTEX_INITIALIZER, |
| PTHREAD_MUTEX_INITIALIZER |
| } , { |
| PTHREAD_COND_INITIALIZER |
| } , { 0, 0, 0 } |
| }; |
| |
| static void async_mutex_enter(int eMutex){ |
| assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); |
| assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); |
| assert( eMutex!=0 || (!mutex_held(0)) ); |
| pthread_mutex_lock(&primitives.aMutex[eMutex]); |
| TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
| } |
| static void async_mutex_leave(int eMutex){ |
| assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| assert( mutex_held(eMutex) ); |
| TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| pthread_mutex_unlock(&primitives.aMutex[eMutex]); |
| } |
| static void async_cond_wait(int eCond, int eMutex){ |
| assert( eMutex==0 || eMutex==1 || eMutex==2 ); |
| assert( mutex_held(eMutex) ); |
| TESTONLY( primitives.aHolder[eMutex] = 0; ) |
| pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); |
| TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) |
| } |
| static void async_cond_signal(int eCond){ |
| assert( mutex_held(ASYNC_MUTEX_QUEUE) ); |
| pthread_cond_signal(&primitives.aCond[eCond]); |
| } |
| static void async_sched_yield(void){ |
| sched_yield(); |
| } |
| #endif |
| /* |
| ** End of OS specific code. |
| *************************************************************************/ |
| |
| #define assert_mutex_is_held(X) assert( mutex_held(X) ) |
| |
| |
| #ifndef SQLITE_ASYNC_TWO_FILEHANDLES |
| /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ |
| #define SQLITE_ASYNC_TWO_FILEHANDLES 1 |
| #endif |
| |
| /* |
| ** State information is held in the static variable "async" defined |
| ** as the following structure. |
| ** |
| ** Both async.ioError and async.nFile are protected by async.queueMutex. |
| */ |
| static struct TestAsyncStaticData { |
| AsyncWrite *pQueueFirst; /* Next write operation to be processed */ |
| AsyncWrite *pQueueLast; /* Last write operation on the list */ |
| AsyncLock *pLock; /* Linked list of all AsyncLock structures */ |
| volatile int ioDelay; /* Extra delay between write operations */ |
| volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ |
| volatile int bLockFiles; /* Current value of "lockfiles" parameter */ |
| int ioError; /* True if an IO error has occurred */ |
| int nFile; /* Number of open files (from sqlite pov) */ |
| } async = { 0,0,0,0,0,1,0,0 }; |
| |
| /* Possible values of AsyncWrite.op */ |
| #define ASYNC_NOOP 0 |
| #define ASYNC_WRITE 1 |
| #define ASYNC_SYNC 2 |
| #define ASYNC_TRUNCATE 3 |
| #define ASYNC_CLOSE 4 |
| #define ASYNC_DELETE 5 |
| #define ASYNC_OPENEXCLUSIVE 6 |
| #define ASYNC_UNLOCK 7 |
| |
| /* Names of opcodes. Used for debugging only. |
| ** Make sure these stay in sync with the macros above! |
| */ |
| static const char *azOpcodeName[] = { |
| "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" |
| }; |
| |
| /* |
| ** Entries on the write-op queue are instances of the AsyncWrite |
| ** structure, defined here. |
| ** |
| ** The interpretation of the iOffset and nByte variables varies depending |
| ** on the value of AsyncWrite.op: |
| ** |
| ** ASYNC_NOOP: |
| ** No values used. |
| ** |
| ** ASYNC_WRITE: |
| ** iOffset -> Offset in file to write to. |
| ** nByte -> Number of bytes of data to write (pointed to by zBuf). |
| ** |
| ** ASYNC_SYNC: |
| ** nByte -> flags to pass to sqlite3OsSync(). |
| ** |
| ** ASYNC_TRUNCATE: |
| ** iOffset -> Size to truncate file to. |
| ** nByte -> Unused. |
| ** |
| ** ASYNC_CLOSE: |
| ** iOffset -> Unused. |
| ** nByte -> Unused. |
| ** |
| ** ASYNC_DELETE: |
| ** iOffset -> Contains the "syncDir" flag. |
| ** nByte -> Number of bytes of zBuf points to (file name). |
| ** |
| ** ASYNC_OPENEXCLUSIVE: |
| ** iOffset -> Value of "delflag". |
| ** nByte -> Number of bytes of zBuf points to (file name). |
| ** |
| ** ASYNC_UNLOCK: |
| ** nByte -> Argument to sqlite3OsUnlock(). |
| ** |
| ** |
| ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. |
| ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a |
| ** single blob, so is deleted when sqlite3_free() is called on the parent |
| ** structure. |
| */ |
| struct AsyncWrite { |
| AsyncFileData *pFileData; /* File to write data to or sync */ |
| int op; /* One of ASYNC_xxx etc. */ |
| sqlite_int64 iOffset; /* See above */ |
| int nByte; /* See above */ |
| char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ |
| AsyncWrite *pNext; /* Next write operation (to any file) */ |
| }; |
| |
| /* |
| ** An instance of this structure is created for each distinct open file |
| ** (i.e. if two handles are opened on the one file, only one of these |
| ** structures is allocated) and stored in the async.aLock hash table. The |
| ** keys for async.aLock are the full pathnames of the opened files. |
| ** |
| ** AsyncLock.pList points to the head of a linked list of AsyncFileLock |
| ** structures, one for each handle currently open on the file. |
| ** |
| ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is |
| ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is |
| ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. |
| ** Otherwise, pFile is a file handle opened on the file in question and |
| ** used to obtain the file-system locks required by database connections |
| ** within this process. |
| ** |
| ** See comments above the asyncLock() function for more details on |
| ** the implementation of database locking used by this backend. |
| */ |
| struct AsyncLock { |
| char *zFile; |
| int nFile; |
| sqlite3_file *pFile; |
| int eLock; |
| AsyncFileLock *pList; |
| AsyncLock *pNext; /* Next in linked list headed by async.pLock */ |
| }; |
| |
| /* |
| ** An instance of the following structure is allocated along with each |
| ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the |
| ** file was opened with the SQLITE_OPEN_MAIN_DB. |
| */ |
| struct AsyncFileLock { |
| int eLock; /* Internally visible lock state (sqlite pov) */ |
| int eAsyncLock; /* Lock-state with write-queue unlock */ |
| AsyncFileLock *pNext; |
| }; |
| |
| /* |
| ** The AsyncFile structure is a subclass of sqlite3_file used for |
| ** asynchronous IO. |
| ** |
| ** All of the actual data for the structure is stored in the structure |
| ** pointed to by AsyncFile.pData, which is allocated as part of the |
| ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the |
| ** lifetime of the AsyncFile structure is ended by the caller after OsClose() |
| ** is called, but the data in AsyncFileData may be required by the |
| ** writer thread after that point. |
| */ |
| struct AsyncFile { |
| sqlite3_io_methods *pMethod; |
| AsyncFileData *pData; |
| }; |
| struct AsyncFileData { |
| char *zName; /* Underlying OS filename - used for debugging */ |
| int nName; /* Number of characters in zName */ |
| sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ |
| sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ |
| AsyncFileLock lock; /* Lock state for this handle */ |
| AsyncLock *pLock; /* AsyncLock object for this file system entry */ |
| AsyncWrite closeOp; /* Preallocated close operation */ |
| }; |
| |
| /* |
| ** Add an entry to the end of the global write-op list. pWrite should point |
| ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer |
| ** thread will call sqlite3_free() to free the structure after the specified |
| ** operation has been completed. |
| ** |
| ** Once an AsyncWrite structure has been added to the list, it becomes the |
| ** property of the writer thread and must not be read or modified by the |
| ** caller. |
| */ |
| static void addAsyncWrite(AsyncWrite *pWrite){ |
| /* We must hold the queue mutex in order to modify the queue pointers */ |
| if( pWrite->op!=ASYNC_UNLOCK ){ |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| } |
| |
| /* Add the record to the end of the write-op queue */ |
| assert( !pWrite->pNext ); |
| if( async.pQueueLast ){ |
| assert( async.pQueueFirst ); |
| async.pQueueLast->pNext = pWrite; |
| }else{ |
| async.pQueueFirst = pWrite; |
| } |
| async.pQueueLast = pWrite; |
| ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], |
| pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); |
| |
| if( pWrite->op==ASYNC_CLOSE ){ |
| async.nFile--; |
| } |
| |
| /* The writer thread might have been idle because there was nothing |
| ** on the write-op queue for it to do. So wake it up. */ |
| async_cond_signal(ASYNC_COND_QUEUE); |
| |
| /* Drop the queue mutex */ |
| if( pWrite->op!=ASYNC_UNLOCK ){ |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| } |
| } |
| |
| /* |
| ** Increment async.nFile in a thread-safe manner. |
| */ |
| static void incrOpenFileCount(void){ |
| /* We must hold the queue mutex in order to modify async.nFile */ |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| if( async.nFile==0 ){ |
| async.ioError = SQLITE_OK; |
| } |
| async.nFile++; |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| } |
| |
| /* |
| ** This is a utility function to allocate and populate a new AsyncWrite |
| ** structure and insert it (via addAsyncWrite() ) into the global list. |
| */ |
| static int addNewAsyncWrite( |
| AsyncFileData *pFileData, |
| int op, |
| sqlite3_int64 iOffset, |
| int nByte, |
| const char *zByte |
| ){ |
| AsyncWrite *p; |
| if( op!=ASYNC_CLOSE && async.ioError ){ |
| return async.ioError; |
| } |
| p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); |
| if( !p ){ |
| /* The upper layer does not expect operations like OsWrite() to |
| ** return SQLITE_NOMEM. This is partly because under normal conditions |
| ** SQLite is required to do rollback without calling malloc(). So |
| ** if malloc() fails here, treat it as an I/O error. The above |
| ** layer knows how to handle that. |
| */ |
| return SQLITE_IOERR; |
| } |
| p->op = op; |
| p->iOffset = iOffset; |
| p->nByte = nByte; |
| p->pFileData = pFileData; |
| p->pNext = 0; |
| if( zByte ){ |
| p->zBuf = (char *)&p[1]; |
| memcpy(p->zBuf, zByte, nByte); |
| }else{ |
| p->zBuf = 0; |
| } |
| addAsyncWrite(p); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Close the file. This just adds an entry to the write-op list, the file is |
| ** not actually closed. |
| */ |
| static int asyncClose(sqlite3_file *pFile){ |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| |
| /* Unlock the file, if it is locked */ |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| p->lock.eLock = 0; |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| |
| addAsyncWrite(&p->closeOp); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of |
| ** writing to the underlying file, this function adds an entry to the end of |
| ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be |
| ** returned. |
| */ |
| static int asyncWrite( |
| sqlite3_file *pFile, |
| const void *pBuf, |
| int amt, |
| sqlite3_int64 iOff |
| ){ |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); |
| } |
| |
| /* |
| ** Read data from the file. First we read from the filesystem, then adjust |
| ** the contents of the buffer based on ASYNC_WRITE operations in the |
| ** write-op queue. |
| ** |
| ** This method holds the mutex from start to finish. |
| */ |
| static int asyncRead( |
| sqlite3_file *pFile, |
| void *zOut, |
| int iAmt, |
| sqlite3_int64 iOffset |
| ){ |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| int rc = SQLITE_OK; |
| sqlite3_int64 filesize = 0; |
| sqlite3_file *pBase = p->pBaseRead; |
| sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; |
| |
| /* Grab the write queue mutex for the duration of the call */ |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| |
| /* If an I/O error has previously occurred in this virtual file |
| ** system, then all subsequent operations fail. |
| */ |
| if( async.ioError!=SQLITE_OK ){ |
| rc = async.ioError; |
| goto asyncread_out; |
| } |
| |
| if( pBase->pMethods ){ |
| sqlite3_int64 nRead; |
| rc = pBase->pMethods->xFileSize(pBase, &filesize); |
| if( rc!=SQLITE_OK ){ |
| goto asyncread_out; |
| } |
| nRead = MIN(filesize - iOffset, iAmt64); |
| if( nRead>0 ){ |
| rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); |
| ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| AsyncWrite *pWrite; |
| char *zName = p->zName; |
| |
| for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
| if( pWrite->op==ASYNC_WRITE && ( |
| (pWrite->pFileData==p) || |
| (zName && pWrite->pFileData->zName==zName) |
| )){ |
| sqlite3_int64 nCopy; |
| sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; |
| |
| /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from |
| ** which data should be copied. Set iBeginOut to the offset within |
| ** the output buffer to which data should be copied. If either of |
| ** these offsets is a negative number, set them to 0. |
| */ |
| sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); |
| sqlite3_int64 iBeginIn = -iBeginOut; |
| if( iBeginIn<0 ) iBeginIn = 0; |
| if( iBeginOut<0 ) iBeginOut = 0; |
| |
| filesize = MAX(filesize, pWrite->iOffset+nByte64); |
| |
| nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); |
| if( nCopy>0 ){ |
| memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nCopy); |
| ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); |
| } |
| } |
| } |
| } |
| |
| asyncread_out: |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ |
| rc = SQLITE_IOERR_SHORT_READ; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Truncate the file to nByte bytes in length. This just adds an entry to |
| ** the write-op list, no IO actually takes place. |
| */ |
| static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); |
| } |
| |
| /* |
| ** Sync the file. This just adds an entry to the write-op list, the |
| ** sync() is done later by sqlite3_async_flush(). |
| */ |
| static int asyncSync(sqlite3_file *pFile, int flags){ |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); |
| } |
| |
| /* |
| ** Read the size of the file. First we read the size of the file system |
| ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations |
| ** currently in the write-op list. |
| ** |
| ** This method holds the mutex from start to finish. |
| */ |
| int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| int rc = SQLITE_OK; |
| sqlite3_int64 s = 0; |
| sqlite3_file *pBase; |
| |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| |
| /* Read the filesystem size from the base file. If pMethods is NULL, this |
| ** means the file hasn't been opened yet. In this case all relevant data |
| ** must be in the write-op queue anyway, so we can omit reading from the |
| ** file-system. |
| */ |
| pBase = p->pBaseRead; |
| if( pBase->pMethods ){ |
| rc = pBase->pMethods->xFileSize(pBase, &s); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| AsyncWrite *pWrite; |
| for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ |
| if( pWrite->op==ASYNC_DELETE |
| && p->zName |
| && strcmp(p->zName, pWrite->zBuf)==0 |
| ){ |
| s = 0; |
| }else if( pWrite->pFileData && ( |
| (pWrite->pFileData==p) |
| || (p->zName && pWrite->pFileData->zName==p->zName) |
| )){ |
| switch( pWrite->op ){ |
| case ASYNC_WRITE: |
| s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); |
| break; |
| case ASYNC_TRUNCATE: |
| s = MIN(s, pWrite->iOffset); |
| break; |
| } |
| } |
| } |
| *piSize = s; |
| } |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| return rc; |
| } |
| |
| /* |
| ** Lock or unlock the actual file-system entry. |
| */ |
| static int getFileLock(AsyncLock *pLock){ |
| int rc = SQLITE_OK; |
| AsyncFileLock *pIter; |
| int eRequired = 0; |
| |
| if( pLock->pFile ){ |
| for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
| assert(pIter->eAsyncLock>=pIter->eLock); |
| if( pIter->eAsyncLock>eRequired ){ |
| eRequired = pIter->eAsyncLock; |
| assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); |
| } |
| } |
| |
| if( eRequired>pLock->eLock ){ |
| rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); |
| if( rc==SQLITE_OK ){ |
| pLock->eLock = eRequired; |
| } |
| } |
| else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ |
| rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); |
| if( rc==SQLITE_OK ){ |
| pLock->eLock = eRequired; |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Return the AsyncLock structure from the global async.pLock list |
| ** associated with the file-system entry identified by path zName |
| ** (a string of nName bytes). If no such structure exists, return 0. |
| */ |
| static AsyncLock *findLock(const char *zName, int nName){ |
| AsyncLock *p = async.pLock; |
| while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ |
| p = p->pNext; |
| } |
| return p; |
| } |
| |
| /* |
| ** The following two methods - asyncLock() and asyncUnlock() - are used |
| ** to obtain and release locks on database files opened with the |
| ** asynchronous backend. |
| */ |
| static int asyncLock(sqlite3_file *pFile, int eLock){ |
| int rc = SQLITE_OK; |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| |
| if( p->zName ){ |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| if( p->lock.eLock<eLock ){ |
| AsyncLock *pLock = p->pLock; |
| AsyncFileLock *pIter; |
| assert(pLock && pLock->pList); |
| for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ |
| if( pIter!=&p->lock && ( |
| (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || |
| (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
| (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || |
| (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) |
| )){ |
| rc = SQLITE_BUSY; |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| p->lock.eLock = eLock; |
| p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); |
| } |
| assert(p->lock.eAsyncLock>=p->lock.eLock); |
| if( rc==SQLITE_OK ){ |
| rc = getFileLock(pLock); |
| } |
| } |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| } |
| |
| ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); |
| return rc; |
| } |
| static int asyncUnlock(sqlite3_file *pFile, int eLock){ |
| int rc = SQLITE_OK; |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| if( p->zName ){ |
| AsyncFileLock *pLock = &p->lock; |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| pLock->eLock = MIN(pLock->eLock, eLock); |
| rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| } |
| return rc; |
| } |
| |
| /* |
| ** This function is called when the pager layer first opens a database file |
| ** and is checking for a hot-journal. |
| */ |
| static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ |
| int ret = 0; |
| AsyncFileLock *pIter; |
| AsyncFileData *p = ((AsyncFile *)pFile)->pData; |
| |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ |
| if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ |
| ret = 1; |
| break; |
| } |
| } |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| |
| ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); |
| *pResOut = ret; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** sqlite3_file_control() implementation. |
| */ |
| static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ |
| switch( op ){ |
| case SQLITE_FCNTL_LOCKSTATE: { |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| return SQLITE_OK; |
| } |
| } |
| return SQLITE_NOTFOUND; |
| } |
| |
| /* |
| ** Return the device characteristics and sector-size of the device. It |
| ** is tricky to implement these correctly, as this backend might |
| ** not have an open file handle at this point. |
| */ |
| static int asyncSectorSize(sqlite3_file *pFile){ |
| UNUSED_PARAMETER(pFile); |
| return 512; |
| } |
| static int asyncDeviceCharacteristics(sqlite3_file *pFile){ |
| UNUSED_PARAMETER(pFile); |
| return 0; |
| } |
| |
| static int unlinkAsyncFile(AsyncFileData *pData){ |
| AsyncFileLock **ppIter; |
| int rc = SQLITE_OK; |
| |
| if( pData->zName ){ |
| AsyncLock *pLock = pData->pLock; |
| for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ |
| if( (*ppIter)==&pData->lock ){ |
| *ppIter = pData->lock.pNext; |
| break; |
| } |
| } |
| if( !pLock->pList ){ |
| AsyncLock **pp; |
| if( pLock->pFile ){ |
| pLock->pFile->pMethods->xClose(pLock->pFile); |
| } |
| for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); |
| *pp = pLock->pNext; |
| sqlite3_free(pLock); |
| }else{ |
| rc = getFileLock(pLock); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** The parameter passed to this function is a copy of a 'flags' parameter |
| ** passed to this modules xOpen() method. This function returns true |
| ** if the file should be opened asynchronously, or false if it should |
| ** be opened immediately. |
| ** |
| ** If the file is to be opened asynchronously, then asyncOpen() will add |
| ** an entry to the event queue and the file will not actually be opened |
| ** until the event is processed. Otherwise, the file is opened directly |
| ** by the caller. |
| */ |
| static int doAsynchronousOpen(int flags){ |
| return (flags&SQLITE_OPEN_CREATE) && ( |
| (flags&SQLITE_OPEN_MAIN_JOURNAL) || |
| (flags&SQLITE_OPEN_TEMP_JOURNAL) || |
| (flags&SQLITE_OPEN_DELETEONCLOSE) |
| ); |
| } |
| |
| /* |
| ** Open a file. |
| */ |
| static int asyncOpen( |
| sqlite3_vfs *pAsyncVfs, |
| const char *zName, |
| sqlite3_file *pFile, |
| int flags, |
| int *pOutFlags |
| ){ |
| static sqlite3_io_methods async_methods = { |
| 1, /* iVersion */ |
| asyncClose, /* xClose */ |
| asyncRead, /* xRead */ |
| asyncWrite, /* xWrite */ |
| asyncTruncate, /* xTruncate */ |
| asyncSync, /* xSync */ |
| asyncFileSize, /* xFileSize */ |
| asyncLock, /* xLock */ |
| asyncUnlock, /* xUnlock */ |
| asyncCheckReservedLock, /* xCheckReservedLock */ |
| asyncFileControl, /* xFileControl */ |
| asyncSectorSize, /* xSectorSize */ |
| asyncDeviceCharacteristics /* xDeviceCharacteristics */ |
| }; |
| |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| AsyncFile *p = (AsyncFile *)pFile; |
| int nName = 0; |
| int rc = SQLITE_OK; |
| int nByte; |
| AsyncFileData *pData; |
| AsyncLock *pLock = 0; |
| char *z; |
| int isAsyncOpen = doAsynchronousOpen(flags); |
| |
| /* If zName is NULL, then the upper layer is requesting an anonymous file. |
| ** Otherwise, allocate enough space to make a copy of the file name (along |
| ** with the second nul-terminator byte required by xOpen). |
| */ |
| if( zName ){ |
| nName = (int)strlen(zName); |
| } |
| |
| nByte = ( |
| sizeof(AsyncFileData) + /* AsyncFileData structure */ |
| 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ |
| nName + 2 /* AsyncFileData.zName */ |
| ); |
| z = sqlite3_malloc(nByte); |
| if( !z ){ |
| return SQLITE_NOMEM; |
| } |
| memset(z, 0, nByte); |
| pData = (AsyncFileData*)z; |
| z += sizeof(pData[0]); |
| pData->pBaseRead = (sqlite3_file*)z; |
| z += pVfs->szOsFile; |
| pData->pBaseWrite = (sqlite3_file*)z; |
| pData->closeOp.pFileData = pData; |
| pData->closeOp.op = ASYNC_CLOSE; |
| |
| if( zName ){ |
| z += pVfs->szOsFile; |
| pData->zName = z; |
| pData->nName = nName; |
| memcpy(pData->zName, zName, nName); |
| } |
| |
| if( !isAsyncOpen ){ |
| int flagsout; |
| rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); |
| if( rc==SQLITE_OK |
| && (flagsout&SQLITE_OPEN_READWRITE) |
| && (flags&SQLITE_OPEN_EXCLUSIVE)==0 |
| ){ |
| rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); |
| } |
| if( pOutFlags ){ |
| *pOutFlags = flagsout; |
| } |
| } |
| |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| |
| if( zName && rc==SQLITE_OK ){ |
| pLock = findLock(pData->zName, pData->nName); |
| if( !pLock ){ |
| int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; |
| pLock = (AsyncLock *)sqlite3_malloc(nByte); |
| if( pLock ){ |
| memset(pLock, 0, nByte); |
| if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ |
| pLock->pFile = (sqlite3_file *)&pLock[1]; |
| rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); |
| if( rc!=SQLITE_OK ){ |
| sqlite3_free(pLock); |
| pLock = 0; |
| } |
| } |
| if( pLock ){ |
| pLock->nFile = pData->nName; |
| pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; |
| memcpy(pLock->zFile, pData->zName, pLock->nFile); |
| pLock->pNext = async.pLock; |
| async.pLock = pLock; |
| } |
| }else{ |
| rc = SQLITE_NOMEM; |
| } |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| p->pMethod = &async_methods; |
| p->pData = pData; |
| |
| /* Link AsyncFileData.lock into the linked list of |
| ** AsyncFileLock structures for this file. |
| */ |
| if( zName ){ |
| pData->lock.pNext = pLock->pList; |
| pLock->pList = &pData->lock; |
| pData->zName = pLock->zFile; |
| } |
| }else{ |
| if( pData->pBaseRead->pMethods ){ |
| pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
| } |
| if( pData->pBaseWrite->pMethods ){ |
| pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
| } |
| sqlite3_free(pData); |
| } |
| |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| |
| if( rc==SQLITE_OK ){ |
| pData->pLock = pLock; |
| } |
| |
| if( rc==SQLITE_OK && isAsyncOpen ){ |
| rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); |
| if( rc==SQLITE_OK ){ |
| if( pOutFlags ) *pOutFlags = flags; |
| }else{ |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| unlinkAsyncFile(pData); |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| sqlite3_free(pData); |
| } |
| } |
| if( rc!=SQLITE_OK ){ |
| p->pMethod = 0; |
| }else{ |
| incrOpenFileCount(); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Implementation of sqlite3OsDelete. Add an entry to the end of the |
| ** write-op queue to perform the delete. |
| */ |
| static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ |
| UNUSED_PARAMETER(pAsyncVfs); |
| return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); |
| } |
| |
| /* |
| ** Implementation of sqlite3OsAccess. This method holds the mutex from |
| ** start to finish. |
| */ |
| static int asyncAccess( |
| sqlite3_vfs *pAsyncVfs, |
| const char *zName, |
| int flags, |
| int *pResOut |
| ){ |
| int rc; |
| int ret; |
| AsyncWrite *p; |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| |
| assert(flags==SQLITE_ACCESS_READWRITE |
| || flags==SQLITE_ACCESS_READ |
| || flags==SQLITE_ACCESS_EXISTS |
| ); |
| |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| rc = pVfs->xAccess(pVfs, zName, flags, &ret); |
| if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ |
| for(p=async.pQueueFirst; p; p = p->pNext){ |
| if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ |
| ret = 0; |
| }else if( p->op==ASYNC_OPENEXCLUSIVE |
| && p->pFileData->zName |
| && 0==strcmp(p->pFileData->zName, zName) |
| ){ |
| ret = 1; |
| } |
| } |
| } |
| ASYNC_TRACE(("ACCESS(%s): %s = %d\n", |
| flags==SQLITE_ACCESS_READWRITE?"read-write": |
| flags==SQLITE_ACCESS_READ?"read":"exists" |
| , zName, ret) |
| ); |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| *pResOut = ret; |
| return rc; |
| } |
| |
| /* |
| ** Fill in zPathOut with the full path to the file identified by zPath. |
| */ |
| static int asyncFullPathname( |
| sqlite3_vfs *pAsyncVfs, |
| const char *zPath, |
| int nPathOut, |
| char *zPathOut |
| ){ |
| int rc; |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); |
| |
| /* Because of the way intra-process file locking works, this backend |
| ** needs to return a canonical path. The following block assumes the |
| ** file-system uses unix style paths. |
| */ |
| if( rc==SQLITE_OK ){ |
| int i, j; |
| char *z = zPathOut; |
| int n = (int)strlen(z); |
| while( n>1 && z[n-1]=='/' ){ n--; } |
| for(i=j=0; i<n; i++){ |
| if( z[i]=='/' ){ |
| if( z[i+1]=='/' ) continue; |
| if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| i += 1; |
| continue; |
| } |
| if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| while( j>0 && z[j-1]!='/' ){ j--; } |
| if( j>0 ){ j--; } |
| i += 2; |
| continue; |
| } |
| } |
| z[j++] = z[i]; |
| } |
| z[j] = 0; |
| } |
| |
| return rc; |
| } |
| static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| return pVfs->xDlOpen(pVfs, zPath); |
| } |
| static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| pVfs->xDlError(pVfs, nByte, zErrMsg); |
| } |
| static void (*asyncDlSym( |
| sqlite3_vfs *pAsyncVfs, |
| void *pHandle, |
| const char *zSymbol |
| ))(void){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| return pVfs->xDlSym(pVfs, pHandle, zSymbol); |
| } |
| static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| pVfs->xDlClose(pVfs, pHandle); |
| } |
| static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| return pVfs->xRandomness(pVfs, nByte, zBufOut); |
| } |
| static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| return pVfs->xSleep(pVfs, nMicro); |
| } |
| static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; |
| return pVfs->xCurrentTime(pVfs, pTimeOut); |
| } |
| |
| static sqlite3_vfs async_vfs = { |
| 1, /* iVersion */ |
| sizeof(AsyncFile), /* szOsFile */ |
| 0, /* mxPathname */ |
| 0, /* pNext */ |
| SQLITEASYNC_VFSNAME, /* zName */ |
| 0, /* pAppData */ |
| asyncOpen, /* xOpen */ |
| asyncDelete, /* xDelete */ |
| asyncAccess, /* xAccess */ |
| asyncFullPathname, /* xFullPathname */ |
| asyncDlOpen, /* xDlOpen */ |
| asyncDlError, /* xDlError */ |
| asyncDlSym, /* xDlSym */ |
| asyncDlClose, /* xDlClose */ |
| asyncRandomness, /* xDlError */ |
| asyncSleep, /* xDlSym */ |
| asyncCurrentTime /* xDlClose */ |
| }; |
| |
| /* |
| ** This procedure runs in a separate thread, reading messages off of the |
| ** write queue and processing them one by one. |
| ** |
| ** If async.writerHaltNow is true, then this procedure exits |
| ** after processing a single message. |
| ** |
| ** If async.writerHaltWhenIdle is true, then this procedure exits when |
| ** the write queue is empty. |
| ** |
| ** If both of the above variables are false, this procedure runs |
| ** indefinately, waiting for operations to be added to the write queue |
| ** and processing them in the order in which they arrive. |
| ** |
| ** An artifical delay of async.ioDelay milliseconds is inserted before |
| ** each write operation in order to simulate the effect of a slow disk. |
| ** |
| ** Only one instance of this procedure may be running at a time. |
| */ |
| static void asyncWriterThread(void){ |
| sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); |
| AsyncWrite *p = 0; |
| int rc = SQLITE_OK; |
| int holdingMutex = 0; |
| |
| async_mutex_enter(ASYNC_MUTEX_WRITER); |
| |
| while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ |
| int doNotFree = 0; |
| sqlite3_file *pBase = 0; |
| |
| if( !holdingMutex ){ |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| } |
| while( (p = async.pQueueFirst)==0 ){ |
| if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| break; |
| }else{ |
| ASYNC_TRACE(("IDLE\n")); |
| async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); |
| ASYNC_TRACE(("WAKEUP\n")); |
| } |
| } |
| if( p==0 ) break; |
| holdingMutex = 1; |
| |
| /* Right now this thread is holding the mutex on the write-op queue. |
| ** Variable 'p' points to the first entry in the write-op queue. In |
| ** the general case, we hold on to the mutex for the entire body of |
| ** the loop. |
| ** |
| ** However in the cases enumerated below, we relinquish the mutex, |
| ** perform the IO, and then re-request the mutex before removing 'p' from |
| ** the head of the write-op queue. The idea is to increase concurrency with |
| ** sqlite threads. |
| ** |
| ** * An ASYNC_CLOSE operation. |
| ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish |
| ** the mutex, call the underlying xOpenExclusive() function, then |
| ** re-aquire the mutex before seting the AsyncFile.pBaseRead |
| ** variable. |
| ** * ASYNC_SYNC and ASYNC_WRITE operations, if |
| ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two |
| ** file-handles are open for the particular file being "synced". |
| */ |
| if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ |
| p->op = ASYNC_NOOP; |
| } |
| if( p->pFileData ){ |
| pBase = p->pFileData->pBaseWrite; |
| if( |
| p->op==ASYNC_CLOSE || |
| p->op==ASYNC_OPENEXCLUSIVE || |
| (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) |
| ){ |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| holdingMutex = 0; |
| } |
| if( !pBase->pMethods ){ |
| pBase = p->pFileData->pBaseRead; |
| } |
| } |
| |
| switch( p->op ){ |
| case ASYNC_NOOP: |
| break; |
| |
| case ASYNC_WRITE: |
| assert( pBase ); |
| ASYNC_TRACE(("WRITE %s %d bytes at %d\n", |
| p->pFileData->zName, p->nByte, p->iOffset)); |
| rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOffset); |
| break; |
| |
| case ASYNC_SYNC: |
| assert( pBase ); |
| ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); |
| rc = pBase->pMethods->xSync(pBase, p->nByte); |
| break; |
| |
| case ASYNC_TRUNCATE: |
| assert( pBase ); |
| ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", |
| p->pFileData->zName, p->iOffset)); |
| rc = pBase->pMethods->xTruncate(pBase, p->iOffset); |
| break; |
| |
| case ASYNC_CLOSE: { |
| AsyncFileData *pData = p->pFileData; |
| ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); |
| if( pData->pBaseWrite->pMethods ){ |
| pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); |
| } |
| if( pData->pBaseRead->pMethods ){ |
| pData->pBaseRead->pMethods->xClose(pData->pBaseRead); |
| } |
| |
| /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock |
| ** structures for this file. Obtain the async.lockMutex mutex |
| ** before doing so. |
| */ |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| rc = unlinkAsyncFile(pData); |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| |
| if( !holdingMutex ){ |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| holdingMutex = 1; |
| } |
| assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
| async.pQueueFirst = p->pNext; |
| sqlite3_free(pData); |
| doNotFree = 1; |
| break; |
| } |
| |
| case ASYNC_UNLOCK: { |
| AsyncWrite *pIter; |
| AsyncFileData *pData = p->pFileData; |
| int eLock = p->nByte; |
| |
| /* When a file is locked by SQLite using the async backend, it is |
| ** locked within the 'real' file-system synchronously. When it is |
| ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to |
| ** unlock the file asynchronously. The design of the async backend |
| ** requires that the 'real' file-system file be locked from the |
| ** time that SQLite first locks it (and probably reads from it) |
| ** until all asynchronous write events that were scheduled before |
| ** SQLite unlocked the file have been processed. |
| ** |
| ** This is more complex if SQLite locks and unlocks the file multiple |
| ** times in quick succession. For example, if SQLite does: |
| ** |
| ** lock, write, unlock, lock, write, unlock |
| ** |
| ** Each "lock" operation locks the file immediately. Each "write" |
| ** and "unlock" operation adds an event to the event queue. If the |
| ** second "lock" operation is performed before the first "unlock" |
| ** operation has been processed asynchronously, then the first |
| ** "unlock" cannot be safely processed as is, since this would mean |
| ** the file was unlocked when the second "write" operation is |
| ** processed. To work around this, when processing an ASYNC_UNLOCK |
| ** operation, SQLite: |
| ** |
| ** 1) Unlocks the file to the minimum of the argument passed to |
| ** the xUnlock() call and the current lock from SQLite's point |
| ** of view, and |
| ** |
| ** 2) Only unlocks the file at all if this event is the last |
| ** ASYNC_UNLOCK event on this file in the write-queue. |
| */ |
| assert( holdingMutex==1 ); |
| assert( async.pQueueFirst==p ); |
| for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ |
| if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; |
| } |
| if( !pIter ){ |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| pData->lock.eAsyncLock = MIN( |
| pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) |
| ); |
| assert(pData->lock.eAsyncLock>=pData->lock.eLock); |
| rc = getFileLock(pData->pLock); |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| } |
| break; |
| } |
| |
| case ASYNC_DELETE: |
| ASYNC_TRACE(("DELETE %s\n", p->zBuf)); |
| rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); |
| if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; |
| break; |
| |
| case ASYNC_OPENEXCLUSIVE: { |
| int flags = (int)p->iOffset; |
| AsyncFileData *pData = p->pFileData; |
| ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); |
| assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); |
| rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); |
| assert( holdingMutex==0 ); |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| holdingMutex = 1; |
| break; |
| } |
| |
| default: assert(!"Illegal value for AsyncWrite.op"); |
| } |
| |
| /* If we didn't hang on to the mutex during the IO op, obtain it now |
| ** so that the AsyncWrite structure can be safely removed from the |
| ** global write-op queue. |
| */ |
| if( !holdingMutex ){ |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| holdingMutex = 1; |
| } |
| /* ASYNC_TRACE(("UNLINK %p\n", p)); */ |
| if( p==async.pQueueLast ){ |
| async.pQueueLast = 0; |
| } |
| if( !doNotFree ){ |
| assert_mutex_is_held(ASYNC_MUTEX_QUEUE); |
| async.pQueueFirst = p->pNext; |
| sqlite3_free(p); |
| } |
| assert( holdingMutex ); |
| |
| /* An IO error has occurred. We cannot report the error back to the |
| ** connection that requested the I/O since the error happened |
| ** asynchronously. The connection has already moved on. There |
| ** really is nobody to report the error to. |
| ** |
| ** The file for which the error occurred may have been a database or |
| ** journal file. Regardless, none of the currently queued operations |
| ** associated with the same database should now be performed. Nor should |
| ** any subsequently requested IO on either a database or journal file |
| ** handle for the same database be accepted until the main database |
| ** file handle has been closed and reopened. |
| ** |
| ** Furthermore, no further IO should be queued or performed on any file |
| ** handle associated with a database that may have been part of a |
| ** multi-file transaction that included the database associated with |
| ** the IO error (i.e. a database ATTACHed to the same handle at some |
| ** point in time). |
| */ |
| if( rc!=SQLITE_OK ){ |
| async.ioError = rc; |
| } |
| |
| if( async.ioError && !async.pQueueFirst ){ |
| async_mutex_enter(ASYNC_MUTEX_LOCK); |
| if( 0==async.pLock ){ |
| async.ioError = SQLITE_OK; |
| } |
| async_mutex_leave(ASYNC_MUTEX_LOCK); |
| } |
| |
| /* Drop the queue mutex before continuing to the next write operation |
| ** in order to give other threads a chance to work with the write queue. |
| */ |
| if( !async.pQueueFirst || !async.ioError ){ |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| holdingMutex = 0; |
| if( async.ioDelay>0 ){ |
| pVfs->xSleep(pVfs, async.ioDelay*1000); |
| }else{ |
| async_sched_yield(); |
| } |
| } |
| } |
| |
| async_mutex_leave(ASYNC_MUTEX_WRITER); |
| return; |
| } |
| |
| /* |
| ** Install the asynchronous VFS. |
| */ |
| int sqlite3async_initialize(const char *zParent, int isDefault){ |
| int rc = SQLITE_OK; |
| if( async_vfs.pAppData==0 ){ |
| sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); |
| if( !pParent || async_os_initialize() ){ |
| rc = SQLITE_ERROR; |
| }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ |
| async_os_shutdown(); |
| }else{ |
| async_vfs.pAppData = (void *)pParent; |
| async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Uninstall the asynchronous VFS. |
| */ |
| void sqlite3async_shutdown(void){ |
| if( async_vfs.pAppData ){ |
| async_os_shutdown(); |
| sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); |
| async_vfs.pAppData = 0; |
| } |
| } |
| |
| /* |
| ** Process events on the write-queue. |
| */ |
| void sqlite3async_run(void){ |
| asyncWriterThread(); |
| } |
| |
| /* |
| ** Control/configure the asynchronous IO system. |
| */ |
| int sqlite3async_control(int op, ...){ |
| int rc = SQLITE_OK; |
| va_list ap; |
| va_start(ap, op); |
| switch( op ){ |
| case SQLITEASYNC_HALT: { |
| int eWhen = va_arg(ap, int); |
| if( eWhen!=SQLITEASYNC_HALT_NEVER |
| && eWhen!=SQLITEASYNC_HALT_NOW |
| && eWhen!=SQLITEASYNC_HALT_IDLE |
| ){ |
| rc = SQLITE_MISUSE; |
| break; |
| } |
| async.eHalt = eWhen; |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| async_cond_signal(ASYNC_COND_QUEUE); |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| break; |
| } |
| |
| case SQLITEASYNC_DELAY: { |
| int iDelay = va_arg(ap, int); |
| if( iDelay<0 ){ |
| rc = SQLITE_MISUSE; |
| break; |
| } |
| async.ioDelay = iDelay; |
| break; |
| } |
| |
| case SQLITEASYNC_LOCKFILES: { |
| int bLock = va_arg(ap, int); |
| async_mutex_enter(ASYNC_MUTEX_QUEUE); |
| if( async.nFile || async.pQueueFirst ){ |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| rc = SQLITE_MISUSE; |
| break; |
| } |
| async.bLockFiles = bLock; |
| async_mutex_leave(ASYNC_MUTEX_QUEUE); |
| break; |
| } |
| |
| case SQLITEASYNC_GET_HALT: { |
| int *peWhen = va_arg(ap, int *); |
| *peWhen = async.eHalt; |
| break; |
| } |
| case SQLITEASYNC_GET_DELAY: { |
| int *piDelay = va_arg(ap, int *); |
| *piDelay = async.ioDelay; |
| break; |
| } |
| case SQLITEASYNC_GET_LOCKFILES: { |
| int *piDelay = va_arg(ap, int *); |
| *piDelay = async.bLockFiles; |
| break; |
| } |
| |
| default: |
| rc = SQLITE_ERROR; |
| break; |
| } |
| va_end(ap); |
| return rc; |
| } |
| |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ |