| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** Utility functions used throughout sqlite. |
| ** |
| ** This file contains functions for allocating memory, comparing |
| ** strings, and stuff like that. |
| ** |
| */ |
| #include "sqliteInt.h" |
| #include <stdarg.h> |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| #include <math.h> |
| #endif |
| |
| /* |
| ** Calls to sqlite3FaultSim() are used to simulate a failure during testing, |
| ** or to bypass normal error detection during testing in order to let |
| ** execute proceed futher downstream. |
| ** |
| ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The |
| ** sqlite3FaultSim() function only returns non-zero during testing. |
| ** |
| ** During testing, if the test harness has set a fault-sim callback using |
| ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then |
| ** each call to sqlite3FaultSim() is relayed to that application-supplied |
| ** callback and the integer return value form the application-supplied |
| ** callback is returned by sqlite3FaultSim(). |
| ** |
| ** The integer argument to sqlite3FaultSim() is a code to identify which |
| ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim() |
| ** should have a unique code. To prevent legacy testing applications from |
| ** breaking, the codes should not be changed or reused. |
| */ |
| #ifndef SQLITE_UNTESTABLE |
| int sqlite3FaultSim(int iTest){ |
| int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback; |
| return xCallback ? xCallback(iTest) : SQLITE_OK; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| /* |
| ** Return true if the floating point value is Not a Number (NaN). |
| ** |
| ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. |
| ** Otherwise, we have our own implementation that works on most systems. |
| */ |
| int sqlite3IsNaN(double x){ |
| int rc; /* The value return */ |
| #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN |
| u64 y; |
| memcpy(&y,&x,sizeof(y)); |
| rc = IsNaN(y); |
| #else |
| rc = isnan(x); |
| #endif /* HAVE_ISNAN */ |
| testcase( rc ); |
| return rc; |
| } |
| #endif /* SQLITE_OMIT_FLOATING_POINT */ |
| |
| /* |
| ** Compute a string length that is limited to what can be stored in |
| ** lower 30 bits of a 32-bit signed integer. |
| ** |
| ** The value returned will never be negative. Nor will it ever be greater |
| ** than the actual length of the string. For very long strings (greater |
| ** than 1GiB) the value returned might be less than the true string length. |
| */ |
| int sqlite3Strlen30(const char *z){ |
| if( z==0 ) return 0; |
| return 0x3fffffff & (int)strlen(z); |
| } |
| |
| /* |
| ** Return the declared type of a column. Or return zDflt if the column |
| ** has no declared type. |
| ** |
| ** The column type is an extra string stored after the zero-terminator on |
| ** the column name if and only if the COLFLAG_HASTYPE flag is set. |
| */ |
| char *sqlite3ColumnType(Column *pCol, char *zDflt){ |
| if( pCol->colFlags & COLFLAG_HASTYPE ){ |
| return pCol->zCnName + strlen(pCol->zCnName) + 1; |
| }else if( pCol->eCType ){ |
| assert( pCol->eCType<=SQLITE_N_STDTYPE ); |
| return (char*)sqlite3StdType[pCol->eCType-1]; |
| }else{ |
| return zDflt; |
| } |
| } |
| |
| /* |
| ** Helper function for sqlite3Error() - called rarely. Broken out into |
| ** a separate routine to avoid unnecessary register saves on entry to |
| ** sqlite3Error(). |
| */ |
| static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){ |
| if( db->pErr ) sqlite3ValueSetNull(db->pErr); |
| sqlite3SystemError(db, err_code); |
| } |
| |
| /* |
| ** Set the current error code to err_code and clear any prior error message. |
| ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates |
| ** that would be appropriate. |
| */ |
| void sqlite3Error(sqlite3 *db, int err_code){ |
| assert( db!=0 ); |
| db->errCode = err_code; |
| if( err_code || db->pErr ){ |
| sqlite3ErrorFinish(db, err_code); |
| }else{ |
| db->errByteOffset = -1; |
| } |
| } |
| |
| /* |
| ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state |
| ** and error message. |
| */ |
| void sqlite3ErrorClear(sqlite3 *db){ |
| assert( db!=0 ); |
| db->errCode = SQLITE_OK; |
| db->errByteOffset = -1; |
| if( db->pErr ) sqlite3ValueSetNull(db->pErr); |
| } |
| |
| /* |
| ** Load the sqlite3.iSysErrno field if that is an appropriate thing |
| ** to do based on the SQLite error code in rc. |
| */ |
| void sqlite3SystemError(sqlite3 *db, int rc){ |
| if( rc==SQLITE_IOERR_NOMEM ) return; |
| rc &= 0xff; |
| if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){ |
| db->iSysErrno = sqlite3OsGetLastError(db->pVfs); |
| } |
| } |
| |
| /* |
| ** Set the most recent error code and error string for the sqlite |
| ** handle "db". The error code is set to "err_code". |
| ** |
| ** If it is not NULL, string zFormat specifies the format of the |
| ** error string. zFormat and any string tokens that follow it are |
| ** assumed to be encoded in UTF-8. |
| ** |
| ** To clear the most recent error for sqlite handle "db", sqlite3Error |
| ** should be called with err_code set to SQLITE_OK and zFormat set |
| ** to NULL. |
| */ |
| void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){ |
| assert( db!=0 ); |
| db->errCode = err_code; |
| sqlite3SystemError(db, err_code); |
| if( zFormat==0 ){ |
| sqlite3Error(db, err_code); |
| }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){ |
| char *z; |
| va_list ap; |
| va_start(ap, zFormat); |
| z = sqlite3VMPrintf(db, zFormat, ap); |
| va_end(ap); |
| sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
| } |
| } |
| |
| /* |
| ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
| ** |
| ** This function should be used to report any error that occurs while |
| ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
| ** last thing the sqlite3_prepare() function does is copy the error |
| ** stored by this function into the database handle using sqlite3Error(). |
| ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used |
| ** during statement execution (sqlite3_step() etc.). |
| */ |
| void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
| char *zMsg; |
| va_list ap; |
| sqlite3 *db = pParse->db; |
| assert( db!=0 ); |
| assert( db->pParse==pParse ); |
| db->errByteOffset = -2; |
| va_start(ap, zFormat); |
| zMsg = sqlite3VMPrintf(db, zFormat, ap); |
| va_end(ap); |
| if( db->errByteOffset<-1 ) db->errByteOffset = -1; |
| if( db->suppressErr ){ |
| sqlite3DbFree(db, zMsg); |
| if( db->mallocFailed ){ |
| pParse->nErr++; |
| pParse->rc = SQLITE_NOMEM; |
| } |
| }else{ |
| pParse->nErr++; |
| sqlite3DbFree(db, pParse->zErrMsg); |
| pParse->zErrMsg = zMsg; |
| pParse->rc = SQLITE_ERROR; |
| pParse->pWith = 0; |
| } |
| } |
| |
| /* |
| ** If database connection db is currently parsing SQL, then transfer |
| ** error code errCode to that parser if the parser has not already |
| ** encountered some other kind of error. |
| */ |
| int sqlite3ErrorToParser(sqlite3 *db, int errCode){ |
| Parse *pParse; |
| if( db==0 || (pParse = db->pParse)==0 ) return errCode; |
| pParse->rc = errCode; |
| pParse->nErr++; |
| return errCode; |
| } |
| |
| /* |
| ** Convert an SQL-style quoted string into a normal string by removing |
| ** the quote characters. The conversion is done in-place. If the |
| ** input does not begin with a quote character, then this routine |
| ** is a no-op. |
| ** |
| ** The input string must be zero-terminated. A new zero-terminator |
| ** is added to the dequoted string. |
| ** |
| ** The return value is -1 if no dequoting occurs or the length of the |
| ** dequoted string, exclusive of the zero terminator, if dequoting does |
| ** occur. |
| ** |
| ** 2002-02-14: This routine is extended to remove MS-Access style |
| ** brackets from around identifiers. For example: "[a-b-c]" becomes |
| ** "a-b-c". |
| */ |
| void sqlite3Dequote(char *z){ |
| char quote; |
| int i, j; |
| if( z==0 ) return; |
| quote = z[0]; |
| if( !sqlite3Isquote(quote) ) return; |
| if( quote=='[' ) quote = ']'; |
| for(i=1, j=0;; i++){ |
| assert( z[i] ); |
| if( z[i]==quote ){ |
| if( z[i+1]==quote ){ |
| z[j++] = quote; |
| i++; |
| }else{ |
| break; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| z[j] = 0; |
| } |
| void sqlite3DequoteExpr(Expr *p){ |
| assert( !ExprHasProperty(p, EP_IntValue) ); |
| assert( sqlite3Isquote(p->u.zToken[0]) ); |
| p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted; |
| sqlite3Dequote(p->u.zToken); |
| } |
| |
| /* |
| ** If the input token p is quoted, try to adjust the token to remove |
| ** the quotes. This is not always possible: |
| ** |
| ** "abc" -> abc |
| ** "ab""cd" -> (not possible because of the interior "") |
| ** |
| ** Remove the quotes if possible. This is a optimization. The overall |
| ** system should still return the correct answer even if this routine |
| ** is always a no-op. |
| */ |
| void sqlite3DequoteToken(Token *p){ |
| unsigned int i; |
| if( p->n<2 ) return; |
| if( !sqlite3Isquote(p->z[0]) ) return; |
| for(i=1; i<p->n-1; i++){ |
| if( sqlite3Isquote(p->z[i]) ) return; |
| } |
| p->n -= 2; |
| p->z++; |
| } |
| |
| /* |
| ** Generate a Token object from a string |
| */ |
| void sqlite3TokenInit(Token *p, char *z){ |
| p->z = z; |
| p->n = sqlite3Strlen30(z); |
| } |
| |
| /* Convenient short-hand */ |
| #define UpperToLower sqlite3UpperToLower |
| |
| /* |
| ** Some systems have stricmp(). Others have strcasecmp(). Because |
| ** there is no consistency, we will define our own. |
| ** |
| ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and |
| ** sqlite3_strnicmp() APIs allow applications and extensions to compare |
| ** the contents of two buffers containing UTF-8 strings in a |
| ** case-independent fashion, using the same definition of "case |
| ** independence" that SQLite uses internally when comparing identifiers. |
| */ |
| int sqlite3_stricmp(const char *zLeft, const char *zRight){ |
| if( zLeft==0 ){ |
| return zRight ? -1 : 0; |
| }else if( zRight==0 ){ |
| return 1; |
| } |
| return sqlite3StrICmp(zLeft, zRight); |
| } |
| int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
| unsigned char *a, *b; |
| int c, x; |
| a = (unsigned char *)zLeft; |
| b = (unsigned char *)zRight; |
| for(;;){ |
| c = *a; |
| x = *b; |
| if( c==x ){ |
| if( c==0 ) break; |
| }else{ |
| c = (int)UpperToLower[c] - (int)UpperToLower[x]; |
| if( c ) break; |
| } |
| a++; |
| b++; |
| } |
| return c; |
| } |
| int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ |
| register unsigned char *a, *b; |
| if( zLeft==0 ){ |
| return zRight ? -1 : 0; |
| }else if( zRight==0 ){ |
| return 1; |
| } |
| a = (unsigned char *)zLeft; |
| b = (unsigned char *)zRight; |
| while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
| return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
| } |
| |
| /* |
| ** Compute an 8-bit hash on a string that is insensitive to case differences |
| */ |
| u8 sqlite3StrIHash(const char *z){ |
| u8 h = 0; |
| if( z==0 ) return 0; |
| while( z[0] ){ |
| h += UpperToLower[(unsigned char)z[0]]; |
| z++; |
| } |
| return h; |
| } |
| |
| /* |
| ** Compute 10 to the E-th power. Examples: E==1 results in 10. |
| ** E==2 results in 100. E==50 results in 1.0e50. |
| ** |
| ** This routine only works for values of E between 1 and 341. |
| */ |
| static LONGDOUBLE_TYPE sqlite3Pow10(int E){ |
| #if defined(_MSC_VER) |
| static const LONGDOUBLE_TYPE x[] = { |
| 1.0e+001L, |
| 1.0e+002L, |
| 1.0e+004L, |
| 1.0e+008L, |
| 1.0e+016L, |
| 1.0e+032L, |
| 1.0e+064L, |
| 1.0e+128L, |
| 1.0e+256L |
| }; |
| LONGDOUBLE_TYPE r = 1.0; |
| int i; |
| assert( E>=0 && E<=307 ); |
| for(i=0; E!=0; i++, E >>=1){ |
| if( E & 1 ) r *= x[i]; |
| } |
| return r; |
| #else |
| LONGDOUBLE_TYPE x = 10.0; |
| LONGDOUBLE_TYPE r = 1.0; |
| while(1){ |
| if( E & 1 ) r *= x; |
| E >>= 1; |
| if( E==0 ) break; |
| x *= x; |
| } |
| return r; |
| #endif |
| } |
| |
| /* |
| ** The string z[] is an text representation of a real number. |
| ** Convert this string to a double and write it into *pResult. |
| ** |
| ** The string z[] is length bytes in length (bytes, not characters) and |
| ** uses the encoding enc. The string is not necessarily zero-terminated. |
| ** |
| ** Return TRUE if the result is a valid real number (or integer) and FALSE |
| ** if the string is empty or contains extraneous text. More specifically |
| ** return |
| ** 1 => The input string is a pure integer |
| ** 2 or more => The input has a decimal point or eNNN clause |
| ** 0 or less => The input string is not a valid number |
| ** -1 => Not a valid number, but has a valid prefix which |
| ** includes a decimal point and/or an eNNN clause |
| ** |
| ** Valid numbers are in one of these formats: |
| ** |
| ** [+-]digits[E[+-]digits] |
| ** [+-]digits.[digits][E[+-]digits] |
| ** [+-].digits[E[+-]digits] |
| ** |
| ** Leading and trailing whitespace is ignored for the purpose of determining |
| ** validity. |
| ** |
| ** If some prefix of the input string is a valid number, this routine |
| ** returns FALSE but it still converts the prefix and writes the result |
| ** into *pResult. |
| */ |
| #if defined(_MSC_VER) |
| #pragma warning(disable : 4756) |
| #endif |
| int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| int incr; |
| const char *zEnd; |
| /* sign * significand * (10 ^ (esign * exponent)) */ |
| int sign = 1; /* sign of significand */ |
| i64 s = 0; /* significand */ |
| int d = 0; /* adjust exponent for shifting decimal point */ |
| int esign = 1; /* sign of exponent */ |
| int e = 0; /* exponent */ |
| int eValid = 1; /* True exponent is either not used or is well-formed */ |
| double result; |
| int nDigit = 0; /* Number of digits processed */ |
| int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */ |
| |
| assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
| *pResult = 0.0; /* Default return value, in case of an error */ |
| if( length==0 ) return 0; |
| |
| if( enc==SQLITE_UTF8 ){ |
| incr = 1; |
| zEnd = z + length; |
| }else{ |
| int i; |
| incr = 2; |
| length &= ~1; |
| assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
| testcase( enc==SQLITE_UTF16LE ); |
| testcase( enc==SQLITE_UTF16BE ); |
| for(i=3-enc; i<length && z[i]==0; i+=2){} |
| if( i<length ) eType = -100; |
| zEnd = &z[i^1]; |
| z += (enc&1); |
| } |
| |
| /* skip leading spaces */ |
| while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
| if( z>=zEnd ) return 0; |
| |
| /* get sign of significand */ |
| if( *z=='-' ){ |
| sign = -1; |
| z+=incr; |
| }else if( *z=='+' ){ |
| z+=incr; |
| } |
| |
| /* copy max significant digits to significand */ |
| while( z<zEnd && sqlite3Isdigit(*z) ){ |
| s = s*10 + (*z - '0'); |
| z+=incr; nDigit++; |
| if( s>=((LARGEST_INT64-9)/10) ){ |
| /* skip non-significant significand digits |
| ** (increase exponent by d to shift decimal left) */ |
| while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; } |
| } |
| } |
| if( z>=zEnd ) goto do_atof_calc; |
| |
| /* if decimal point is present */ |
| if( *z=='.' ){ |
| z+=incr; |
| eType++; |
| /* copy digits from after decimal to significand |
| ** (decrease exponent by d to shift decimal right) */ |
| while( z<zEnd && sqlite3Isdigit(*z) ){ |
| if( s<((LARGEST_INT64-9)/10) ){ |
| s = s*10 + (*z - '0'); |
| d--; |
| nDigit++; |
| } |
| z+=incr; |
| } |
| } |
| if( z>=zEnd ) goto do_atof_calc; |
| |
| /* if exponent is present */ |
| if( *z=='e' || *z=='E' ){ |
| z+=incr; |
| eValid = 0; |
| eType++; |
| |
| /* This branch is needed to avoid a (harmless) buffer overread. The |
| ** special comment alerts the mutation tester that the correct answer |
| ** is obtained even if the branch is omitted */ |
| if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/ |
| |
| /* get sign of exponent */ |
| if( *z=='-' ){ |
| esign = -1; |
| z+=incr; |
| }else if( *z=='+' ){ |
| z+=incr; |
| } |
| /* copy digits to exponent */ |
| while( z<zEnd && sqlite3Isdigit(*z) ){ |
| e = e<10000 ? (e*10 + (*z - '0')) : 10000; |
| z+=incr; |
| eValid = 1; |
| } |
| } |
| |
| /* skip trailing spaces */ |
| while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
| |
| do_atof_calc: |
| /* adjust exponent by d, and update sign */ |
| e = (e*esign) + d; |
| if( e<0 ) { |
| esign = -1; |
| e *= -1; |
| } else { |
| esign = 1; |
| } |
| |
| if( s==0 ) { |
| /* In the IEEE 754 standard, zero is signed. */ |
| result = sign<0 ? -(double)0 : (double)0; |
| } else { |
| /* Attempt to reduce exponent. |
| ** |
| ** Branches that are not required for the correct answer but which only |
| ** help to obtain the correct answer faster are marked with special |
| ** comments, as a hint to the mutation tester. |
| */ |
| while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/ |
| if( esign>0 ){ |
| if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/ |
| s *= 10; |
| }else{ |
| if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/ |
| s /= 10; |
| } |
| e--; |
| } |
| |
| /* adjust the sign of significand */ |
| s = sign<0 ? -s : s; |
| |
| if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/ |
| result = (double)s; |
| }else{ |
| /* attempt to handle extremely small/large numbers better */ |
| if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/ |
| if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/ |
| LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308); |
| if( esign<0 ){ |
| result = s / scale; |
| result /= 1.0e+308; |
| }else{ |
| result = s * scale; |
| result *= 1.0e+308; |
| } |
| }else{ assert( e>=342 ); |
| if( esign<0 ){ |
| result = 0.0*s; |
| }else{ |
| #ifdef INFINITY |
| result = INFINITY*s; |
| #else |
| result = 1e308*1e308*s; /* Infinity */ |
| #endif |
| } |
| } |
| }else{ |
| LONGDOUBLE_TYPE scale = sqlite3Pow10(e); |
| if( esign<0 ){ |
| result = s / scale; |
| }else{ |
| result = s * scale; |
| } |
| } |
| } |
| } |
| |
| /* store the result */ |
| *pResult = result; |
| |
| /* return true if number and no extra non-whitespace chracters after */ |
| if( z==zEnd && nDigit>0 && eValid && eType>0 ){ |
| return eType; |
| }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){ |
| return -1; |
| }else{ |
| return 0; |
| } |
| #else |
| return !sqlite3Atoi64(z, pResult, length, enc); |
| #endif /* SQLITE_OMIT_FLOATING_POINT */ |
| } |
| #if defined(_MSC_VER) |
| #pragma warning(default : 4756) |
| #endif |
| |
| /* |
| ** Render an signed 64-bit integer as text. Store the result in zOut[]. |
| ** |
| ** The caller must ensure that zOut[] is at least 21 bytes in size. |
| */ |
| void sqlite3Int64ToText(i64 v, char *zOut){ |
| int i; |
| u64 x; |
| char zTemp[22]; |
| if( v<0 ){ |
| x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v; |
| }else{ |
| x = v; |
| } |
| i = sizeof(zTemp)-2; |
| zTemp[sizeof(zTemp)-1] = 0; |
| do{ |
| zTemp[i--] = (x%10) + '0'; |
| x = x/10; |
| }while( x ); |
| if( v<0 ) zTemp[i--] = '-'; |
| memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i); |
| } |
| |
| /* |
| ** Compare the 19-character string zNum against the text representation |
| ** value 2^63: 9223372036854775808. Return negative, zero, or positive |
| ** if zNum is less than, equal to, or greater than the string. |
| ** Note that zNum must contain exactly 19 characters. |
| ** |
| ** Unlike memcmp() this routine is guaranteed to return the difference |
| ** in the values of the last digit if the only difference is in the |
| ** last digit. So, for example, |
| ** |
| ** compare2pow63("9223372036854775800", 1) |
| ** |
| ** will return -8. |
| */ |
| static int compare2pow63(const char *zNum, int incr){ |
| int c = 0; |
| int i; |
| /* 012345678901234567 */ |
| const char *pow63 = "922337203685477580"; |
| for(i=0; c==0 && i<18; i++){ |
| c = (zNum[i*incr]-pow63[i])*10; |
| } |
| if( c==0 ){ |
| c = zNum[18*incr] - '8'; |
| testcase( c==(-1) ); |
| testcase( c==0 ); |
| testcase( c==(+1) ); |
| } |
| return c; |
| } |
| |
| /* |
| ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This |
| ** routine does *not* accept hexadecimal notation. |
| ** |
| ** Returns: |
| ** |
| ** -1 Not even a prefix of the input text looks like an integer |
| ** 0 Successful transformation. Fits in a 64-bit signed integer. |
| ** 1 Excess non-space text after the integer value |
| ** 2 Integer too large for a 64-bit signed integer or is malformed |
| ** 3 Special case of 9223372036854775808 |
| ** |
| ** length is the number of bytes in the string (bytes, not characters). |
| ** The string is not necessarily zero-terminated. The encoding is |
| ** given by enc. |
| */ |
| int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ |
| int incr; |
| u64 u = 0; |
| int neg = 0; /* assume positive */ |
| int i; |
| int c = 0; |
| int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */ |
| int rc; /* Baseline return code */ |
| const char *zStart; |
| const char *zEnd = zNum + length; |
| assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
| if( enc==SQLITE_UTF8 ){ |
| incr = 1; |
| }else{ |
| incr = 2; |
| length &= ~1; |
| assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
| for(i=3-enc; i<length && zNum[i]==0; i+=2){} |
| nonNum = i<length; |
| zEnd = &zNum[i^1]; |
| zNum += (enc&1); |
| } |
| while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; |
| if( zNum<zEnd ){ |
| if( *zNum=='-' ){ |
| neg = 1; |
| zNum+=incr; |
| }else if( *zNum=='+' ){ |
| zNum+=incr; |
| } |
| } |
| zStart = zNum; |
| while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ |
| for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ |
| u = u*10 + c - '0'; |
| } |
| testcase( i==18*incr ); |
| testcase( i==19*incr ); |
| testcase( i==20*incr ); |
| if( u>LARGEST_INT64 ){ |
| /* This test and assignment is needed only to suppress UB warnings |
| ** from clang and -fsanitize=undefined. This test and assignment make |
| ** the code a little larger and slower, and no harm comes from omitting |
| ** them, but we must appaise the undefined-behavior pharisees. */ |
| *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; |
| }else if( neg ){ |
| *pNum = -(i64)u; |
| }else{ |
| *pNum = (i64)u; |
| } |
| rc = 0; |
| if( i==0 && zStart==zNum ){ /* No digits */ |
| rc = -1; |
| }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */ |
| rc = 1; |
| }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */ |
| int jj = i; |
| do{ |
| if( !sqlite3Isspace(zNum[jj]) ){ |
| rc = 1; /* Extra non-space text after the integer */ |
| break; |
| } |
| jj += incr; |
| }while( &zNum[jj]<zEnd ); |
| } |
| if( i<19*incr ){ |
| /* Less than 19 digits, so we know that it fits in 64 bits */ |
| assert( u<=LARGEST_INT64 ); |
| return rc; |
| }else{ |
| /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ |
| c = i>19*incr ? 1 : compare2pow63(zNum, incr); |
| if( c<0 ){ |
| /* zNum is less than 9223372036854775808 so it fits */ |
| assert( u<=LARGEST_INT64 ); |
| return rc; |
| }else{ |
| *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64; |
| if( c>0 ){ |
| /* zNum is greater than 9223372036854775808 so it overflows */ |
| return 2; |
| }else{ |
| /* zNum is exactly 9223372036854775808. Fits if negative. The |
| ** special case 2 overflow if positive */ |
| assert( u-1==LARGEST_INT64 ); |
| return neg ? rc : 3; |
| } |
| } |
| } |
| } |
| |
| /* |
| ** Transform a UTF-8 integer literal, in either decimal or hexadecimal, |
| ** into a 64-bit signed integer. This routine accepts hexadecimal literals, |
| ** whereas sqlite3Atoi64() does not. |
| ** |
| ** Returns: |
| ** |
| ** 0 Successful transformation. Fits in a 64-bit signed integer. |
| ** 1 Excess text after the integer value |
| ** 2 Integer too large for a 64-bit signed integer or is malformed |
| ** 3 Special case of 9223372036854775808 |
| */ |
| int sqlite3DecOrHexToI64(const char *z, i64 *pOut){ |
| #ifndef SQLITE_OMIT_HEX_INTEGER |
| if( z[0]=='0' |
| && (z[1]=='x' || z[1]=='X') |
| ){ |
| u64 u = 0; |
| int i, k; |
| for(i=2; z[i]=='0'; i++){} |
| for(k=i; sqlite3Isxdigit(z[k]); k++){ |
| u = u*16 + sqlite3HexToInt(z[k]); |
| } |
| memcpy(pOut, &u, 8); |
| return (z[k]==0 && k-i<=16) ? 0 : 2; |
| }else |
| #endif /* SQLITE_OMIT_HEX_INTEGER */ |
| { |
| return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8); |
| } |
| } |
| |
| /* |
| ** If zNum represents an integer that will fit in 32-bits, then set |
| ** *pValue to that integer and return true. Otherwise return false. |
| ** |
| ** This routine accepts both decimal and hexadecimal notation for integers. |
| ** |
| ** Any non-numeric characters that following zNum are ignored. |
| ** This is different from sqlite3Atoi64() which requires the |
| ** input number to be zero-terminated. |
| */ |
| int sqlite3GetInt32(const char *zNum, int *pValue){ |
| sqlite_int64 v = 0; |
| int i, c; |
| int neg = 0; |
| if( zNum[0]=='-' ){ |
| neg = 1; |
| zNum++; |
| }else if( zNum[0]=='+' ){ |
| zNum++; |
| } |
| #ifndef SQLITE_OMIT_HEX_INTEGER |
| else if( zNum[0]=='0' |
| && (zNum[1]=='x' || zNum[1]=='X') |
| && sqlite3Isxdigit(zNum[2]) |
| ){ |
| u32 u = 0; |
| zNum += 2; |
| while( zNum[0]=='0' ) zNum++; |
| for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){ |
| u = u*16 + sqlite3HexToInt(zNum[i]); |
| } |
| if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){ |
| memcpy(pValue, &u, 4); |
| return 1; |
| }else{ |
| return 0; |
| } |
| } |
| #endif |
| if( !sqlite3Isdigit(zNum[0]) ) return 0; |
| while( zNum[0]=='0' ) zNum++; |
| for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
| v = v*10 + c; |
| } |
| |
| /* The longest decimal representation of a 32 bit integer is 10 digits: |
| ** |
| ** 1234567890 |
| ** 2^31 -> 2147483648 |
| */ |
| testcase( i==10 ); |
| if( i>10 ){ |
| return 0; |
| } |
| testcase( v-neg==2147483647 ); |
| if( v-neg>2147483647 ){ |
| return 0; |
| } |
| if( neg ){ |
| v = -v; |
| } |
| *pValue = (int)v; |
| return 1; |
| } |
| |
| /* |
| ** Return a 32-bit integer value extracted from a string. If the |
| ** string is not an integer, just return 0. |
| */ |
| int sqlite3Atoi(const char *z){ |
| int x = 0; |
| sqlite3GetInt32(z, &x); |
| return x; |
| } |
| |
| /* |
| ** Try to convert z into an unsigned 32-bit integer. Return true on |
| ** success and false if there is an error. |
| ** |
| ** Only decimal notation is accepted. |
| */ |
| int sqlite3GetUInt32(const char *z, u32 *pI){ |
| u64 v = 0; |
| int i; |
| for(i=0; sqlite3Isdigit(z[i]); i++){ |
| v = v*10 + z[i] - '0'; |
| if( v>4294967296LL ){ *pI = 0; return 0; } |
| } |
| if( i==0 || z[i]!=0 ){ *pI = 0; return 0; } |
| *pI = (u32)v; |
| return 1; |
| } |
| |
| /* |
| ** The variable-length integer encoding is as follows: |
| ** |
| ** KEY: |
| ** A = 0xxxxxxx 7 bits of data and one flag bit |
| ** B = 1xxxxxxx 7 bits of data and one flag bit |
| ** C = xxxxxxxx 8 bits of data |
| ** |
| ** 7 bits - A |
| ** 14 bits - BA |
| ** 21 bits - BBA |
| ** 28 bits - BBBA |
| ** 35 bits - BBBBA |
| ** 42 bits - BBBBBA |
| ** 49 bits - BBBBBBA |
| ** 56 bits - BBBBBBBA |
| ** 64 bits - BBBBBBBBC |
| */ |
| |
| /* |
| ** Write a 64-bit variable-length integer to memory starting at p[0]. |
| ** The length of data write will be between 1 and 9 bytes. The number |
| ** of bytes written is returned. |
| ** |
| ** A variable-length integer consists of the lower 7 bits of each byte |
| ** for all bytes that have the 8th bit set and one byte with the 8th |
| ** bit clear. Except, if we get to the 9th byte, it stores the full |
| ** 8 bits and is the last byte. |
| */ |
| static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){ |
| int i, j, n; |
| u8 buf[10]; |
| if( v & (((u64)0xff000000)<<32) ){ |
| p[8] = (u8)v; |
| v >>= 8; |
| for(i=7; i>=0; i--){ |
| p[i] = (u8)((v & 0x7f) | 0x80); |
| v >>= 7; |
| } |
| return 9; |
| } |
| n = 0; |
| do{ |
| buf[n++] = (u8)((v & 0x7f) | 0x80); |
| v >>= 7; |
| }while( v!=0 ); |
| buf[0] &= 0x7f; |
| assert( n<=9 ); |
| for(i=0, j=n-1; j>=0; j--, i++){ |
| p[i] = buf[j]; |
| } |
| return n; |
| } |
| int sqlite3PutVarint(unsigned char *p, u64 v){ |
| if( v<=0x7f ){ |
| p[0] = v&0x7f; |
| return 1; |
| } |
| if( v<=0x3fff ){ |
| p[0] = ((v>>7)&0x7f)|0x80; |
| p[1] = v&0x7f; |
| return 2; |
| } |
| return putVarint64(p,v); |
| } |
| |
| /* |
| ** Bitmasks used by sqlite3GetVarint(). These precomputed constants |
| ** are defined here rather than simply putting the constant expressions |
| ** inline in order to work around bugs in the RVT compiler. |
| ** |
| ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f |
| ** |
| ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 |
| */ |
| #define SLOT_2_0 0x001fc07f |
| #define SLOT_4_2_0 0xf01fc07f |
| |
| |
| /* |
| ** Read a 64-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read. The value is stored in *v. |
| */ |
| u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ |
| u32 a,b,s; |
| |
| if( ((signed char*)p)[0]>=0 ){ |
| *v = *p; |
| return 1; |
| } |
| if( ((signed char*)p)[1]>=0 ){ |
| *v = ((u32)(p[0]&0x7f)<<7) | p[1]; |
| return 2; |
| } |
| |
| /* Verify that constants are precomputed correctly */ |
| assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); |
| assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); |
| |
| a = ((u32)p[0])<<14; |
| b = p[1]; |
| p += 2; |
| a |= *p; |
| /* a: p0<<14 | p2 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| a &= SLOT_2_0; |
| b &= 0x7f; |
| b = b<<7; |
| a |= b; |
| *v = a; |
| return 3; |
| } |
| |
| /* CSE1 from below */ |
| a &= SLOT_2_0; |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p1<<14 | p3 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| b &= SLOT_2_0; |
| /* moved CSE1 up */ |
| /* a &= (0x7f<<14)|(0x7f); */ |
| a = a<<7; |
| a |= b; |
| *v = a; |
| return 4; |
| } |
| |
| /* a: p0<<14 | p2 (masked) */ |
| /* b: p1<<14 | p3 (unmasked) */ |
| /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| /* moved CSE1 up */ |
| /* a &= (0x7f<<14)|(0x7f); */ |
| b &= SLOT_2_0; |
| s = a; |
| /* s: p0<<14 | p2 (masked) */ |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| /* we can skip these cause they were (effectively) done above |
| ** while calculating s */ |
| /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
| /* b &= (0x7f<<14)|(0x7f); */ |
| b = b<<7; |
| a |= b; |
| s = s>>18; |
| *v = ((u64)s)<<32 | a; |
| return 5; |
| } |
| |
| /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| s = s<<7; |
| s |= b; |
| /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
| |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| /* we can skip this cause it was (effectively) done above in calc'ing s */ |
| /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
| a &= SLOT_2_0; |
| a = a<<7; |
| a |= b; |
| s = s>>18; |
| *v = ((u64)s)<<32 | a; |
| return 6; |
| } |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| a &= SLOT_4_2_0; |
| b &= SLOT_2_0; |
| b = b<<7; |
| a |= b; |
| s = s>>11; |
| *v = ((u64)s)<<32 | a; |
| return 7; |
| } |
| |
| /* CSE2 from below */ |
| a &= SLOT_2_0; |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| b &= SLOT_4_2_0; |
| /* moved CSE2 up */ |
| /* a &= (0x7f<<14)|(0x7f); */ |
| a = a<<7; |
| a |= b; |
| s = s>>4; |
| *v = ((u64)s)<<32 | a; |
| return 8; |
| } |
| |
| p++; |
| a = a<<15; |
| a |= *p; |
| /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
| |
| /* moved CSE2 up */ |
| /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
| b &= SLOT_2_0; |
| b = b<<8; |
| a |= b; |
| |
| s = s<<4; |
| b = p[-4]; |
| b &= 0x7f; |
| b = b>>3; |
| s |= b; |
| |
| *v = ((u64)s)<<32 | a; |
| |
| return 9; |
| } |
| |
| /* |
| ** Read a 32-bit variable-length integer from memory starting at p[0]. |
| ** Return the number of bytes read. The value is stored in *v. |
| ** |
| ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned |
| ** integer, then set *v to 0xffffffff. |
| ** |
| ** A MACRO version, getVarint32, is provided which inlines the |
| ** single-byte case. All code should use the MACRO version as |
| ** this function assumes the single-byte case has already been handled. |
| */ |
| u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
| u32 a,b; |
| |
| /* The 1-byte case. Overwhelmingly the most common. Handled inline |
| ** by the getVarin32() macro */ |
| a = *p; |
| /* a: p0 (unmasked) */ |
| #ifndef getVarint32 |
| if (!(a&0x80)) |
| { |
| /* Values between 0 and 127 */ |
| *v = a; |
| return 1; |
| } |
| #endif |
| |
| /* The 2-byte case */ |
| p++; |
| b = *p; |
| /* b: p1 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| /* Values between 128 and 16383 */ |
| a &= 0x7f; |
| a = a<<7; |
| *v = a | b; |
| return 2; |
| } |
| |
| /* The 3-byte case */ |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<14 | p2 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| /* Values between 16384 and 2097151 */ |
| a &= (0x7f<<14)|(0x7f); |
| b &= 0x7f; |
| b = b<<7; |
| *v = a | b; |
| return 3; |
| } |
| |
| /* A 32-bit varint is used to store size information in btrees. |
| ** Objects are rarely larger than 2MiB limit of a 3-byte varint. |
| ** A 3-byte varint is sufficient, for example, to record the size |
| ** of a 1048569-byte BLOB or string. |
| ** |
| ** We only unroll the first 1-, 2-, and 3- byte cases. The very |
| ** rare larger cases can be handled by the slower 64-bit varint |
| ** routine. |
| */ |
| #if 1 |
| { |
| u64 v64; |
| u8 n; |
| |
| n = sqlite3GetVarint(p-2, &v64); |
| assert( n>3 && n<=9 ); |
| if( (v64 & SQLITE_MAX_U32)!=v64 ){ |
| *v = 0xffffffff; |
| }else{ |
| *v = (u32)v64; |
| } |
| return n; |
| } |
| |
| #else |
| /* For following code (kept for historical record only) shows an |
| ** unrolling for the 3- and 4-byte varint cases. This code is |
| ** slightly faster, but it is also larger and much harder to test. |
| */ |
| p++; |
| b = b<<14; |
| b |= *p; |
| /* b: p1<<14 | p3 (unmasked) */ |
| if (!(b&0x80)) |
| { |
| /* Values between 2097152 and 268435455 */ |
| b &= (0x7f<<14)|(0x7f); |
| a &= (0x7f<<14)|(0x7f); |
| a = a<<7; |
| *v = a | b; |
| return 4; |
| } |
| |
| p++; |
| a = a<<14; |
| a |= *p; |
| /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
| if (!(a&0x80)) |
| { |
| /* Values between 268435456 and 34359738367 */ |
| a &= SLOT_4_2_0; |
| b &= SLOT_4_2_0; |
| b = b<<7; |
| *v = a | b; |
| return 5; |
| } |
| |
| /* We can only reach this point when reading a corrupt database |
| ** file. In that case we are not in any hurry. Use the (relatively |
| ** slow) general-purpose sqlite3GetVarint() routine to extract the |
| ** value. */ |
| { |
| u64 v64; |
| u8 n; |
| |
| p -= 4; |
| n = sqlite3GetVarint(p, &v64); |
| assert( n>5 && n<=9 ); |
| *v = (u32)v64; |
| return n; |
| } |
| #endif |
| } |
| |
| /* |
| ** Return the number of bytes that will be needed to store the given |
| ** 64-bit integer. |
| */ |
| int sqlite3VarintLen(u64 v){ |
| int i; |
| for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); } |
| return i; |
| } |
| |
| |
| /* |
| ** Read or write a four-byte big-endian integer value. |
| */ |
| u32 sqlite3Get4byte(const u8 *p){ |
| #if SQLITE_BYTEORDER==4321 |
| u32 x; |
| memcpy(&x,p,4); |
| return x; |
| #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| u32 x; |
| memcpy(&x,p,4); |
| return __builtin_bswap32(x); |
| #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| u32 x; |
| memcpy(&x,p,4); |
| return _byteswap_ulong(x); |
| #else |
| testcase( p[0]&0x80 ); |
| return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
| #endif |
| } |
| void sqlite3Put4byte(unsigned char *p, u32 v){ |
| #if SQLITE_BYTEORDER==4321 |
| memcpy(p,&v,4); |
| #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| u32 x = __builtin_bswap32(v); |
| memcpy(p,&x,4); |
| #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| u32 x = _byteswap_ulong(v); |
| memcpy(p,&x,4); |
| #else |
| p[0] = (u8)(v>>24); |
| p[1] = (u8)(v>>16); |
| p[2] = (u8)(v>>8); |
| p[3] = (u8)v; |
| #endif |
| } |
| |
| |
| |
| /* |
| ** Translate a single byte of Hex into an integer. |
| ** This routine only works if h really is a valid hexadecimal |
| ** character: 0..9a..fA..F |
| */ |
| u8 sqlite3HexToInt(int h){ |
| assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
| #ifdef SQLITE_ASCII |
| h += 9*(1&(h>>6)); |
| #endif |
| #ifdef SQLITE_EBCDIC |
| h += 9*(1&~(h>>4)); |
| #endif |
| return (u8)(h & 0xf); |
| } |
| |
| #if !defined(SQLITE_OMIT_BLOB_LITERAL) |
| /* |
| ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
| ** value. Return a pointer to its binary value. Space to hold the |
| ** binary value has been obtained from malloc and must be freed by |
| ** the calling routine. |
| */ |
| void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
| char *zBlob; |
| int i; |
| |
| zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1); |
| n--; |
| if( zBlob ){ |
| for(i=0; i<n; i+=2){ |
| zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]); |
| } |
| zBlob[i/2] = 0; |
| } |
| return zBlob; |
| } |
| #endif /* !SQLITE_OMIT_BLOB_LITERAL */ |
| |
| /* |
| ** Log an error that is an API call on a connection pointer that should |
| ** not have been used. The "type" of connection pointer is given as the |
| ** argument. The zType is a word like "NULL" or "closed" or "invalid". |
| */ |
| static void logBadConnection(const char *zType){ |
| sqlite3_log(SQLITE_MISUSE, |
| "API call with %s database connection pointer", |
| zType |
| ); |
| } |
| |
| /* |
| ** Check to make sure we have a valid db pointer. This test is not |
| ** foolproof but it does provide some measure of protection against |
| ** misuse of the interface such as passing in db pointers that are |
| ** NULL or which have been previously closed. If this routine returns |
| ** 1 it means that the db pointer is valid and 0 if it should not be |
| ** dereferenced for any reason. The calling function should invoke |
| ** SQLITE_MISUSE immediately. |
| ** |
| ** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
| ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
| ** open properly and is not fit for general use but which can be |
| ** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
| */ |
| int sqlite3SafetyCheckOk(sqlite3 *db){ |
| u8 eOpenState; |
| if( db==0 ){ |
| logBadConnection("NULL"); |
| return 0; |
| } |
| eOpenState = db->eOpenState; |
| if( eOpenState!=SQLITE_STATE_OPEN ){ |
| if( sqlite3SafetyCheckSickOrOk(db) ){ |
| testcase( sqlite3GlobalConfig.xLog!=0 ); |
| logBadConnection("unopened"); |
| } |
| return 0; |
| }else{ |
| return 1; |
| } |
| } |
| int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
| u8 eOpenState; |
| eOpenState = db->eOpenState; |
| if( eOpenState!=SQLITE_STATE_SICK && |
| eOpenState!=SQLITE_STATE_OPEN && |
| eOpenState!=SQLITE_STATE_BUSY ){ |
| testcase( sqlite3GlobalConfig.xLog!=0 ); |
| logBadConnection("invalid"); |
| return 0; |
| }else{ |
| return 1; |
| } |
| } |
| |
| /* |
| ** Attempt to add, substract, or multiply the 64-bit signed value iB against |
| ** the other 64-bit signed integer at *pA and store the result in *pA. |
| ** Return 0 on success. Or if the operation would have resulted in an |
| ** overflow, leave *pA unchanged and return 1. |
| */ |
| int sqlite3AddInt64(i64 *pA, i64 iB){ |
| #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) |
| return __builtin_add_overflow(*pA, iB, pA); |
| #else |
| i64 iA = *pA; |
| testcase( iA==0 ); testcase( iA==1 ); |
| testcase( iB==-1 ); testcase( iB==0 ); |
| if( iB>=0 ){ |
| testcase( iA>0 && LARGEST_INT64 - iA == iB ); |
| testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); |
| if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; |
| }else{ |
| testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); |
| testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); |
| if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; |
| } |
| *pA += iB; |
| return 0; |
| #endif |
| } |
| int sqlite3SubInt64(i64 *pA, i64 iB){ |
| #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) |
| return __builtin_sub_overflow(*pA, iB, pA); |
| #else |
| testcase( iB==SMALLEST_INT64+1 ); |
| if( iB==SMALLEST_INT64 ){ |
| testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); |
| if( (*pA)>=0 ) return 1; |
| *pA -= iB; |
| return 0; |
| }else{ |
| return sqlite3AddInt64(pA, -iB); |
| } |
| #endif |
| } |
| int sqlite3MulInt64(i64 *pA, i64 iB){ |
| #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER) |
| return __builtin_mul_overflow(*pA, iB, pA); |
| #else |
| i64 iA = *pA; |
| if( iB>0 ){ |
| if( iA>LARGEST_INT64/iB ) return 1; |
| if( iA<SMALLEST_INT64/iB ) return 1; |
| }else if( iB<0 ){ |
| if( iA>0 ){ |
| if( iB<SMALLEST_INT64/iA ) return 1; |
| }else if( iA<0 ){ |
| if( iB==SMALLEST_INT64 ) return 1; |
| if( iA==SMALLEST_INT64 ) return 1; |
| if( -iA>LARGEST_INT64/-iB ) return 1; |
| } |
| } |
| *pA = iA*iB; |
| return 0; |
| #endif |
| } |
| |
| /* |
| ** Compute the absolute value of a 32-bit signed integer, of possible. Or |
| ** if the integer has a value of -2147483648, return +2147483647 |
| */ |
| int sqlite3AbsInt32(int x){ |
| if( x>=0 ) return x; |
| if( x==(int)0x80000000 ) return 0x7fffffff; |
| return -x; |
| } |
| |
| #ifdef SQLITE_ENABLE_8_3_NAMES |
| /* |
| ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database |
| ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and |
| ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than |
| ** three characters, then shorten the suffix on z[] to be the last three |
| ** characters of the original suffix. |
| ** |
| ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always |
| ** do the suffix shortening regardless of URI parameter. |
| ** |
| ** Examples: |
| ** |
| ** test.db-journal => test.nal |
| ** test.db-wal => test.wal |
| ** test.db-shm => test.shm |
| ** test.db-mj7f3319fa => test.9fa |
| */ |
| void sqlite3FileSuffix3(const char *zBaseFilename, char *z){ |
| #if SQLITE_ENABLE_8_3_NAMES<2 |
| if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) ) |
| #endif |
| { |
| int i, sz; |
| sz = sqlite3Strlen30(z); |
| for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){} |
| if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4); |
| } |
| } |
| #endif |
| |
| /* |
| ** Find (an approximate) sum of two LogEst values. This computation is |
| ** not a simple "+" operator because LogEst is stored as a logarithmic |
| ** value. |
| ** |
| */ |
| LogEst sqlite3LogEstAdd(LogEst a, LogEst b){ |
| static const unsigned char x[] = { |
| 10, 10, /* 0,1 */ |
| 9, 9, /* 2,3 */ |
| 8, 8, /* 4,5 */ |
| 7, 7, 7, /* 6,7,8 */ |
| 6, 6, 6, /* 9,10,11 */ |
| 5, 5, 5, /* 12-14 */ |
| 4, 4, 4, 4, /* 15-18 */ |
| 3, 3, 3, 3, 3, 3, /* 19-24 */ |
| 2, 2, 2, 2, 2, 2, 2, /* 25-31 */ |
| }; |
| if( a>=b ){ |
| if( a>b+49 ) return a; |
| if( a>b+31 ) return a+1; |
| return a+x[a-b]; |
| }else{ |
| if( b>a+49 ) return b; |
| if( b>a+31 ) return b+1; |
| return b+x[b-a]; |
| } |
| } |
| |
| /* |
| ** Convert an integer into a LogEst. In other words, compute an |
| ** approximation for 10*log2(x). |
| */ |
| LogEst sqlite3LogEst(u64 x){ |
| static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 }; |
| LogEst y = 40; |
| if( x<8 ){ |
| if( x<2 ) return 0; |
| while( x<8 ){ y -= 10; x <<= 1; } |
| }else{ |
| #if GCC_VERSION>=5004000 |
| int i = 60 - __builtin_clzll(x); |
| y += i*10; |
| x >>= i; |
| #else |
| while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/ |
| while( x>15 ){ y += 10; x >>= 1; } |
| #endif |
| } |
| return a[x&7] + y - 10; |
| } |
| |
| /* |
| ** Convert a double into a LogEst |
| ** In other words, compute an approximation for 10*log2(x). |
| */ |
| LogEst sqlite3LogEstFromDouble(double x){ |
| u64 a; |
| LogEst e; |
| assert( sizeof(x)==8 && sizeof(a)==8 ); |
| if( x<=1 ) return 0; |
| if( x<=2000000000 ) return sqlite3LogEst((u64)x); |
| memcpy(&a, &x, 8); |
| e = (a>>52) - 1022; |
| return e*10; |
| } |
| |
| /* |
| ** Convert a LogEst into an integer. |
| */ |
| u64 sqlite3LogEstToInt(LogEst x){ |
| u64 n; |
| n = x%10; |
| x /= 10; |
| if( n>=5 ) n -= 2; |
| else if( n>=1 ) n -= 1; |
| if( x>60 ) return (u64)LARGEST_INT64; |
| return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x); |
| } |
| |
| /* |
| ** Add a new name/number pair to a VList. This might require that the |
| ** VList object be reallocated, so return the new VList. If an OOM |
| ** error occurs, the original VList returned and the |
| ** db->mallocFailed flag is set. |
| ** |
| ** A VList is really just an array of integers. To destroy a VList, |
| ** simply pass it to sqlite3DbFree(). |
| ** |
| ** The first integer is the number of integers allocated for the whole |
| ** VList. The second integer is the number of integers actually used. |
| ** Each name/number pair is encoded by subsequent groups of 3 or more |
| ** integers. |
| ** |
| ** Each name/number pair starts with two integers which are the numeric |
| ** value for the pair and the size of the name/number pair, respectively. |
| ** The text name overlays one or more following integers. The text name |
| ** is always zero-terminated. |
| ** |
| ** Conceptually: |
| ** |
| ** struct VList { |
| ** int nAlloc; // Number of allocated slots |
| ** int nUsed; // Number of used slots |
| ** struct VListEntry { |
| ** int iValue; // Value for this entry |
| ** int nSlot; // Slots used by this entry |
| ** // ... variable name goes here |
| ** } a[0]; |
| ** } |
| ** |
| ** During code generation, pointers to the variable names within the |
| ** VList are taken. When that happens, nAlloc is set to zero as an |
| ** indication that the VList may never again be enlarged, since the |
| ** accompanying realloc() would invalidate the pointers. |
| */ |
| VList *sqlite3VListAdd( |
| sqlite3 *db, /* The database connection used for malloc() */ |
| VList *pIn, /* The input VList. Might be NULL */ |
| const char *zName, /* Name of symbol to add */ |
| int nName, /* Bytes of text in zName */ |
| int iVal /* Value to associate with zName */ |
| ){ |
| int nInt; /* number of sizeof(int) objects needed for zName */ |
| char *z; /* Pointer to where zName will be stored */ |
| int i; /* Index in pIn[] where zName is stored */ |
| |
| nInt = nName/4 + 3; |
| assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */ |
| if( pIn==0 || pIn[1]+nInt > pIn[0] ){ |
| /* Enlarge the allocation */ |
| sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt; |
| VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int)); |
| if( pOut==0 ) return pIn; |
| if( pIn==0 ) pOut[1] = 2; |
| pIn = pOut; |
| pIn[0] = nAlloc; |
| } |
| i = pIn[1]; |
| pIn[i] = iVal; |
| pIn[i+1] = nInt; |
| z = (char*)&pIn[i+2]; |
| pIn[1] = i+nInt; |
| assert( pIn[1]<=pIn[0] ); |
| memcpy(z, zName, nName); |
| z[nName] = 0; |
| return pIn; |
| } |
| |
| /* |
| ** Return a pointer to the name of a variable in the given VList that |
| ** has the value iVal. Or return a NULL if there is no such variable in |
| ** the list |
| */ |
| const char *sqlite3VListNumToName(VList *pIn, int iVal){ |
| int i, mx; |
| if( pIn==0 ) return 0; |
| mx = pIn[1]; |
| i = 2; |
| do{ |
| if( pIn[i]==iVal ) return (char*)&pIn[i+2]; |
| i += pIn[i+1]; |
| }while( i<mx ); |
| return 0; |
| } |
| |
| /* |
| ** Return the number of the variable named zName, if it is in VList. |
| ** or return 0 if there is no such variable. |
| */ |
| int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){ |
| int i, mx; |
| if( pIn==0 ) return 0; |
| mx = pIn[1]; |
| i = 2; |
| do{ |
| const char *z = (const char*)&pIn[i+2]; |
| if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i]; |
| i += pIn[i+1]; |
| }while( i<mx ); |
| return 0; |
| } |