| /* |
| ** 2004 May 26 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This file contains code use to manipulate "Mem" structure. A "Mem" |
| ** stores a single value in the VDBE. Mem is an opaque structure visible |
| ** only within the VDBE. Interface routines refer to a Mem using the |
| ** name sqlite_value |
| */ |
| #include "sqliteInt.h" |
| #include "vdbeInt.h" |
| |
| /* True if X is a power of two. 0 is considered a power of two here. |
| ** In other words, return true if X has at most one bit set. |
| */ |
| #define ISPOWEROF2(X) (((X)&((X)-1))==0) |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Check invariants on a Mem object. |
| ** |
| ** This routine is intended for use inside of assert() statements, like |
| ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
| */ |
| int sqlite3VdbeCheckMemInvariants(Mem *p){ |
| /* If MEM_Dyn is set then Mem.xDel!=0. |
| ** Mem.xDel might not be initialized if MEM_Dyn is clear. |
| */ |
| assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); |
| |
| /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we |
| ** ensure that if Mem.szMalloc>0 then it is safe to do |
| ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. |
| ** That saves a few cycles in inner loops. */ |
| assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); |
| |
| /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */ |
| assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) ); |
| |
| if( p->flags & MEM_Null ){ |
| /* Cannot be both MEM_Null and some other type */ |
| assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); |
| |
| /* If MEM_Null is set, then either the value is a pure NULL (the usual |
| ** case) or it is a pointer set using sqlite3_bind_pointer() or |
| ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be |
| ** set. |
| */ |
| if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ |
| /* This is a pointer type. There may be a flag to indicate what to |
| ** do with the pointer. */ |
| assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
| ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
| ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); |
| |
| /* No other bits set */ |
| assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind |
| |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); |
| }else{ |
| /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, |
| ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ |
| } |
| }else{ |
| /* The MEM_Cleared bit is only allowed on NULLs */ |
| assert( (p->flags & MEM_Cleared)==0 ); |
| } |
| |
| /* The szMalloc field holds the correct memory allocation size */ |
| assert( p->szMalloc==0 |
| || (p->flags==MEM_Undefined |
| && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc)) |
| || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc)); |
| |
| /* If p holds a string or blob, the Mem.z must point to exactly |
| ** one of the following: |
| ** |
| ** (1) Memory in Mem.zMalloc and managed by the Mem object |
| ** (2) Memory to be freed using Mem.xDel |
| ** (3) An ephemeral string or blob |
| ** (4) A static string or blob |
| */ |
| if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ |
| assert( |
| ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + |
| ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
| ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
| ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 |
| ); |
| } |
| return 1; |
| } |
| #endif |
| |
| /* |
| ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal |
| ** into a buffer. |
| */ |
| static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){ |
| StrAccum acc; |
| assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) ); |
| assert( sz>22 ); |
| if( p->flags & MEM_Int ){ |
| #if GCC_VERSION>=7000000 |
| /* Work-around for GCC bug |
| ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */ |
| i64 x; |
| assert( (p->flags&MEM_Int)*2==sizeof(x) ); |
| memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2); |
| sqlite3Int64ToText(x, zBuf); |
| #else |
| sqlite3Int64ToText(p->u.i, zBuf); |
| #endif |
| }else{ |
| sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0); |
| sqlite3_str_appendf(&acc, "%!.15g", |
| (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r); |
| assert( acc.zText==zBuf && acc.mxAlloc<=0 ); |
| zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */ |
| } |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Validity checks on pMem. pMem holds a string. |
| ** |
| ** (1) Check that string value of pMem agrees with its integer or real value. |
| ** (2) Check that the string is correctly zero terminated |
| ** |
| ** A single int or real value always converts to the same strings. But |
| ** many different strings can be converted into the same int or real. |
| ** If a table contains a numeric value and an index is based on the |
| ** corresponding string value, then it is important that the string be |
| ** derived from the numeric value, not the other way around, to ensure |
| ** that the index and table are consistent. See ticket |
| ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for |
| ** an example. |
| ** |
| ** This routine looks at pMem to verify that if it has both a numeric |
| ** representation and a string representation then the string rep has |
| ** been derived from the numeric and not the other way around. It returns |
| ** true if everything is ok and false if there is a problem. |
| ** |
| ** This routine is for use inside of assert() statements only. |
| */ |
| int sqlite3VdbeMemValidStrRep(Mem *p){ |
| char zBuf[100]; |
| char *z; |
| int i, j, incr; |
| if( (p->flags & MEM_Str)==0 ) return 1; |
| if( p->flags & MEM_Term ){ |
| /* Insure that the string is properly zero-terminated. Pay particular |
| ** attention to the case where p->n is odd */ |
| if( p->szMalloc>0 && p->z==p->zMalloc ){ |
| assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 ); |
| assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 ); |
| } |
| assert( p->z[p->n]==0 ); |
| assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 ); |
| assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 ); |
| } |
| if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1; |
| vdbeMemRenderNum(sizeof(zBuf), zBuf, p); |
| z = p->z; |
| i = j = 0; |
| incr = 1; |
| if( p->enc!=SQLITE_UTF8 ){ |
| incr = 2; |
| if( p->enc==SQLITE_UTF16BE ) z++; |
| } |
| while( zBuf[j] ){ |
| if( zBuf[j++]!=z[i] ) return 0; |
| i += incr; |
| } |
| return 1; |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| /* |
| ** If pMem is an object with a valid string representation, this routine |
| ** ensures the internal encoding for the string representation is |
| ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
| ** |
| ** If pMem is not a string object, or the encoding of the string |
| ** representation is already stored using the requested encoding, then this |
| ** routine is a no-op. |
| ** |
| ** SQLITE_OK is returned if the conversion is successful (or not required). |
| ** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
| ** between formats. |
| */ |
| int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
| #ifndef SQLITE_OMIT_UTF16 |
| int rc; |
| #endif |
| assert( pMem!=0 ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE |
| || desiredEnc==SQLITE_UTF16BE ); |
| if( !(pMem->flags&MEM_Str) ){ |
| pMem->enc = desiredEnc; |
| return SQLITE_OK; |
| } |
| if( pMem->enc==desiredEnc ){ |
| return SQLITE_OK; |
| } |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| #ifdef SQLITE_OMIT_UTF16 |
| return SQLITE_ERROR; |
| #else |
| |
| /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
| ** then the encoding of the value may not have changed. |
| */ |
| rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); |
| assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
| assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
| assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
| return rc; |
| #endif |
| } |
| |
| /* |
| ** Make sure pMem->z points to a writable allocation of at least n bytes. |
| ** |
| ** If the bPreserve argument is true, then copy of the content of |
| ** pMem->z into the new allocation. pMem must be either a string or |
| ** blob if bPreserve is true. If bPreserve is false, any prior content |
| ** in pMem->z is discarded. |
| */ |
| SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ |
| assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| testcase( pMem->db==0 ); |
| |
| /* If the bPreserve flag is set to true, then the memory cell must already |
| ** contain a valid string or blob value. */ |
| assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); |
| testcase( bPreserve && pMem->z==0 ); |
| |
| assert( pMem->szMalloc==0 |
| || (pMem->flags==MEM_Undefined |
| && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc)) |
| || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc)); |
| if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ |
| if( pMem->db ){ |
| pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
| }else{ |
| pMem->zMalloc = sqlite3Realloc(pMem->z, n); |
| if( pMem->zMalloc==0 ) sqlite3_free(pMem->z); |
| pMem->z = pMem->zMalloc; |
| } |
| bPreserve = 0; |
| }else{ |
| if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); |
| pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
| } |
| if( pMem->zMalloc==0 ){ |
| sqlite3VdbeMemSetNull(pMem); |
| pMem->z = 0; |
| pMem->szMalloc = 0; |
| return SQLITE_NOMEM_BKPT; |
| }else{ |
| pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
| } |
| |
| if( bPreserve && pMem->z ){ |
| assert( pMem->z!=pMem->zMalloc ); |
| memcpy(pMem->zMalloc, pMem->z, pMem->n); |
| } |
| if( (pMem->flags&MEM_Dyn)!=0 ){ |
| assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); |
| pMem->xDel((void *)(pMem->z)); |
| } |
| |
| pMem->z = pMem->zMalloc; |
| pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change the pMem->zMalloc allocation to be at least szNew bytes. |
| ** If pMem->zMalloc already meets or exceeds the requested size, this |
| ** routine is a no-op. |
| ** |
| ** Any prior string or blob content in the pMem object may be discarded. |
| ** The pMem->xDel destructor is called, if it exists. Though MEM_Str |
| ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal, |
| ** and MEM_Null values are preserved. |
| ** |
| ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) |
| ** if unable to complete the resizing. |
| */ |
| int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ |
| assert( CORRUPT_DB || szNew>0 ); |
| assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
| if( pMem->szMalloc<szNew ){ |
| return sqlite3VdbeMemGrow(pMem, szNew, 0); |
| } |
| assert( (pMem->flags & MEM_Dyn)==0 ); |
| pMem->z = pMem->zMalloc; |
| pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** It is already known that pMem contains an unterminated string. |
| ** Add the zero terminator. |
| ** |
| ** Three bytes of zero are added. In this way, there is guaranteed |
| ** to be a double-zero byte at an even byte boundary in order to |
| ** terminate a UTF16 string, even if the initial size of the buffer |
| ** is an odd number of bytes. |
| */ |
| static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ |
| if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| pMem->z[pMem->n] = 0; |
| pMem->z[pMem->n+1] = 0; |
| pMem->z[pMem->n+2] = 0; |
| pMem->flags |= MEM_Term; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Change pMem so that its MEM_Str or MEM_Blob value is stored in |
| ** MEM.zMalloc, where it can be safely written. |
| ** |
| ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
| */ |
| int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ |
| if( ExpandBlob(pMem) ) return SQLITE_NOMEM; |
| if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ |
| int rc = vdbeMemAddTerminator(pMem); |
| if( rc ) return rc; |
| } |
| } |
| pMem->flags &= ~MEM_Ephem; |
| #ifdef SQLITE_DEBUG |
| pMem->pScopyFrom = 0; |
| #endif |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
| ** blob stored in dynamically allocated space. |
| */ |
| #ifndef SQLITE_OMIT_INCRBLOB |
| int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
| int nByte; |
| assert( pMem!=0 ); |
| assert( pMem->flags & MEM_Zero ); |
| assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) ); |
| testcase( sqlite3_value_nochange(pMem) ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| |
| /* Set nByte to the number of bytes required to store the expanded blob. */ |
| nByte = pMem->n + pMem->u.nZero; |
| if( nByte<=0 ){ |
| if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK; |
| nByte = 1; |
| } |
| if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| assert( pMem->z!=0 ); |
| assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte ); |
| |
| memset(&pMem->z[pMem->n], 0, pMem->u.nZero); |
| pMem->n += pMem->u.nZero; |
| pMem->flags &= ~(MEM_Zero|MEM_Term); |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** Make sure the given Mem is \u0000 terminated. |
| */ |
| int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); |
| testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); |
| if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ |
| return SQLITE_OK; /* Nothing to do */ |
| }else{ |
| return vdbeMemAddTerminator(pMem); |
| } |
| } |
| |
| /* |
| ** Add MEM_Str to the set of representations for the given Mem. This |
| ** routine is only called if pMem is a number of some kind, not a NULL |
| ** or a BLOB. |
| ** |
| ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated |
| ** if bForce is true but are retained if bForce is false. |
| ** |
| ** A MEM_Null value will never be passed to this function. This function is |
| ** used for converting values to text for returning to the user (i.e. via |
| ** sqlite3_value_text()), or for ensuring that values to be used as btree |
| ** keys are strings. In the former case a NULL pointer is returned the |
| ** user and the latter is an internal programming error. |
| */ |
| int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ |
| const int nByte = 32; |
| |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( !(pMem->flags&MEM_Zero) ); |
| assert( !(pMem->flags&(MEM_Str|MEM_Blob)) ); |
| assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| |
| |
| if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
| pMem->enc = 0; |
| return SQLITE_NOMEM_BKPT; |
| } |
| |
| vdbeMemRenderNum(nByte, pMem->z, pMem); |
| assert( pMem->z!=0 ); |
| pMem->n = sqlite3Strlen30NN(pMem->z); |
| pMem->enc = SQLITE_UTF8; |
| pMem->flags |= MEM_Str|MEM_Term; |
| if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); |
| sqlite3VdbeChangeEncoding(pMem, enc); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Memory cell pMem contains the context of an aggregate function. |
| ** This routine calls the finalize method for that function. The |
| ** result of the aggregate is stored back into pMem. |
| ** |
| ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
| ** otherwise. |
| */ |
| int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
| sqlite3_context ctx; |
| Mem t; |
| assert( pFunc!=0 ); |
| assert( pMem!=0 ); |
| assert( pMem->db!=0 ); |
| assert( pFunc->xFinalize!=0 ); |
| assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
| assert( sqlite3_mutex_held(pMem->db->mutex) ); |
| memset(&ctx, 0, sizeof(ctx)); |
| memset(&t, 0, sizeof(t)); |
| t.flags = MEM_Null; |
| t.db = pMem->db; |
| ctx.pOut = &t; |
| ctx.pMem = pMem; |
| ctx.pFunc = pFunc; |
| ctx.enc = ENC(t.db); |
| pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ |
| assert( (pMem->flags & MEM_Dyn)==0 ); |
| if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); |
| memcpy(pMem, &t, sizeof(t)); |
| return ctx.isError; |
| } |
| |
| /* |
| ** Memory cell pAccum contains the context of an aggregate function. |
| ** This routine calls the xValue method for that function and stores |
| ** the results in memory cell pMem. |
| ** |
| ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK |
| ** otherwise. |
| */ |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ |
| sqlite3_context ctx; |
| assert( pFunc!=0 ); |
| assert( pFunc->xValue!=0 ); |
| assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); |
| assert( pAccum->db!=0 ); |
| assert( sqlite3_mutex_held(pAccum->db->mutex) ); |
| memset(&ctx, 0, sizeof(ctx)); |
| sqlite3VdbeMemSetNull(pOut); |
| ctx.pOut = pOut; |
| ctx.pMem = pAccum; |
| ctx.pFunc = pFunc; |
| ctx.enc = ENC(pAccum->db); |
| pFunc->xValue(&ctx); |
| return ctx.isError; |
| } |
| #endif /* SQLITE_OMIT_WINDOWFUNC */ |
| |
| /* |
| ** If the memory cell contains a value that must be freed by |
| ** invoking the external callback in Mem.xDel, then this routine |
| ** will free that value. It also sets Mem.flags to MEM_Null. |
| ** |
| ** This is a helper routine for sqlite3VdbeMemSetNull() and |
| ** for sqlite3VdbeMemRelease(). Use those other routines as the |
| ** entry point for releasing Mem resources. |
| */ |
| static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ |
| assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
| assert( VdbeMemDynamic(p) ); |
| if( p->flags&MEM_Agg ){ |
| sqlite3VdbeMemFinalize(p, p->u.pDef); |
| assert( (p->flags & MEM_Agg)==0 ); |
| testcase( p->flags & MEM_Dyn ); |
| } |
| if( p->flags&MEM_Dyn ){ |
| assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); |
| p->xDel((void *)p->z); |
| } |
| p->flags = MEM_Null; |
| } |
| |
| /* |
| ** Release memory held by the Mem p, both external memory cleared |
| ** by p->xDel and memory in p->zMalloc. |
| ** |
| ** This is a helper routine invoked by sqlite3VdbeMemRelease() in |
| ** the unusual case where there really is memory in p that needs |
| ** to be freed. |
| */ |
| static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ |
| if( VdbeMemDynamic(p) ){ |
| vdbeMemClearExternAndSetNull(p); |
| } |
| if( p->szMalloc ){ |
| sqlite3DbFreeNN(p->db, p->zMalloc); |
| p->szMalloc = 0; |
| } |
| p->z = 0; |
| } |
| |
| /* |
| ** Release any memory resources held by the Mem. Both the memory that is |
| ** free by Mem.xDel and the Mem.zMalloc allocation are freed. |
| ** |
| ** Use this routine prior to clean up prior to abandoning a Mem, or to |
| ** reset a Mem back to its minimum memory utilization. |
| ** |
| ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space |
| ** prior to inserting new content into the Mem. |
| */ |
| void sqlite3VdbeMemRelease(Mem *p){ |
| assert( sqlite3VdbeCheckMemInvariants(p) ); |
| if( VdbeMemDynamic(p) || p->szMalloc ){ |
| vdbeMemClear(p); |
| } |
| } |
| |
| /* Like sqlite3VdbeMemRelease() but faster for cases where we |
| ** know in advance that the Mem is not MEM_Dyn or MEM_Agg. |
| */ |
| void sqlite3VdbeMemReleaseMalloc(Mem *p){ |
| assert( !VdbeMemDynamic(p) ); |
| if( p->szMalloc ) vdbeMemClear(p); |
| } |
| |
| /* |
| ** Convert a 64-bit IEEE double into a 64-bit signed integer. |
| ** If the double is out of range of a 64-bit signed integer then |
| ** return the closest available 64-bit signed integer. |
| */ |
| static SQLITE_NOINLINE i64 doubleToInt64(double r){ |
| #ifdef SQLITE_OMIT_FLOATING_POINT |
| /* When floating-point is omitted, double and int64 are the same thing */ |
| return r; |
| #else |
| /* |
| ** Many compilers we encounter do not define constants for the |
| ** minimum and maximum 64-bit integers, or they define them |
| ** inconsistently. And many do not understand the "LL" notation. |
| ** So we define our own static constants here using nothing |
| ** larger than a 32-bit integer constant. |
| */ |
| static const i64 maxInt = LARGEST_INT64; |
| static const i64 minInt = SMALLEST_INT64; |
| |
| if( r<=(double)minInt ){ |
| return minInt; |
| }else if( r>=(double)maxInt ){ |
| return maxInt; |
| }else{ |
| return (i64)r; |
| } |
| #endif |
| } |
| |
| /* |
| ** Return some kind of integer value which is the best we can do |
| ** at representing the value that *pMem describes as an integer. |
| ** If pMem is an integer, then the value is exact. If pMem is |
| ** a floating-point then the value returned is the integer part. |
| ** If pMem is a string or blob, then we make an attempt to convert |
| ** it into an integer and return that. If pMem represents an |
| ** an SQL-NULL value, return 0. |
| ** |
| ** If pMem represents a string value, its encoding might be changed. |
| */ |
| static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){ |
| i64 value = 0; |
| sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); |
| return value; |
| } |
| i64 sqlite3VdbeIntValue(const Mem *pMem){ |
| int flags; |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| flags = pMem->flags; |
| if( flags & (MEM_Int|MEM_IntReal) ){ |
| testcase( flags & MEM_IntReal ); |
| return pMem->u.i; |
| }else if( flags & MEM_Real ){ |
| return doubleToInt64(pMem->u.r); |
| }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){ |
| return memIntValue(pMem); |
| }else{ |
| return 0; |
| } |
| } |
| |
| /* |
| ** Return the best representation of pMem that we can get into a |
| ** double. If pMem is already a double or an integer, return its |
| ** value. If it is a string or blob, try to convert it to a double. |
| ** If it is a NULL, return 0.0. |
| */ |
| static SQLITE_NOINLINE double memRealValue(Mem *pMem){ |
| /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| double val = (double)0; |
| sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); |
| return val; |
| } |
| double sqlite3VdbeRealValue(Mem *pMem){ |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| if( pMem->flags & MEM_Real ){ |
| return pMem->u.r; |
| }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ |
| testcase( pMem->flags & MEM_IntReal ); |
| return (double)pMem->u.i; |
| }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
| return memRealValue(pMem); |
| }else{ |
| /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| return (double)0; |
| } |
| } |
| |
| /* |
| ** Return 1 if pMem represents true, and return 0 if pMem represents false. |
| ** Return the value ifNull if pMem is NULL. |
| */ |
| int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ |
| testcase( pMem->flags & MEM_IntReal ); |
| if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0; |
| if( pMem->flags & MEM_Null ) return ifNull; |
| return sqlite3VdbeRealValue(pMem)!=0.0; |
| } |
| |
| /* |
| ** The MEM structure is already a MEM_Real. Try to also make it a |
| ** MEM_Int if we can. |
| */ |
| void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
| i64 ix; |
| assert( pMem!=0 ); |
| assert( pMem->flags & MEM_Real ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| |
| ix = doubleToInt64(pMem->u.r); |
| |
| /* Only mark the value as an integer if |
| ** |
| ** (1) the round-trip conversion real->int->real is a no-op, and |
| ** (2) The integer is neither the largest nor the smallest |
| ** possible integer (ticket #3922) |
| ** |
| ** The second and third terms in the following conditional enforces |
| ** the second condition under the assumption that addition overflow causes |
| ** values to wrap around. |
| */ |
| if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ |
| pMem->u.i = ix; |
| MemSetTypeFlag(pMem, MEM_Int); |
| } |
| } |
| |
| /* |
| ** Convert pMem to type integer. Invalidate any prior representations. |
| */ |
| int sqlite3VdbeMemIntegerify(Mem *pMem){ |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| |
| pMem->u.i = sqlite3VdbeIntValue(pMem); |
| MemSetTypeFlag(pMem, MEM_Int); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Convert pMem so that it is of type MEM_Real. |
| ** Invalidate any prior representations. |
| */ |
| int sqlite3VdbeMemRealify(Mem *pMem){ |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| |
| pMem->u.r = sqlite3VdbeRealValue(pMem); |
| MemSetTypeFlag(pMem, MEM_Real); |
| return SQLITE_OK; |
| } |
| |
| /* Compare a floating point value to an integer. Return true if the two |
| ** values are the same within the precision of the floating point value. |
| ** |
| ** This function assumes that i was obtained by assignment from r1. |
| ** |
| ** For some versions of GCC on 32-bit machines, if you do the more obvious |
| ** comparison of "r1==(double)i" you sometimes get an answer of false even |
| ** though the r1 and (double)i values are bit-for-bit the same. |
| */ |
| int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ |
| double r2 = (double)i; |
| return r1==0.0 |
| || (memcmp(&r1, &r2, sizeof(r1))==0 |
| && i >= -2251799813685248LL && i < 2251799813685248LL); |
| } |
| |
| /* |
| ** Convert pMem so that it has type MEM_Real or MEM_Int. |
| ** Invalidate any prior representations. |
| ** |
| ** Every effort is made to force the conversion, even if the input |
| ** is a string that does not look completely like a number. Convert |
| ** as much of the string as we can and ignore the rest. |
| */ |
| int sqlite3VdbeMemNumerify(Mem *pMem){ |
| assert( pMem!=0 ); |
| testcase( pMem->flags & MEM_Int ); |
| testcase( pMem->flags & MEM_Real ); |
| testcase( pMem->flags & MEM_IntReal ); |
| testcase( pMem->flags & MEM_Null ); |
| if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){ |
| int rc; |
| sqlite3_int64 ix; |
| assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); |
| if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1) |
| || sqlite3RealSameAsInt(pMem->u.r, (ix = (i64)pMem->u.r)) |
| ){ |
| pMem->u.i = ix; |
| MemSetTypeFlag(pMem, MEM_Int); |
| }else{ |
| MemSetTypeFlag(pMem, MEM_Real); |
| } |
| } |
| assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 ); |
| pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Cast the datatype of the value in pMem according to the affinity |
| ** "aff". Casting is different from applying affinity in that a cast |
| ** is forced. In other words, the value is converted into the desired |
| ** affinity even if that results in loss of data. This routine is |
| ** used (for example) to implement the SQL "cast()" operator. |
| */ |
| int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ |
| if( pMem->flags & MEM_Null ) return SQLITE_OK; |
| switch( aff ){ |
| case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ |
| if( (pMem->flags & MEM_Blob)==0 ){ |
| sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); |
| }else{ |
| pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); |
| } |
| break; |
| } |
| case SQLITE_AFF_NUMERIC: { |
| sqlite3VdbeMemNumerify(pMem); |
| break; |
| } |
| case SQLITE_AFF_INTEGER: { |
| sqlite3VdbeMemIntegerify(pMem); |
| break; |
| } |
| case SQLITE_AFF_REAL: { |
| sqlite3VdbeMemRealify(pMem); |
| break; |
| } |
| default: { |
| assert( aff==SQLITE_AFF_TEXT ); |
| assert( MEM_Str==(MEM_Blob>>3) ); |
| pMem->flags |= (pMem->flags&MEM_Blob)>>3; |
| sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero); |
| return sqlite3VdbeChangeEncoding(pMem, encoding); |
| } |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Initialize bulk memory to be a consistent Mem object. |
| ** |
| ** The minimum amount of initialization feasible is performed. |
| */ |
| void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ |
| assert( (flags & ~MEM_TypeMask)==0 ); |
| pMem->flags = flags; |
| pMem->db = db; |
| pMem->szMalloc = 0; |
| } |
| |
| |
| /* |
| ** Delete any previous value and set the value stored in *pMem to NULL. |
| ** |
| ** This routine calls the Mem.xDel destructor to dispose of values that |
| ** require the destructor. But it preserves the Mem.zMalloc memory allocation. |
| ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this |
| ** routine to invoke the destructor and deallocates Mem.zMalloc. |
| ** |
| ** Use this routine to reset the Mem prior to insert a new value. |
| ** |
| ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. |
| */ |
| void sqlite3VdbeMemSetNull(Mem *pMem){ |
| if( VdbeMemDynamic(pMem) ){ |
| vdbeMemClearExternAndSetNull(pMem); |
| }else{ |
| pMem->flags = MEM_Null; |
| } |
| } |
| void sqlite3ValueSetNull(sqlite3_value *p){ |
| sqlite3VdbeMemSetNull((Mem*)p); |
| } |
| |
| /* |
| ** Delete any previous value and set the value to be a BLOB of length |
| ** n containing all zeros. |
| */ |
| #ifndef SQLITE_OMIT_INCRBLOB |
| void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
| sqlite3VdbeMemRelease(pMem); |
| pMem->flags = MEM_Blob|MEM_Zero; |
| pMem->n = 0; |
| if( n<0 ) n = 0; |
| pMem->u.nZero = n; |
| pMem->enc = SQLITE_UTF8; |
| pMem->z = 0; |
| } |
| #else |
| int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
| int nByte = n>0?n:1; |
| if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| assert( pMem->z!=0 ); |
| assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte ); |
| memset(pMem->z, 0, nByte); |
| pMem->n = n>0?n:0; |
| pMem->flags = MEM_Blob; |
| pMem->enc = SQLITE_UTF8; |
| return SQLITE_OK; |
| } |
| #endif |
| |
| /* |
| ** The pMem is known to contain content that needs to be destroyed prior |
| ** to a value change. So invoke the destructor, then set the value to |
| ** a 64-bit integer. |
| */ |
| static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ |
| sqlite3VdbeMemSetNull(pMem); |
| pMem->u.i = val; |
| pMem->flags = MEM_Int; |
| } |
| |
| /* |
| ** Delete any previous value and set the value stored in *pMem to val, |
| ** manifest type INTEGER. |
| */ |
| void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
| if( VdbeMemDynamic(pMem) ){ |
| vdbeReleaseAndSetInt64(pMem, val); |
| }else{ |
| pMem->u.i = val; |
| pMem->flags = MEM_Int; |
| } |
| } |
| |
| /* A no-op destructor */ |
| void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } |
| |
| /* |
| ** Set the value stored in *pMem should already be a NULL. |
| ** Also store a pointer to go with it. |
| */ |
| void sqlite3VdbeMemSetPointer( |
| Mem *pMem, |
| void *pPtr, |
| const char *zPType, |
| void (*xDestructor)(void*) |
| ){ |
| assert( pMem->flags==MEM_Null ); |
| vdbeMemClear(pMem); |
| pMem->u.zPType = zPType ? zPType : ""; |
| pMem->z = pPtr; |
| pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; |
| pMem->eSubtype = 'p'; |
| pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; |
| } |
| |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| /* |
| ** Delete any previous value and set the value stored in *pMem to val, |
| ** manifest type REAL. |
| */ |
| void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
| sqlite3VdbeMemSetNull(pMem); |
| if( !sqlite3IsNaN(val) ){ |
| pMem->u.r = val; |
| pMem->flags = MEM_Real; |
| } |
| } |
| #endif |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** Return true if the Mem holds a RowSet object. This routine is intended |
| ** for use inside of assert() statements. |
| */ |
| int sqlite3VdbeMemIsRowSet(const Mem *pMem){ |
| return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) |
| && pMem->xDel==sqlite3RowSetDelete; |
| } |
| #endif |
| |
| /* |
| ** Delete any previous value and set the value of pMem to be an |
| ** empty boolean index. |
| ** |
| ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation |
| ** error occurs. |
| */ |
| int sqlite3VdbeMemSetRowSet(Mem *pMem){ |
| sqlite3 *db = pMem->db; |
| RowSet *p; |
| assert( db!=0 ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| sqlite3VdbeMemRelease(pMem); |
| p = sqlite3RowSetInit(db); |
| if( p==0 ) return SQLITE_NOMEM; |
| pMem->z = (char*)p; |
| pMem->flags = MEM_Blob|MEM_Dyn; |
| pMem->xDel = sqlite3RowSetDelete; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return true if the Mem object contains a TEXT or BLOB that is |
| ** too large - whose size exceeds SQLITE_MAX_LENGTH. |
| */ |
| int sqlite3VdbeMemTooBig(Mem *p){ |
| assert( p->db!=0 ); |
| if( p->flags & (MEM_Str|MEM_Blob) ){ |
| int n = p->n; |
| if( p->flags & MEM_Zero ){ |
| n += p->u.nZero; |
| } |
| return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; |
| } |
| return 0; |
| } |
| |
| #ifdef SQLITE_DEBUG |
| /* |
| ** This routine prepares a memory cell for modification by breaking |
| ** its link to a shallow copy and by marking any current shallow |
| ** copies of this cell as invalid. |
| ** |
| ** This is used for testing and debugging only - to help ensure that shallow |
| ** copies (created by OP_SCopy) are not misused. |
| */ |
| void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ |
| int i; |
| Mem *pX; |
| for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){ |
| if( pX->pScopyFrom==pMem ){ |
| u16 mFlags; |
| if( pVdbe->db->flags & SQLITE_VdbeTrace ){ |
| sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n", |
| (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem)); |
| } |
| /* If pX is marked as a shallow copy of pMem, then try to verify that |
| ** no significant changes have been made to pX since the OP_SCopy. |
| ** A significant change would indicated a missed call to this |
| ** function for pX. Minor changes, such as adding or removing a |
| ** dual type, are allowed, as long as the underlying value is the |
| ** same. */ |
| mFlags = pMem->flags & pX->flags & pX->mScopyFlags; |
| assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i ); |
| |
| /* pMem is the register that is changing. But also mark pX as |
| ** undefined so that we can quickly detect the shallow-copy error */ |
| pX->flags = MEM_Undefined; |
| pX->pScopyFrom = 0; |
| } |
| } |
| pMem->pScopyFrom = 0; |
| } |
| #endif /* SQLITE_DEBUG */ |
| |
| /* |
| ** Make an shallow copy of pFrom into pTo. Prior contents of |
| ** pTo are freed. The pFrom->z field is not duplicated. If |
| ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
| ** and flags gets srcType (either MEM_Ephem or MEM_Static). |
| */ |
| static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ |
| vdbeMemClearExternAndSetNull(pTo); |
| assert( !VdbeMemDynamic(pTo) ); |
| sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); |
| } |
| void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
| assert( !sqlite3VdbeMemIsRowSet(pFrom) ); |
| assert( pTo->db==pFrom->db ); |
| if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } |
| memcpy(pTo, pFrom, MEMCELLSIZE); |
| if( (pFrom->flags&MEM_Static)==0 ){ |
| pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
| assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
| pTo->flags |= srcType; |
| } |
| } |
| |
| /* |
| ** Make a full copy of pFrom into pTo. Prior contents of pTo are |
| ** freed before the copy is made. |
| */ |
| int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
| int rc = SQLITE_OK; |
| |
| assert( !sqlite3VdbeMemIsRowSet(pFrom) ); |
| if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
| memcpy(pTo, pFrom, MEMCELLSIZE); |
| pTo->flags &= ~MEM_Dyn; |
| if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
| if( 0==(pFrom->flags&MEM_Static) ){ |
| pTo->flags |= MEM_Ephem; |
| rc = sqlite3VdbeMemMakeWriteable(pTo); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
| ** freed. If pFrom contains ephemeral data, a copy is made. |
| ** |
| ** pFrom contains an SQL NULL when this routine returns. |
| */ |
| void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
| assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
| assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
| assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
| |
| sqlite3VdbeMemRelease(pTo); |
| memcpy(pTo, pFrom, sizeof(Mem)); |
| pFrom->flags = MEM_Null; |
| pFrom->szMalloc = 0; |
| } |
| |
| /* |
| ** Change the value of a Mem to be a string or a BLOB. |
| ** |
| ** The memory management strategy depends on the value of the xDel |
| ** parameter. If the value passed is SQLITE_TRANSIENT, then the |
| ** string is copied into a (possibly existing) buffer managed by the |
| ** Mem structure. Otherwise, any existing buffer is freed and the |
| ** pointer copied. |
| ** |
| ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH |
| ** size limit) then no memory allocation occurs. If the string can be |
| ** stored without allocating memory, then it is. If a memory allocation |
| ** is required to store the string, then value of pMem is unchanged. In |
| ** either case, SQLITE_TOOBIG is returned. |
| ** |
| ** The "enc" parameter is the text encoding for the string, or zero |
| ** to store a blob. |
| ** |
| ** If n is negative, then the string consists of all bytes up to but |
| ** excluding the first zero character. The n parameter must be |
| ** non-negative for blobs. |
| */ |
| int sqlite3VdbeMemSetStr( |
| Mem *pMem, /* Memory cell to set to string value */ |
| const char *z, /* String pointer */ |
| i64 n, /* Bytes in string, or negative */ |
| u8 enc, /* Encoding of z. 0 for BLOBs */ |
| void (*xDel)(void*) /* Destructor function */ |
| ){ |
| i64 nByte = n; /* New value for pMem->n */ |
| int iLimit; /* Maximum allowed string or blob size */ |
| u16 flags; /* New value for pMem->flags */ |
| |
| assert( pMem!=0 ); |
| assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| assert( enc!=0 || n>=0 ); |
| |
| /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ |
| if( !z ){ |
| sqlite3VdbeMemSetNull(pMem); |
| return SQLITE_OK; |
| } |
| |
| if( pMem->db ){ |
| iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; |
| }else{ |
| iLimit = SQLITE_MAX_LENGTH; |
| } |
| if( nByte<0 ){ |
| assert( enc!=0 ); |
| if( enc==SQLITE_UTF8 ){ |
| nByte = strlen(z); |
| }else{ |
| for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
| } |
| flags= MEM_Str|MEM_Term; |
| }else if( enc==0 ){ |
| flags = MEM_Blob; |
| enc = SQLITE_UTF8; |
| }else{ |
| flags = MEM_Str; |
| } |
| if( nByte>iLimit ){ |
| if( xDel && xDel!=SQLITE_TRANSIENT ){ |
| if( xDel==SQLITE_DYNAMIC ){ |
| sqlite3DbFree(pMem->db, (void*)z); |
| }else{ |
| xDel((void*)z); |
| } |
| } |
| sqlite3VdbeMemSetNull(pMem); |
| return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG); |
| } |
| |
| /* The following block sets the new values of Mem.z and Mem.xDel. It |
| ** also sets a flag in local variable "flags" to indicate the memory |
| ** management (one of MEM_Dyn or MEM_Static). |
| */ |
| if( xDel==SQLITE_TRANSIENT ){ |
| i64 nAlloc = nByte; |
| if( flags&MEM_Term ){ |
| nAlloc += (enc==SQLITE_UTF8?1:2); |
| } |
| testcase( nAlloc==0 ); |
| testcase( nAlloc==31 ); |
| testcase( nAlloc==32 ); |
| if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| memcpy(pMem->z, z, nAlloc); |
| }else{ |
| sqlite3VdbeMemRelease(pMem); |
| pMem->z = (char *)z; |
| if( xDel==SQLITE_DYNAMIC ){ |
| pMem->zMalloc = pMem->z; |
| pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
| }else{ |
| pMem->xDel = xDel; |
| flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); |
| } |
| } |
| |
| pMem->n = (int)(nByte & 0x7fffffff); |
| pMem->flags = flags; |
| pMem->enc = enc; |
| |
| #ifndef SQLITE_OMIT_UTF16 |
| if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
| return SQLITE_NOMEM_BKPT; |
| } |
| #endif |
| |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Move data out of a btree key or data field and into a Mem structure. |
| ** The data is payload from the entry that pCur is currently pointing |
| ** to. offset and amt determine what portion of the data or key to retrieve. |
| ** The result is written into the pMem element. |
| ** |
| ** The pMem object must have been initialized. This routine will use |
| ** pMem->zMalloc to hold the content from the btree, if possible. New |
| ** pMem->zMalloc space will be allocated if necessary. The calling routine |
| ** is responsible for making sure that the pMem object is eventually |
| ** destroyed. |
| ** |
| ** If this routine fails for any reason (malloc returns NULL or unable |
| ** to read from the disk) then the pMem is left in an inconsistent state. |
| */ |
| int sqlite3VdbeMemFromBtree( |
| BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
| u32 offset, /* Offset from the start of data to return bytes from. */ |
| u32 amt, /* Number of bytes to return. */ |
| Mem *pMem /* OUT: Return data in this Mem structure. */ |
| ){ |
| int rc; |
| pMem->flags = MEM_Null; |
| if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){ |
| return SQLITE_CORRUPT_BKPT; |
| } |
| if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ |
| rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); |
| if( rc==SQLITE_OK ){ |
| pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ |
| pMem->flags = MEM_Blob; |
| pMem->n = (int)amt; |
| }else{ |
| sqlite3VdbeMemRelease(pMem); |
| } |
| } |
| return rc; |
| } |
| int sqlite3VdbeMemFromBtreeZeroOffset( |
| BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
| u32 amt, /* Number of bytes to return. */ |
| Mem *pMem /* OUT: Return data in this Mem structure. */ |
| ){ |
| u32 available = 0; /* Number of bytes available on the local btree page */ |
| int rc = SQLITE_OK; /* Return code */ |
| |
| assert( sqlite3BtreeCursorIsValid(pCur) ); |
| assert( !VdbeMemDynamic(pMem) ); |
| |
| /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() |
| ** that both the BtShared and database handle mutexes are held. */ |
| assert( !sqlite3VdbeMemIsRowSet(pMem) ); |
| pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available); |
| assert( pMem->z!=0 ); |
| |
| if( amt<=available ){ |
| pMem->flags = MEM_Blob|MEM_Ephem; |
| pMem->n = (int)amt; |
| }else{ |
| rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** The pVal argument is known to be a value other than NULL. |
| ** Convert it into a string with encoding enc and return a pointer |
| ** to a zero-terminated version of that string. |
| */ |
| static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ |
| assert( pVal!=0 ); |
| assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
| assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
| assert( !sqlite3VdbeMemIsRowSet(pVal) ); |
| assert( (pVal->flags & (MEM_Null))==0 ); |
| if( pVal->flags & (MEM_Blob|MEM_Str) ){ |
| if( ExpandBlob(pVal) ) return 0; |
| pVal->flags |= MEM_Str; |
| if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ |
| sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
| } |
| if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
| assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
| if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
| return 0; |
| } |
| } |
| sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ |
| }else{ |
| sqlite3VdbeMemStringify(pVal, enc, 0); |
| assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); |
| } |
| assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
| || pVal->db->mallocFailed ); |
| if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
| assert( sqlite3VdbeMemValidStrRep(pVal) ); |
| return pVal->z; |
| }else{ |
| return 0; |
| } |
| } |
| |
| /* This function is only available internally, it is not part of the |
| ** external API. It works in a similar way to sqlite3_value_text(), |
| ** except the data returned is in the encoding specified by the second |
| ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
| ** SQLITE_UTF8. |
| ** |
| ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
| ** If that is the case, then the result must be aligned on an even byte |
| ** boundary. |
| */ |
| const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
| if( !pVal ) return 0; |
| assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
| assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
| assert( !sqlite3VdbeMemIsRowSet(pVal) ); |
| if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ |
| assert( sqlite3VdbeMemValidStrRep(pVal) ); |
| return pVal->z; |
| } |
| if( pVal->flags&MEM_Null ){ |
| return 0; |
| } |
| return valueToText(pVal, enc); |
| } |
| |
| /* |
| ** Create a new sqlite3_value object. |
| */ |
| sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
| Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
| if( p ){ |
| p->flags = MEM_Null; |
| p->db = db; |
| } |
| return p; |
| } |
| |
| /* |
| ** Context object passed by sqlite3Stat4ProbeSetValue() through to |
| ** valueNew(). See comments above valueNew() for details. |
| */ |
| struct ValueNewStat4Ctx { |
| Parse *pParse; |
| Index *pIdx; |
| UnpackedRecord **ppRec; |
| int iVal; |
| }; |
| |
| /* |
| ** Allocate and return a pointer to a new sqlite3_value object. If |
| ** the second argument to this function is NULL, the object is allocated |
| ** by calling sqlite3ValueNew(). |
| ** |
| ** Otherwise, if the second argument is non-zero, then this function is |
| ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not |
| ** already been allocated, allocate the UnpackedRecord structure that |
| ** that function will return to its caller here. Then return a pointer to |
| ** an sqlite3_value within the UnpackedRecord.a[] array. |
| */ |
| static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ |
| #ifdef SQLITE_ENABLE_STAT4 |
| if( p ){ |
| UnpackedRecord *pRec = p->ppRec[0]; |
| |
| if( pRec==0 ){ |
| Index *pIdx = p->pIdx; /* Index being probed */ |
| int nByte; /* Bytes of space to allocate */ |
| int i; /* Counter variable */ |
| int nCol = pIdx->nColumn; /* Number of index columns including rowid */ |
| |
| nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); |
| pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); |
| if( pRec ){ |
| pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); |
| if( pRec->pKeyInfo ){ |
| assert( pRec->pKeyInfo->nAllField==nCol ); |
| assert( pRec->pKeyInfo->enc==ENC(db) ); |
| pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); |
| for(i=0; i<nCol; i++){ |
| pRec->aMem[i].flags = MEM_Null; |
| pRec->aMem[i].db = db; |
| } |
| }else{ |
| sqlite3DbFreeNN(db, pRec); |
| pRec = 0; |
| } |
| } |
| if( pRec==0 ) return 0; |
| p->ppRec[0] = pRec; |
| } |
| |
| pRec->nField = p->iVal+1; |
| return &pRec->aMem[p->iVal]; |
| } |
| #else |
| UNUSED_PARAMETER(p); |
| #endif /* defined(SQLITE_ENABLE_STAT4) */ |
| return sqlite3ValueNew(db); |
| } |
| |
| /* |
| ** The expression object indicated by the second argument is guaranteed |
| ** to be a scalar SQL function. If |
| ** |
| ** * all function arguments are SQL literals, |
| ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and |
| ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, |
| ** |
| ** then this routine attempts to invoke the SQL function. Assuming no |
| ** error occurs, output parameter (*ppVal) is set to point to a value |
| ** object containing the result before returning SQLITE_OK. |
| ** |
| ** Affinity aff is applied to the result of the function before returning. |
| ** If the result is a text value, the sqlite3_value object uses encoding |
| ** enc. |
| ** |
| ** If the conditions above are not met, this function returns SQLITE_OK |
| ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to |
| ** NULL and an SQLite error code returned. |
| */ |
| #ifdef SQLITE_ENABLE_STAT4 |
| static int valueFromFunction( |
| sqlite3 *db, /* The database connection */ |
| const Expr *p, /* The expression to evaluate */ |
| u8 enc, /* Encoding to use */ |
| u8 aff, /* Affinity to use */ |
| sqlite3_value **ppVal, /* Write the new value here */ |
| struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
| ){ |
| sqlite3_context ctx; /* Context object for function invocation */ |
| sqlite3_value **apVal = 0; /* Function arguments */ |
| int nVal = 0; /* Size of apVal[] array */ |
| FuncDef *pFunc = 0; /* Function definition */ |
| sqlite3_value *pVal = 0; /* New value */ |
| int rc = SQLITE_OK; /* Return code */ |
| ExprList *pList = 0; /* Function arguments */ |
| int i; /* Iterator variable */ |
| |
| assert( pCtx!=0 ); |
| assert( (p->flags & EP_TokenOnly)==0 ); |
| assert( ExprUseXList(p) ); |
| pList = p->x.pList; |
| if( pList ) nVal = pList->nExpr; |
| assert( !ExprHasProperty(p, EP_IntValue) ); |
| pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); |
| assert( pFunc ); |
| if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 |
| || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) |
| ){ |
| return SQLITE_OK; |
| } |
| |
| if( pList ){ |
| apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); |
| if( apVal==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto value_from_function_out; |
| } |
| for(i=0; i<nVal; i++){ |
| rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); |
| if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; |
| } |
| } |
| |
| pVal = valueNew(db, pCtx); |
| if( pVal==0 ){ |
| rc = SQLITE_NOMEM_BKPT; |
| goto value_from_function_out; |
| } |
| |
| testcase( pCtx->pParse->rc==SQLITE_ERROR ); |
| testcase( pCtx->pParse->rc==SQLITE_OK ); |
| memset(&ctx, 0, sizeof(ctx)); |
| ctx.pOut = pVal; |
| ctx.pFunc = pFunc; |
| ctx.enc = ENC(db); |
| pFunc->xSFunc(&ctx, nVal, apVal); |
| if( ctx.isError ){ |
| rc = ctx.isError; |
| sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); |
| }else{ |
| sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); |
| assert( rc==SQLITE_OK ); |
| rc = sqlite3VdbeChangeEncoding(pVal, enc); |
| if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ |
| rc = SQLITE_TOOBIG; |
| pCtx->pParse->nErr++; |
| } |
| } |
| pCtx->pParse->rc = rc; |
| |
| value_from_function_out: |
| if( rc!=SQLITE_OK ){ |
| pVal = 0; |
| } |
| if( apVal ){ |
| for(i=0; i<nVal; i++){ |
| sqlite3ValueFree(apVal[i]); |
| } |
| sqlite3DbFreeNN(db, apVal); |
| } |
| |
| *ppVal = pVal; |
| return rc; |
| } |
| #else |
| # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK |
| #endif /* defined(SQLITE_ENABLE_STAT4) */ |
| |
| /* |
| ** Extract a value from the supplied expression in the manner described |
| ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object |
| ** using valueNew(). |
| ** |
| ** If pCtx is NULL and an error occurs after the sqlite3_value object |
| ** has been allocated, it is freed before returning. Or, if pCtx is not |
| ** NULL, it is assumed that the caller will free any allocated object |
| ** in all cases. |
| */ |
| static int valueFromExpr( |
| sqlite3 *db, /* The database connection */ |
| const Expr *pExpr, /* The expression to evaluate */ |
| u8 enc, /* Encoding to use */ |
| u8 affinity, /* Affinity to use */ |
| sqlite3_value **ppVal, /* Write the new value here */ |
| struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
| ){ |
| int op; |
| char *zVal = 0; |
| sqlite3_value *pVal = 0; |
| int negInt = 1; |
| const char *zNeg = ""; |
| int rc = SQLITE_OK; |
| |
| assert( pExpr!=0 ); |
| while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; |
| if( op==TK_REGISTER ) op = pExpr->op2; |
| |
| /* Compressed expressions only appear when parsing the DEFAULT clause |
| ** on a table column definition, and hence only when pCtx==0. This |
| ** check ensures that an EP_TokenOnly expression is never passed down |
| ** into valueFromFunction(). */ |
| assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); |
| |
| if( op==TK_CAST ){ |
| u8 aff; |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| aff = sqlite3AffinityType(pExpr->u.zToken,0); |
| rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); |
| testcase( rc!=SQLITE_OK ); |
| if( *ppVal ){ |
| sqlite3VdbeMemCast(*ppVal, aff, enc); |
| sqlite3ValueApplyAffinity(*ppVal, affinity, enc); |
| } |
| return rc; |
| } |
| |
| /* Handle negative integers in a single step. This is needed in the |
| ** case when the value is -9223372036854775808. |
| */ |
| if( op==TK_UMINUS |
| && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ |
| pExpr = pExpr->pLeft; |
| op = pExpr->op; |
| negInt = -1; |
| zNeg = "-"; |
| } |
| |
| if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
| pVal = valueNew(db, pCtx); |
| if( pVal==0 ) goto no_mem; |
| if( ExprHasProperty(pExpr, EP_IntValue) ){ |
| sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); |
| }else{ |
| zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); |
| if( zVal==0 ) goto no_mem; |
| sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
| } |
| if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ |
| sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); |
| }else{ |
| sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); |
| } |
| assert( (pVal->flags & MEM_IntReal)==0 ); |
| if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){ |
| testcase( pVal->flags & MEM_Int ); |
| testcase( pVal->flags & MEM_Real ); |
| pVal->flags &= ~MEM_Str; |
| } |
| if( enc!=SQLITE_UTF8 ){ |
| rc = sqlite3VdbeChangeEncoding(pVal, enc); |
| } |
| }else if( op==TK_UMINUS ) { |
| /* This branch happens for multiple negative signs. Ex: -(-5) */ |
| if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) |
| && pVal!=0 |
| ){ |
| sqlite3VdbeMemNumerify(pVal); |
| if( pVal->flags & MEM_Real ){ |
| pVal->u.r = -pVal->u.r; |
| }else if( pVal->u.i==SMALLEST_INT64 ){ |
| #ifndef SQLITE_OMIT_FLOATING_POINT |
| pVal->u.r = -(double)SMALLEST_INT64; |
| #else |
| pVal->u.r = LARGEST_INT64; |
| #endif |
| MemSetTypeFlag(pVal, MEM_Real); |
| }else{ |
| pVal->u.i = -pVal->u.i; |
| } |
| sqlite3ValueApplyAffinity(pVal, affinity, enc); |
| } |
| }else if( op==TK_NULL ){ |
| pVal = valueNew(db, pCtx); |
| if( pVal==0 ) goto no_mem; |
| sqlite3VdbeMemSetNull(pVal); |
| } |
| #ifndef SQLITE_OMIT_BLOB_LITERAL |
| else if( op==TK_BLOB ){ |
| int nVal; |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
| assert( pExpr->u.zToken[1]=='\'' ); |
| pVal = valueNew(db, pCtx); |
| if( !pVal ) goto no_mem; |
| zVal = &pExpr->u.zToken[2]; |
| nVal = sqlite3Strlen30(zVal)-1; |
| assert( zVal[nVal]=='\'' ); |
| sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, |
| 0, SQLITE_DYNAMIC); |
| } |
| #endif |
| #ifdef SQLITE_ENABLE_STAT4 |
| else if( op==TK_FUNCTION && pCtx!=0 ){ |
| rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); |
| } |
| #endif |
| else if( op==TK_TRUEFALSE ){ |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| pVal = valueNew(db, pCtx); |
| if( pVal ){ |
| pVal->flags = MEM_Int; |
| pVal->u.i = pExpr->u.zToken[4]==0; |
| } |
| } |
| |
| *ppVal = pVal; |
| return rc; |
| |
| no_mem: |
| #ifdef SQLITE_ENABLE_STAT4 |
| if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) ) |
| #endif |
| sqlite3OomFault(db); |
| sqlite3DbFree(db, zVal); |
| assert( *ppVal==0 ); |
| #ifdef SQLITE_ENABLE_STAT4 |
| if( pCtx==0 ) sqlite3ValueFree(pVal); |
| #else |
| assert( pCtx==0 ); sqlite3ValueFree(pVal); |
| #endif |
| return SQLITE_NOMEM_BKPT; |
| } |
| |
| /* |
| ** Create a new sqlite3_value object, containing the value of pExpr. |
| ** |
| ** This only works for very simple expressions that consist of one constant |
| ** token (i.e. "5", "5.1", "'a string'"). If the expression can |
| ** be converted directly into a value, then the value is allocated and |
| ** a pointer written to *ppVal. The caller is responsible for deallocating |
| ** the value by passing it to sqlite3ValueFree() later on. If the expression |
| ** cannot be converted to a value, then *ppVal is set to NULL. |
| */ |
| int sqlite3ValueFromExpr( |
| sqlite3 *db, /* The database connection */ |
| const Expr *pExpr, /* The expression to evaluate */ |
| u8 enc, /* Encoding to use */ |
| u8 affinity, /* Affinity to use */ |
| sqlite3_value **ppVal /* Write the new value here */ |
| ){ |
| return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; |
| } |
| |
| #ifdef SQLITE_ENABLE_STAT4 |
| /* |
| ** Attempt to extract a value from pExpr and use it to construct *ppVal. |
| ** |
| ** If pAlloc is not NULL, then an UnpackedRecord object is created for |
| ** pAlloc if one does not exist and the new value is added to the |
| ** UnpackedRecord object. |
| ** |
| ** A value is extracted in the following cases: |
| ** |
| ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| ** |
| ** * The expression is a bound variable, and this is a reprepare, or |
| ** |
| ** * The expression is a literal value. |
| ** |
| ** On success, *ppVal is made to point to the extracted value. The caller |
| ** is responsible for ensuring that the value is eventually freed. |
| */ |
| static int stat4ValueFromExpr( |
| Parse *pParse, /* Parse context */ |
| Expr *pExpr, /* The expression to extract a value from */ |
| u8 affinity, /* Affinity to use */ |
| struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ |
| sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| ){ |
| int rc = SQLITE_OK; |
| sqlite3_value *pVal = 0; |
| sqlite3 *db = pParse->db; |
| |
| /* Skip over any TK_COLLATE nodes */ |
| pExpr = sqlite3ExprSkipCollate(pExpr); |
| |
| assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); |
| if( !pExpr ){ |
| pVal = valueNew(db, pAlloc); |
| if( pVal ){ |
| sqlite3VdbeMemSetNull((Mem*)pVal); |
| } |
| }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ |
| Vdbe *v; |
| int iBindVar = pExpr->iColumn; |
| sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); |
| if( (v = pParse->pReprepare)!=0 ){ |
| pVal = valueNew(db, pAlloc); |
| if( pVal ){ |
| rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); |
| sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); |
| pVal->db = pParse->db; |
| } |
| } |
| }else{ |
| rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); |
| } |
| |
| assert( pVal==0 || pVal->db==db ); |
| *ppVal = pVal; |
| return rc; |
| } |
| |
| /* |
| ** This function is used to allocate and populate UnpackedRecord |
| ** structures intended to be compared against sample index keys stored |
| ** in the sqlite_stat4 table. |
| ** |
| ** A single call to this function populates zero or more fields of the |
| ** record starting with field iVal (fields are numbered from left to |
| ** right starting with 0). A single field is populated if: |
| ** |
| ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| ** |
| ** * The expression is a bound variable, and this is a reprepare, or |
| ** |
| ** * The sqlite3ValueFromExpr() function is able to extract a value |
| ** from the expression (i.e. the expression is a literal value). |
| ** |
| ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the |
| ** vector components that match either of the two latter criteria listed |
| ** above. |
| ** |
| ** Before any value is appended to the record, the affinity of the |
| ** corresponding column within index pIdx is applied to it. Before |
| ** this function returns, output parameter *pnExtract is set to the |
| ** number of values appended to the record. |
| ** |
| ** When this function is called, *ppRec must either point to an object |
| ** allocated by an earlier call to this function, or must be NULL. If it |
| ** is NULL and a value can be successfully extracted, a new UnpackedRecord |
| ** is allocated (and *ppRec set to point to it) before returning. |
| ** |
| ** Unless an error is encountered, SQLITE_OK is returned. It is not an |
| ** error if a value cannot be extracted from pExpr. If an error does |
| ** occur, an SQLite error code is returned. |
| */ |
| int sqlite3Stat4ProbeSetValue( |
| Parse *pParse, /* Parse context */ |
| Index *pIdx, /* Index being probed */ |
| UnpackedRecord **ppRec, /* IN/OUT: Probe record */ |
| Expr *pExpr, /* The expression to extract a value from */ |
| int nElem, /* Maximum number of values to append */ |
| int iVal, /* Array element to populate */ |
| int *pnExtract /* OUT: Values appended to the record */ |
| ){ |
| int rc = SQLITE_OK; |
| int nExtract = 0; |
| |
| if( pExpr==0 || pExpr->op!=TK_SELECT ){ |
| int i; |
| struct ValueNewStat4Ctx alloc; |
| |
| alloc.pParse = pParse; |
| alloc.pIdx = pIdx; |
| alloc.ppRec = ppRec; |
| |
| for(i=0; i<nElem; i++){ |
| sqlite3_value *pVal = 0; |
| Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); |
| u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); |
| alloc.iVal = iVal+i; |
| rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); |
| if( !pVal ) break; |
| nExtract++; |
| } |
| } |
| |
| *pnExtract = nExtract; |
| return rc; |
| } |
| |
| /* |
| ** Attempt to extract a value from expression pExpr using the methods |
| ** as described for sqlite3Stat4ProbeSetValue() above. |
| ** |
| ** If successful, set *ppVal to point to a new value object and return |
| ** SQLITE_OK. If no value can be extracted, but no other error occurs |
| ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error |
| ** does occur, return an SQLite error code. The final value of *ppVal |
| ** is undefined in this case. |
| */ |
| int sqlite3Stat4ValueFromExpr( |
| Parse *pParse, /* Parse context */ |
| Expr *pExpr, /* The expression to extract a value from */ |
| u8 affinity, /* Affinity to use */ |
| sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| ){ |
| return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); |
| } |
| |
| /* |
| ** Extract the iCol-th column from the nRec-byte record in pRec. Write |
| ** the column value into *ppVal. If *ppVal is initially NULL then a new |
| ** sqlite3_value object is allocated. |
| ** |
| ** If *ppVal is initially NULL then the caller is responsible for |
| ** ensuring that the value written into *ppVal is eventually freed. |
| */ |
| int sqlite3Stat4Column( |
| sqlite3 *db, /* Database handle */ |
| const void *pRec, /* Pointer to buffer containing record */ |
| int nRec, /* Size of buffer pRec in bytes */ |
| int iCol, /* Column to extract */ |
| sqlite3_value **ppVal /* OUT: Extracted value */ |
| ){ |
| u32 t = 0; /* a column type code */ |
| int nHdr; /* Size of the header in the record */ |
| int iHdr; /* Next unread header byte */ |
| int iField; /* Next unread data byte */ |
| int szField = 0; /* Size of the current data field */ |
| int i; /* Column index */ |
| u8 *a = (u8*)pRec; /* Typecast byte array */ |
| Mem *pMem = *ppVal; /* Write result into this Mem object */ |
| |
| assert( iCol>0 ); |
| iHdr = getVarint32(a, nHdr); |
| if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; |
| iField = nHdr; |
| for(i=0; i<=iCol; i++){ |
| iHdr += getVarint32(&a[iHdr], t); |
| testcase( iHdr==nHdr ); |
| testcase( iHdr==nHdr+1 ); |
| if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; |
| szField = sqlite3VdbeSerialTypeLen(t); |
| iField += szField; |
| } |
| testcase( iField==nRec ); |
| testcase( iField==nRec+1 ); |
| if( iField>nRec ) return SQLITE_CORRUPT_BKPT; |
| if( pMem==0 ){ |
| pMem = *ppVal = sqlite3ValueNew(db); |
| if( pMem==0 ) return SQLITE_NOMEM_BKPT; |
| } |
| sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); |
| pMem->enc = ENC(db); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Unless it is NULL, the argument must be an UnpackedRecord object returned |
| ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes |
| ** the object. |
| */ |
| void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ |
| if( pRec ){ |
| int i; |
| int nCol = pRec->pKeyInfo->nAllField; |
| Mem *aMem = pRec->aMem; |
| sqlite3 *db = aMem[0].db; |
| for(i=0; i<nCol; i++){ |
| sqlite3VdbeMemRelease(&aMem[i]); |
| } |
| sqlite3KeyInfoUnref(pRec->pKeyInfo); |
| sqlite3DbFreeNN(db, pRec); |
| } |
| } |
| #endif /* ifdef SQLITE_ENABLE_STAT4 */ |
| |
| /* |
| ** Change the string value of an sqlite3_value object |
| */ |
| void sqlite3ValueSetStr( |
| sqlite3_value *v, /* Value to be set */ |
| int n, /* Length of string z */ |
| const void *z, /* Text of the new string */ |
| u8 enc, /* Encoding to use */ |
| void (*xDel)(void*) /* Destructor for the string */ |
| ){ |
| if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); |
| } |
| |
| /* |
| ** Free an sqlite3_value object |
| */ |
| void sqlite3ValueFree(sqlite3_value *v){ |
| if( !v ) return; |
| sqlite3VdbeMemRelease((Mem *)v); |
| sqlite3DbFreeNN(((Mem*)v)->db, v); |
| } |
| |
| /* |
| ** The sqlite3ValueBytes() routine returns the number of bytes in the |
| ** sqlite3_value object assuming that it uses the encoding "enc". |
| ** The valueBytes() routine is a helper function. |
| */ |
| static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ |
| return valueToText(pVal, enc)!=0 ? pVal->n : 0; |
| } |
| int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
| Mem *p = (Mem*)pVal; |
| assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); |
| if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ |
| return p->n; |
| } |
| if( (p->flags & MEM_Blob)!=0 ){ |
| if( p->flags & MEM_Zero ){ |
| return p->n + p->u.nZero; |
| }else{ |
| return p->n; |
| } |
| } |
| if( p->flags & MEM_Null ) return 0; |
| return valueBytes(pVal, enc); |
| } |