#region Copyright notice and license | |
// Protocol Buffers - Google's data interchange format | |
// Copyright 2008 Google Inc. All rights reserved. | |
// https://developers.google.com/protocol-buffers/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following disclaimer | |
// in the documentation and/or other materials provided with the | |
// distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived from | |
// this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
#endregion | |
using Google.Protobuf.Collections; | |
using System; | |
using System.Collections.Generic; | |
using System.IO; | |
namespace Google.Protobuf | |
{ | |
/// <summary> | |
/// Reads and decodes protocol message fields. | |
/// </summary> | |
/// <remarks> | |
/// <para> | |
/// This class is generally used by generated code to read appropriate | |
/// primitives from the stream. It effectively encapsulates the lowest | |
/// levels of protocol buffer format. | |
/// </para> | |
/// <para> | |
/// Repeated fields and map fields are not handled by this class; use <see cref="RepeatedField{T}"/> | |
/// and <see cref="MapField{TKey, TValue}"/> to serialize such fields. | |
/// </para> | |
/// </remarks> | |
public sealed class CodedInputStream : IDisposable | |
{ | |
/// <summary> | |
/// Whether to leave the underlying stream open when disposing of this stream. | |
/// This is always true when there's no stream. | |
/// </summary> | |
private readonly bool leaveOpen; | |
/// <summary> | |
/// Buffer of data read from the stream or provided at construction time. | |
/// </summary> | |
private readonly byte[] buffer; | |
/// <summary> | |
/// The index of the buffer at which we need to refill from the stream (if there is one). | |
/// </summary> | |
private int bufferSize; | |
private int bufferSizeAfterLimit = 0; | |
/// <summary> | |
/// The position within the current buffer (i.e. the next byte to read) | |
/// </summary> | |
private int bufferPos = 0; | |
/// <summary> | |
/// The stream to read further input from, or null if the byte array buffer was provided | |
/// directly on construction, with no further data available. | |
/// </summary> | |
private readonly Stream input; | |
/// <summary> | |
/// The last tag we read. 0 indicates we've read to the end of the stream | |
/// (or haven't read anything yet). | |
/// </summary> | |
private uint lastTag = 0; | |
/// <summary> | |
/// The next tag, used to store the value read by PeekTag. | |
/// </summary> | |
private uint nextTag = 0; | |
private bool hasNextTag = false; | |
internal const int DefaultRecursionLimit = 100; | |
internal const int DefaultSizeLimit = Int32.MaxValue; | |
internal const int BufferSize = 4096; | |
/// <summary> | |
/// The total number of bytes read before the current buffer. The | |
/// total bytes read up to the current position can be computed as | |
/// totalBytesRetired + bufferPos. | |
/// </summary> | |
private int totalBytesRetired = 0; | |
/// <summary> | |
/// The absolute position of the end of the current message. | |
/// </summary> | |
private int currentLimit = int.MaxValue; | |
private int recursionDepth = 0; | |
private readonly int recursionLimit; | |
private readonly int sizeLimit; | |
#region Construction | |
// Note that the checks are performed such that we don't end up checking obviously-valid things | |
// like non-null references for arrays we've just created. | |
/// <summary> | |
/// Creates a new CodedInputStream reading data from the given byte array. | |
/// </summary> | |
public CodedInputStream(byte[] buffer) : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), 0, buffer.Length, true) | |
{ | |
} | |
/// <summary> | |
/// Creates a new <see cref="CodedInputStream"/> that reads from the given byte array slice. | |
/// </summary> | |
public CodedInputStream(byte[] buffer, int offset, int length) | |
: this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), offset, offset + length, true) | |
{ | |
if (offset < 0 || offset > buffer.Length) | |
{ | |
throw new ArgumentOutOfRangeException("offset", "Offset must be within the buffer"); | |
} | |
if (length < 0 || offset + length > buffer.Length) | |
{ | |
throw new ArgumentOutOfRangeException("length", "Length must be non-negative and within the buffer"); | |
} | |
} | |
/// <summary> | |
/// Creates a new <see cref="CodedInputStream"/> reading data from the given stream, which will be disposed | |
/// when the returned object is disposed. | |
/// </summary> | |
/// <param name="input">The stream to read from.</param> | |
public CodedInputStream(Stream input) : this(input, false) | |
{ | |
} | |
/// <summary> | |
/// Creates a new <see cref="CodedInputStream"/> reading data from the given stream. | |
/// </summary> | |
/// <param name="input">The stream to read from.</param> | |
/// <param name="leaveOpen"><c>true</c> to leave <paramref name="input"/> open when the returned | |
/// <c cref="CodedInputStream"/> is disposed; <c>false</c> to dispose of the given stream when the | |
/// returned object is disposed.</param> | |
public CodedInputStream(Stream input, bool leaveOpen) | |
: this(ProtoPreconditions.CheckNotNull(input, "input"), new byte[BufferSize], 0, 0, leaveOpen) | |
{ | |
} | |
/// <summary> | |
/// Creates a new CodedInputStream reading data from the given | |
/// stream and buffer, using the default limits. | |
/// </summary> | |
internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, bool leaveOpen) | |
{ | |
this.input = input; | |
this.buffer = buffer; | |
this.bufferPos = bufferPos; | |
this.bufferSize = bufferSize; | |
this.sizeLimit = DefaultSizeLimit; | |
this.recursionLimit = DefaultRecursionLimit; | |
this.leaveOpen = leaveOpen; | |
} | |
/// <summary> | |
/// Creates a new CodedInputStream reading data from the given | |
/// stream and buffer, using the specified limits. | |
/// </summary> | |
/// <remarks> | |
/// This chains to the version with the default limits instead of vice versa to avoid | |
/// having to check that the default values are valid every time. | |
/// </remarks> | |
internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit, bool leaveOpen) | |
: this(input, buffer, bufferPos, bufferSize, leaveOpen) | |
{ | |
if (sizeLimit <= 0) | |
{ | |
throw new ArgumentOutOfRangeException("sizeLimit", "Size limit must be positive"); | |
} | |
if (recursionLimit <= 0) | |
{ | |
throw new ArgumentOutOfRangeException("recursionLimit!", "Recursion limit must be positive"); | |
} | |
this.sizeLimit = sizeLimit; | |
this.recursionLimit = recursionLimit; | |
} | |
#endregion | |
/// <summary> | |
/// Creates a <see cref="CodedInputStream"/> with the specified size and recursion limits, reading | |
/// from an input stream. | |
/// </summary> | |
/// <remarks> | |
/// This method exists separately from the constructor to reduce the number of constructor overloads. | |
/// It is likely to be used considerably less frequently than the constructors, as the default limits | |
/// are suitable for most use cases. | |
/// </remarks> | |
/// <param name="input">The input stream to read from</param> | |
/// <param name="sizeLimit">The total limit of data to read from the stream.</param> | |
/// <param name="recursionLimit">The maximum recursion depth to allow while reading.</param> | |
/// <returns>A <c>CodedInputStream</c> reading from <paramref name="input"/> with the specified size | |
/// and recursion limits.</returns> | |
public static CodedInputStream CreateWithLimits(Stream input, int sizeLimit, int recursionLimit) | |
{ | |
// Note: we may want an overload accepting leaveOpen | |
return new CodedInputStream(input, new byte[BufferSize], 0, 0, sizeLimit, recursionLimit, false); | |
} | |
/// <summary> | |
/// Returns the current position in the input stream, or the position in the input buffer | |
/// </summary> | |
public long Position | |
{ | |
get | |
{ | |
if (input != null) | |
{ | |
return input.Position - ((bufferSize + bufferSizeAfterLimit) - bufferPos); | |
} | |
return bufferPos; | |
} | |
} | |
/// <summary> | |
/// Returns the last tag read, or 0 if no tags have been read or we've read beyond | |
/// the end of the stream. | |
/// </summary> | |
internal uint LastTag { get { return lastTag; } } | |
/// <summary> | |
/// Returns the size limit for this stream. | |
/// </summary> | |
/// <remarks> | |
/// This limit is applied when reading from the underlying stream, as a sanity check. It is | |
/// not applied when reading from a byte array data source without an underlying stream. | |
/// The default value is Int32.MaxValue. | |
/// </remarks> | |
/// <value> | |
/// The size limit. | |
/// </value> | |
public int SizeLimit { get { return sizeLimit; } } | |
/// <summary> | |
/// Returns the recursion limit for this stream. This limit is applied whilst reading messages, | |
/// to avoid maliciously-recursive data. | |
/// </summary> | |
/// <remarks> | |
/// The default limit is 100. | |
/// </remarks> | |
/// <value> | |
/// The recursion limit for this stream. | |
/// </value> | |
public int RecursionLimit { get { return recursionLimit; } } | |
/// <summary> | |
/// Internal-only property; when set to true, unknown fields will be discarded while parsing. | |
/// </summary> | |
internal bool DiscardUnknownFields { get; set; } | |
/// <summary> | |
/// Internal-only property; provides extension identifiers to compatible messages while parsing. | |
/// </summary> | |
internal ExtensionRegistry ExtensionRegistry { get; set; } | |
/// <summary> | |
/// Disposes of this instance, potentially closing any underlying stream. | |
/// </summary> | |
/// <remarks> | |
/// As there is no flushing to perform here, disposing of a <see cref="CodedInputStream"/> which | |
/// was constructed with the <c>leaveOpen</c> option parameter set to <c>true</c> (or one which | |
/// was constructed to read from a byte array) has no effect. | |
/// </remarks> | |
public void Dispose() | |
{ | |
if (!leaveOpen) | |
{ | |
input.Dispose(); | |
} | |
} | |
#region Validation | |
/// <summary> | |
/// Verifies that the last call to ReadTag() returned tag 0 - in other words, | |
/// we've reached the end of the stream when we expected to. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException">The | |
/// tag read was not the one specified</exception> | |
internal void CheckReadEndOfStreamTag() | |
{ | |
if (lastTag != 0) | |
{ | |
throw InvalidProtocolBufferException.MoreDataAvailable(); | |
} | |
} | |
#endregion | |
#region Reading of tags etc | |
/// <summary> | |
/// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the | |
/// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the | |
/// same value.) | |
/// </summary> | |
public uint PeekTag() | |
{ | |
if (hasNextTag) | |
{ | |
return nextTag; | |
} | |
uint savedLast = lastTag; | |
nextTag = ReadTag(); | |
hasNextTag = true; | |
lastTag = savedLast; // Undo the side effect of ReadTag | |
return nextTag; | |
} | |
/// <summary> | |
/// Reads a field tag, returning the tag of 0 for "end of stream". | |
/// </summary> | |
/// <remarks> | |
/// If this method returns 0, it doesn't necessarily mean the end of all | |
/// the data in this CodedInputStream; it may be the end of the logical stream | |
/// for an embedded message, for example. | |
/// </remarks> | |
/// <returns>The next field tag, or 0 for end of stream. (0 is never a valid tag.)</returns> | |
public uint ReadTag() | |
{ | |
if (hasNextTag) | |
{ | |
lastTag = nextTag; | |
hasNextTag = false; | |
return lastTag; | |
} | |
// Optimize for the incredibly common case of having at least two bytes left in the buffer, | |
// and those two bytes being enough to get the tag. This will be true for fields up to 4095. | |
if (bufferPos + 2 <= bufferSize) | |
{ | |
int tmp = buffer[bufferPos++]; | |
if (tmp < 128) | |
{ | |
lastTag = (uint)tmp; | |
} | |
else | |
{ | |
int result = tmp & 0x7f; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 7; | |
lastTag = (uint) result; | |
} | |
else | |
{ | |
// Nope, rewind and go the potentially slow route. | |
bufferPos -= 2; | |
lastTag = ReadRawVarint32(); | |
} | |
} | |
} | |
else | |
{ | |
if (IsAtEnd) | |
{ | |
lastTag = 0; | |
return 0; | |
} | |
lastTag = ReadRawVarint32(); | |
} | |
if (WireFormat.GetTagFieldNumber(lastTag) == 0) | |
{ | |
// If we actually read a tag with a field of 0, that's not a valid tag. | |
throw InvalidProtocolBufferException.InvalidTag(); | |
} | |
if (ReachedLimit) | |
{ | |
return 0; | |
} | |
return lastTag; | |
} | |
/// <summary> | |
/// Skips the data for the field with the tag we've just read. | |
/// This should be called directly after <see cref="ReadTag"/>, when | |
/// the caller wishes to skip an unknown field. | |
/// </summary> | |
/// <remarks> | |
/// This method throws <see cref="InvalidProtocolBufferException"/> if the last-read tag was an end-group tag. | |
/// If a caller wishes to skip a group, they should skip the whole group, by calling this method after reading the | |
/// start-group tag. This behavior allows callers to call this method on any field they don't understand, correctly | |
/// resulting in an error if an end-group tag has not been paired with an earlier start-group tag. | |
/// </remarks> | |
/// <exception cref="InvalidProtocolBufferException">The last tag was an end-group tag</exception> | |
/// <exception cref="InvalidOperationException">The last read operation read to the end of the logical stream</exception> | |
public void SkipLastField() | |
{ | |
if (lastTag == 0) | |
{ | |
throw new InvalidOperationException("SkipLastField cannot be called at the end of a stream"); | |
} | |
switch (WireFormat.GetTagWireType(lastTag)) | |
{ | |
case WireFormat.WireType.StartGroup: | |
SkipGroup(lastTag); | |
break; | |
case WireFormat.WireType.EndGroup: | |
throw new InvalidProtocolBufferException( | |
"SkipLastField called on an end-group tag, indicating that the corresponding start-group was missing"); | |
case WireFormat.WireType.Fixed32: | |
ReadFixed32(); | |
break; | |
case WireFormat.WireType.Fixed64: | |
ReadFixed64(); | |
break; | |
case WireFormat.WireType.LengthDelimited: | |
var length = ReadLength(); | |
SkipRawBytes(length); | |
break; | |
case WireFormat.WireType.Varint: | |
ReadRawVarint32(); | |
break; | |
} | |
} | |
/// <summary> | |
/// Skip a group. | |
/// </summary> | |
internal void SkipGroup(uint startGroupTag) | |
{ | |
// Note: Currently we expect this to be the way that groups are read. We could put the recursion | |
// depth changes into the ReadTag method instead, potentially... | |
recursionDepth++; | |
if (recursionDepth >= recursionLimit) | |
{ | |
throw InvalidProtocolBufferException.RecursionLimitExceeded(); | |
} | |
uint tag; | |
while (true) | |
{ | |
tag = ReadTag(); | |
if (tag == 0) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
// Can't call SkipLastField for this case- that would throw. | |
if (WireFormat.GetTagWireType(tag) == WireFormat.WireType.EndGroup) | |
{ | |
break; | |
} | |
// This recursion will allow us to handle nested groups. | |
SkipLastField(); | |
} | |
int startField = WireFormat.GetTagFieldNumber(startGroupTag); | |
int endField = WireFormat.GetTagFieldNumber(tag); | |
if (startField != endField) | |
{ | |
throw new InvalidProtocolBufferException( | |
$"Mismatched end-group tag. Started with field {startField}; ended with field {endField}"); | |
} | |
recursionDepth--; | |
} | |
/// <summary> | |
/// Reads a double field from the stream. | |
/// </summary> | |
public double ReadDouble() | |
{ | |
return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); | |
} | |
/// <summary> | |
/// Reads a float field from the stream. | |
/// </summary> | |
public float ReadFloat() | |
{ | |
if (BitConverter.IsLittleEndian && 4 <= bufferSize - bufferPos) | |
{ | |
float ret = BitConverter.ToSingle(buffer, bufferPos); | |
bufferPos += 4; | |
return ret; | |
} | |
else | |
{ | |
byte[] rawBytes = ReadRawBytes(4); | |
if (!BitConverter.IsLittleEndian) | |
{ | |
ByteArray.Reverse(rawBytes); | |
} | |
return BitConverter.ToSingle(rawBytes, 0); | |
} | |
} | |
/// <summary> | |
/// Reads a uint64 field from the stream. | |
/// </summary> | |
public ulong ReadUInt64() | |
{ | |
return ReadRawVarint64(); | |
} | |
/// <summary> | |
/// Reads an int64 field from the stream. | |
/// </summary> | |
public long ReadInt64() | |
{ | |
return (long) ReadRawVarint64(); | |
} | |
/// <summary> | |
/// Reads an int32 field from the stream. | |
/// </summary> | |
public int ReadInt32() | |
{ | |
return (int) ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Reads a fixed64 field from the stream. | |
/// </summary> | |
public ulong ReadFixed64() | |
{ | |
return ReadRawLittleEndian64(); | |
} | |
/// <summary> | |
/// Reads a fixed32 field from the stream. | |
/// </summary> | |
public uint ReadFixed32() | |
{ | |
return ReadRawLittleEndian32(); | |
} | |
/// <summary> | |
/// Reads a bool field from the stream. | |
/// </summary> | |
public bool ReadBool() | |
{ | |
return ReadRawVarint32() != 0; | |
} | |
/// <summary> | |
/// Reads a string field from the stream. | |
/// </summary> | |
public string ReadString() | |
{ | |
int length = ReadLength(); | |
// No need to read any data for an empty string. | |
if (length == 0) | |
{ | |
return ""; | |
} | |
if (length <= bufferSize - bufferPos && length > 0) | |
{ | |
// Fast path: We already have the bytes in a contiguous buffer, so | |
// just copy directly from it. | |
String result = CodedOutputStream.Utf8Encoding.GetString(buffer, bufferPos, length); | |
bufferPos += length; | |
return result; | |
} | |
// Slow path: Build a byte array first then copy it. | |
return CodedOutputStream.Utf8Encoding.GetString(ReadRawBytes(length), 0, length); | |
} | |
/// <summary> | |
/// Reads an embedded message field value from the stream. | |
/// </summary> | |
public void ReadMessage(IMessage builder) | |
{ | |
int length = ReadLength(); | |
if (recursionDepth >= recursionLimit) | |
{ | |
throw InvalidProtocolBufferException.RecursionLimitExceeded(); | |
} | |
int oldLimit = PushLimit(length); | |
++recursionDepth; | |
builder.MergeFrom(this); | |
CheckReadEndOfStreamTag(); | |
// Check that we've read exactly as much data as expected. | |
if (!ReachedLimit) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
--recursionDepth; | |
PopLimit(oldLimit); | |
} | |
/// <summary> | |
/// Reads an embedded group field from the stream. | |
/// </summary> | |
public void ReadGroup(IMessage builder) | |
{ | |
if (recursionDepth >= recursionLimit) | |
{ | |
throw InvalidProtocolBufferException.RecursionLimitExceeded(); | |
} | |
++recursionDepth; | |
builder.MergeFrom(this); | |
--recursionDepth; | |
} | |
/// <summary> | |
/// Reads a bytes field value from the stream. | |
/// </summary> | |
public ByteString ReadBytes() | |
{ | |
int length = ReadLength(); | |
if (length <= bufferSize - bufferPos && length > 0) | |
{ | |
// Fast path: We already have the bytes in a contiguous buffer, so | |
// just copy directly from it. | |
ByteString result = ByteString.CopyFrom(buffer, bufferPos, length); | |
bufferPos += length; | |
return result; | |
} | |
else | |
{ | |
// Slow path: Build a byte array and attach it to a new ByteString. | |
return ByteString.AttachBytes(ReadRawBytes(length)); | |
} | |
} | |
/// <summary> | |
/// Reads a uint32 field value from the stream. | |
/// </summary> | |
public uint ReadUInt32() | |
{ | |
return ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Reads an enum field value from the stream. | |
/// </summary> | |
public int ReadEnum() | |
{ | |
// Currently just a pass-through, but it's nice to separate it logically from WriteInt32. | |
return (int) ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Reads an sfixed32 field value from the stream. | |
/// </summary> | |
public int ReadSFixed32() | |
{ | |
return (int) ReadRawLittleEndian32(); | |
} | |
/// <summary> | |
/// Reads an sfixed64 field value from the stream. | |
/// </summary> | |
public long ReadSFixed64() | |
{ | |
return (long) ReadRawLittleEndian64(); | |
} | |
/// <summary> | |
/// Reads an sint32 field value from the stream. | |
/// </summary> | |
public int ReadSInt32() | |
{ | |
return DecodeZigZag32(ReadRawVarint32()); | |
} | |
/// <summary> | |
/// Reads an sint64 field value from the stream. | |
/// </summary> | |
public long ReadSInt64() | |
{ | |
return DecodeZigZag64(ReadRawVarint64()); | |
} | |
/// <summary> | |
/// Reads a length for length-delimited data. | |
/// </summary> | |
/// <remarks> | |
/// This is internally just reading a varint, but this method exists | |
/// to make the calling code clearer. | |
/// </remarks> | |
public int ReadLength() | |
{ | |
return (int) ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>, | |
/// the tag is consumed and the method returns <c>true</c>; otherwise, the | |
/// stream is left in the original position and the method returns <c>false</c>. | |
/// </summary> | |
public bool MaybeConsumeTag(uint tag) | |
{ | |
if (PeekTag() == tag) | |
{ | |
hasNextTag = false; | |
return true; | |
} | |
return false; | |
} | |
#endregion | |
#region Underlying reading primitives | |
/// <summary> | |
/// Same code as ReadRawVarint32, but read each byte individually, checking for | |
/// buffer overflow. | |
/// </summary> | |
private uint SlowReadRawVarint32() | |
{ | |
int tmp = ReadRawByte(); | |
if (tmp < 128) | |
{ | |
return (uint) tmp; | |
} | |
int result = tmp & 0x7f; | |
if ((tmp = ReadRawByte()) < 128) | |
{ | |
result |= tmp << 7; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 7; | |
if ((tmp = ReadRawByte()) < 128) | |
{ | |
result |= tmp << 14; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 14; | |
if ((tmp = ReadRawByte()) < 128) | |
{ | |
result |= tmp << 21; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 21; | |
result |= (tmp = ReadRawByte()) << 28; | |
if (tmp >= 128) | |
{ | |
// Discard upper 32 bits. | |
for (int i = 0; i < 5; i++) | |
{ | |
if (ReadRawByte() < 128) | |
{ | |
return (uint) result; | |
} | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
} | |
} | |
} | |
return (uint) result; | |
} | |
/// <summary> | |
/// Reads a raw Varint from the stream. If larger than 32 bits, discard the upper bits. | |
/// This method is optimised for the case where we've got lots of data in the buffer. | |
/// That means we can check the size just once, then just read directly from the buffer | |
/// without constant rechecking of the buffer length. | |
/// </summary> | |
internal uint ReadRawVarint32() | |
{ | |
if (bufferPos + 5 > bufferSize) | |
{ | |
return SlowReadRawVarint32(); | |
} | |
int tmp = buffer[bufferPos++]; | |
if (tmp < 128) | |
{ | |
return (uint) tmp; | |
} | |
int result = tmp & 0x7f; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 7; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 7; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 14; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 14; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 21; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 21; | |
result |= (tmp = buffer[bufferPos++]) << 28; | |
if (tmp >= 128) | |
{ | |
// Discard upper 32 bits. | |
// Note that this has to use ReadRawByte() as we only ensure we've | |
// got at least 5 bytes at the start of the method. This lets us | |
// use the fast path in more cases, and we rarely hit this section of code. | |
for (int i = 0; i < 5; i++) | |
{ | |
if (ReadRawByte() < 128) | |
{ | |
return (uint) result; | |
} | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
} | |
} | |
} | |
return (uint) result; | |
} | |
/// <summary> | |
/// Reads a varint from the input one byte at a time, so that it does not | |
/// read any bytes after the end of the varint. If you simply wrapped the | |
/// stream in a CodedInputStream and used ReadRawVarint32(Stream) | |
/// then you would probably end up reading past the end of the varint since | |
/// CodedInputStream buffers its input. | |
/// </summary> | |
/// <param name="input"></param> | |
/// <returns></returns> | |
internal static uint ReadRawVarint32(Stream input) | |
{ | |
int result = 0; | |
int offset = 0; | |
for (; offset < 32; offset += 7) | |
{ | |
int b = input.ReadByte(); | |
if (b == -1) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
result |= (b & 0x7f) << offset; | |
if ((b & 0x80) == 0) | |
{ | |
return (uint) result; | |
} | |
} | |
// Keep reading up to 64 bits. | |
for (; offset < 64; offset += 7) | |
{ | |
int b = input.ReadByte(); | |
if (b == -1) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
if ((b & 0x80) == 0) | |
{ | |
return (uint) result; | |
} | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
/// <summary> | |
/// Reads a raw varint from the stream. | |
/// </summary> | |
internal ulong ReadRawVarint64() | |
{ | |
int shift = 0; | |
ulong result = 0; | |
while (shift < 64) | |
{ | |
byte b = ReadRawByte(); | |
result |= (ulong) (b & 0x7F) << shift; | |
if ((b & 0x80) == 0) | |
{ | |
return result; | |
} | |
shift += 7; | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
/// <summary> | |
/// Reads a 32-bit little-endian integer from the stream. | |
/// </summary> | |
internal uint ReadRawLittleEndian32() | |
{ | |
uint b1 = ReadRawByte(); | |
uint b2 = ReadRawByte(); | |
uint b3 = ReadRawByte(); | |
uint b4 = ReadRawByte(); | |
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); | |
} | |
/// <summary> | |
/// Reads a 64-bit little-endian integer from the stream. | |
/// </summary> | |
internal ulong ReadRawLittleEndian64() | |
{ | |
ulong b1 = ReadRawByte(); | |
ulong b2 = ReadRawByte(); | |
ulong b3 = ReadRawByte(); | |
ulong b4 = ReadRawByte(); | |
ulong b5 = ReadRawByte(); | |
ulong b6 = ReadRawByte(); | |
ulong b7 = ReadRawByte(); | |
ulong b8 = ReadRawByte(); | |
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) | |
| (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); | |
} | |
/// <summary> | |
/// Decode a 32-bit value with ZigZag encoding. | |
/// </summary> | |
/// <remarks> | |
/// ZigZag encodes signed integers into values that can be efficiently | |
/// encoded with varint. (Otherwise, negative values must be | |
/// sign-extended to 64 bits to be varint encoded, thus always taking | |
/// 10 bytes on the wire.) | |
/// </remarks> | |
internal static int DecodeZigZag32(uint n) | |
{ | |
return (int)(n >> 1) ^ -(int)(n & 1); | |
} | |
/// <summary> | |
/// Decode a 32-bit value with ZigZag encoding. | |
/// </summary> | |
/// <remarks> | |
/// ZigZag encodes signed integers into values that can be efficiently | |
/// encoded with varint. (Otherwise, negative values must be | |
/// sign-extended to 64 bits to be varint encoded, thus always taking | |
/// 10 bytes on the wire.) | |
/// </remarks> | |
internal static long DecodeZigZag64(ulong n) | |
{ | |
return (long)(n >> 1) ^ -(long)(n & 1); | |
} | |
#endregion | |
#region Internal reading and buffer management | |
/// <summary> | |
/// Sets currentLimit to (current position) + byteLimit. This is called | |
/// when descending into a length-delimited embedded message. The previous | |
/// limit is returned. | |
/// </summary> | |
/// <returns>The old limit.</returns> | |
internal int PushLimit(int byteLimit) | |
{ | |
if (byteLimit < 0) | |
{ | |
throw InvalidProtocolBufferException.NegativeSize(); | |
} | |
byteLimit += totalBytesRetired + bufferPos; | |
int oldLimit = currentLimit; | |
if (byteLimit > oldLimit) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
currentLimit = byteLimit; | |
RecomputeBufferSizeAfterLimit(); | |
return oldLimit; | |
} | |
private void RecomputeBufferSizeAfterLimit() | |
{ | |
bufferSize += bufferSizeAfterLimit; | |
int bufferEnd = totalBytesRetired + bufferSize; | |
if (bufferEnd > currentLimit) | |
{ | |
// Limit is in current buffer. | |
bufferSizeAfterLimit = bufferEnd - currentLimit; | |
bufferSize -= bufferSizeAfterLimit; | |
} | |
else | |
{ | |
bufferSizeAfterLimit = 0; | |
} | |
} | |
/// <summary> | |
/// Discards the current limit, returning the previous limit. | |
/// </summary> | |
internal void PopLimit(int oldLimit) | |
{ | |
currentLimit = oldLimit; | |
RecomputeBufferSizeAfterLimit(); | |
} | |
/// <summary> | |
/// Returns whether or not all the data before the limit has been read. | |
/// </summary> | |
/// <returns></returns> | |
internal bool ReachedLimit | |
{ | |
get | |
{ | |
if (currentLimit == int.MaxValue) | |
{ | |
return false; | |
} | |
int currentAbsolutePosition = totalBytesRetired + bufferPos; | |
return currentAbsolutePosition >= currentLimit; | |
} | |
} | |
/// <summary> | |
/// Returns true if the stream has reached the end of the input. This is the | |
/// case if either the end of the underlying input source has been reached or | |
/// the stream has reached a limit created using PushLimit. | |
/// </summary> | |
public bool IsAtEnd | |
{ | |
get { return bufferPos == bufferSize && !RefillBuffer(false); } | |
} | |
/// <summary> | |
/// Called when buffer is empty to read more bytes from the | |
/// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that | |
/// either there will be at least one byte in the buffer when it returns | |
/// or it will throw an exception. If <paramref name="mustSucceed"/> is false, | |
/// RefillBuffer() returns false if no more bytes were available. | |
/// </summary> | |
/// <param name="mustSucceed"></param> | |
/// <returns></returns> | |
private bool RefillBuffer(bool mustSucceed) | |
{ | |
if (bufferPos < bufferSize) | |
{ | |
throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); | |
} | |
if (totalBytesRetired + bufferSize == currentLimit) | |
{ | |
// Oops, we hit a limit. | |
if (mustSucceed) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
totalBytesRetired += bufferSize; | |
bufferPos = 0; | |
bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); | |
if (bufferSize < 0) | |
{ | |
throw new InvalidOperationException("Stream.Read returned a negative count"); | |
} | |
if (bufferSize == 0) | |
{ | |
if (mustSucceed) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
else | |
{ | |
RecomputeBufferSizeAfterLimit(); | |
int totalBytesRead = | |
totalBytesRetired + bufferSize + bufferSizeAfterLimit; | |
if (totalBytesRead < 0 || totalBytesRead > sizeLimit) | |
{ | |
throw InvalidProtocolBufferException.SizeLimitExceeded(); | |
} | |
return true; | |
} | |
} | |
/// <summary> | |
/// Read one byte from the input. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException"> | |
/// the end of the stream or the current limit was reached | |
/// </exception> | |
internal byte ReadRawByte() | |
{ | |
if (bufferPos == bufferSize) | |
{ | |
RefillBuffer(true); | |
} | |
return buffer[bufferPos++]; | |
} | |
/// <summary> | |
/// Reads a fixed size of bytes from the input. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException"> | |
/// the end of the stream or the current limit was reached | |
/// </exception> | |
internal byte[] ReadRawBytes(int size) | |
{ | |
if (size < 0) | |
{ | |
throw InvalidProtocolBufferException.NegativeSize(); | |
} | |
if (totalBytesRetired + bufferPos + size > currentLimit) | |
{ | |
// Read to the end of the stream (up to the current limit) anyway. | |
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); | |
// Then fail. | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
if (size <= bufferSize - bufferPos) | |
{ | |
// We have all the bytes we need already. | |
byte[] bytes = new byte[size]; | |
ByteArray.Copy(buffer, bufferPos, bytes, 0, size); | |
bufferPos += size; | |
return bytes; | |
} | |
else if (size < buffer.Length) | |
{ | |
// Reading more bytes than are in the buffer, but not an excessive number | |
// of bytes. We can safely allocate the resulting array ahead of time. | |
// First copy what we have. | |
byte[] bytes = new byte[size]; | |
int pos = bufferSize - bufferPos; | |
ByteArray.Copy(buffer, bufferPos, bytes, 0, pos); | |
bufferPos = bufferSize; | |
// We want to use RefillBuffer() and then copy from the buffer into our | |
// byte array rather than reading directly into our byte array because | |
// the input may be unbuffered. | |
RefillBuffer(true); | |
while (size - pos > bufferSize) | |
{ | |
Buffer.BlockCopy(buffer, 0, bytes, pos, bufferSize); | |
pos += bufferSize; | |
bufferPos = bufferSize; | |
RefillBuffer(true); | |
} | |
ByteArray.Copy(buffer, 0, bytes, pos, size - pos); | |
bufferPos = size - pos; | |
return bytes; | |
} | |
else | |
{ | |
// The size is very large. For security reasons, we can't allocate the | |
// entire byte array yet. The size comes directly from the input, so a | |
// maliciously-crafted message could provide a bogus very large size in | |
// order to trick the app into allocating a lot of memory. We avoid this | |
// by allocating and reading only a small chunk at a time, so that the | |
// malicious message must actually *be* extremely large to cause | |
// problems. Meanwhile, we limit the allowed size of a message elsewhere. | |
// Remember the buffer markers since we'll have to copy the bytes out of | |
// it later. | |
int originalBufferPos = bufferPos; | |
int originalBufferSize = bufferSize; | |
// Mark the current buffer consumed. | |
totalBytesRetired += bufferSize; | |
bufferPos = 0; | |
bufferSize = 0; | |
// Read all the rest of the bytes we need. | |
int sizeLeft = size - (originalBufferSize - originalBufferPos); | |
List<byte[]> chunks = new List<byte[]>(); | |
while (sizeLeft > 0) | |
{ | |
byte[] chunk = new byte[Math.Min(sizeLeft, buffer.Length)]; | |
int pos = 0; | |
while (pos < chunk.Length) | |
{ | |
int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); | |
if (n <= 0) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
totalBytesRetired += n; | |
pos += n; | |
} | |
sizeLeft -= chunk.Length; | |
chunks.Add(chunk); | |
} | |
// OK, got everything. Now concatenate it all into one buffer. | |
byte[] bytes = new byte[size]; | |
// Start by copying the leftover bytes from this.buffer. | |
int newPos = originalBufferSize - originalBufferPos; | |
ByteArray.Copy(buffer, originalBufferPos, bytes, 0, newPos); | |
// And now all the chunks. | |
foreach (byte[] chunk in chunks) | |
{ | |
Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length); | |
newPos += chunk.Length; | |
} | |
// Done. | |
return bytes; | |
} | |
} | |
/// <summary> | |
/// Reads and discards <paramref name="size"/> bytes. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException">the end of the stream | |
/// or the current limit was reached</exception> | |
private void SkipRawBytes(int size) | |
{ | |
if (size < 0) | |
{ | |
throw InvalidProtocolBufferException.NegativeSize(); | |
} | |
if (totalBytesRetired + bufferPos + size > currentLimit) | |
{ | |
// Read to the end of the stream anyway. | |
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); | |
// Then fail. | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
if (size <= bufferSize - bufferPos) | |
{ | |
// We have all the bytes we need already. | |
bufferPos += size; | |
} | |
else | |
{ | |
// Skipping more bytes than are in the buffer. First skip what we have. | |
int pos = bufferSize - bufferPos; | |
// ROK 5/7/2013 Issue #54: should retire all bytes in buffer (bufferSize) | |
// totalBytesRetired += pos; | |
totalBytesRetired += bufferSize; | |
bufferPos = 0; | |
bufferSize = 0; | |
// Then skip directly from the InputStream for the rest. | |
if (pos < size) | |
{ | |
if (input == null) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
SkipImpl(size - pos); | |
totalBytesRetired += size - pos; | |
} | |
} | |
} | |
/// <summary> | |
/// Abstraction of skipping to cope with streams which can't really skip. | |
/// </summary> | |
private void SkipImpl(int amountToSkip) | |
{ | |
if (input.CanSeek) | |
{ | |
long previousPosition = input.Position; | |
input.Position += amountToSkip; | |
if (input.Position != previousPosition + amountToSkip) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
} | |
else | |
{ | |
byte[] skipBuffer = new byte[Math.Min(1024, amountToSkip)]; | |
while (amountToSkip > 0) | |
{ | |
int bytesRead = input.Read(skipBuffer, 0, Math.Min(skipBuffer.Length, amountToSkip)); | |
if (bytesRead <= 0) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
amountToSkip -= bytesRead; | |
} | |
} | |
} | |
#endregion | |
} | |
} |