blob: f890fdff5f59c60e8981dc95baa3634d967159ba [file] [log] [blame]
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <ctype.h>
#include "bench/nanobench.h"
#include "bench/AndroidCodecBench.h"
#include "bench/Benchmark.h"
#include "bench/CodecBench.h"
#include "bench/CodecBenchPriv.h"
#include "bench/GMBench.h"
#include "bench/MSKPBench.h"
#include "bench/RecordingBench.h"
#include "bench/ResultsWriter.h"
#include "bench/SKPAnimationBench.h"
#include "bench/SKPBench.h"
#include "bench/SkGlyphCacheBench.h"
#include "bench/SkSLBench.h"
#include "include/codec/SkAndroidCodec.h"
#include "include/codec/SkCodec.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkData.h"
#include "include/core/SkGraphics.h"
#include "include/core/SkPictureRecorder.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTime.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkLeanWindows.h"
#include "src/core/SkOSFile.h"
#include "src/core/SkTaskGroup.h"
#include "src/core/SkTraceEvent.h"
#include "src/utils/SkJSONWriter.h"
#include "src/utils/SkOSPath.h"
#include "src/utils/SkShaderUtils.h"
#include "tools/AutoreleasePool.h"
#include "tools/CrashHandler.h"
#include "tools/MSKPPlayer.h"
#include "tools/ProcStats.h"
#include "tools/Stats.h"
#include "tools/flags/CommonFlags.h"
#include "tools/flags/CommonFlagsConfig.h"
#include "tools/ios_utils.h"
#include "tools/trace/EventTracingPriv.h"
#include "tools/trace/SkDebugfTracer.h"
#if defined(SK_ENABLE_SVG)
#include "modules/svg/include/SkSVGDOM.h"
#include "modules/svg/include/SkSVGNode.h"
#endif
#ifdef SK_ENABLE_ANDROID_UTILS
#include "bench/BitmapRegionDecoderBench.h"
#include "client_utils/android/BitmapRegionDecoder.h"
#endif
#include <cinttypes>
#include <memory>
#include <optional>
#include <stdlib.h>
#include <thread>
extern bool gSkForceRasterPipelineBlitter;
extern bool gForceHighPrecisionRasterPipeline;
extern bool gUseSkVMBlitter;
extern bool gSkVMAllowJIT;
extern bool gSkVMJITViaDylib;
#ifndef SK_BUILD_FOR_WIN
#include <unistd.h>
#endif
#include "include/gpu/GrDirectContext.h"
#include "src/gpu/GrCaps.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/SkGr.h"
#include "tools/gpu/GrContextFactory.h"
using sk_gpu_test::ContextInfo;
using sk_gpu_test::GrContextFactory;
using sk_gpu_test::TestContext;
GrContextOptions grContextOpts;
static const int kAutoTuneLoops = 0;
static SkString loops_help_txt() {
SkString help;
help.printf("Number of times to run each bench. Set this to %d to auto-"
"tune for each bench. Timings are only reported when auto-tuning.",
kAutoTuneLoops);
return help;
}
static SkString to_string(int n) {
SkString str;
str.appendS32(n);
return str;
}
static DEFINE_int(loops, kAutoTuneLoops, loops_help_txt().c_str());
static DEFINE_int(samples, 10, "Number of samples to measure for each bench.");
static DEFINE_int(ms, 0, "If >0, run each bench for this many ms instead of obeying --samples.");
static DEFINE_int(overheadLoops, 100000, "Loops to estimate timer overhead.");
static DEFINE_double(overheadGoal, 0.0001,
"Loop until timer overhead is at most this fraction of our measurments.");
static DEFINE_double(gpuMs, 5, "Target bench time in millseconds for GPU.");
static DEFINE_int(gpuFrameLag, 5,
"If unknown, estimated maximum number of frames GPU allows to lag.");
static DEFINE_string(outResultsFile, "", "If given, write results here as JSON.");
static DEFINE_int(maxCalibrationAttempts, 3,
"Try up to this many times to guess loops for a bench, or skip the bench.");
static DEFINE_int(maxLoops, 1000000, "Never run a bench more times than this.");
static DEFINE_string(clip, "0,0,1000,1000", "Clip for SKPs.");
static DEFINE_string(scales, "1.0", "Space-separated scales for SKPs.");
static DEFINE_string(zoom, "1.0,0",
"Comma-separated zoomMax,zoomPeriodMs factors for a periodic SKP zoom "
"function that ping-pongs between 1.0 and zoomMax.");
static DEFINE_bool(bbh, true, "Build a BBH for SKPs?");
static DEFINE_bool(loopSKP, true, "Loop SKPs like we do for micro benches?");
static DEFINE_int(flushEvery, 10, "Flush --outResultsFile every Nth run.");
static DEFINE_bool(gpuStats, false, "Print GPU stats after each gpu benchmark?");
static DEFINE_bool(gpuStatsDump, false, "Dump GPU stats after each benchmark to json");
static DEFINE_bool(dmsaaStatsDump, false, "Dump DMSAA stats after each benchmark to json");
static DEFINE_bool(keepAlive, false, "Print a message every so often so that we don't time out");
static DEFINE_bool(csv, false, "Print status in CSV format");
static DEFINE_string(sourceType, "",
"Apply usual --match rules to source type: bench, gm, skp, image, etc.");
static DEFINE_string(benchType, "",
"Apply usual --match rules to bench type: micro, recording, "
"piping, playback, skcodec, etc.");
static DEFINE_bool(forceRasterPipeline, false, "sets gSkForceRasterPipelineBlitter");
static DEFINE_bool(forceRasterPipelineHP, false, "sets gSkForceRasterPipelineBlitter and gForceHighPrecisionRasterPipeline");
static DEFINE_bool(skvm, false, "sets gUseSkVMBlitter");
static DEFINE_bool(jit, true, "JIT SkVM?");
static DEFINE_bool(dylib, false, "JIT via dylib (much slower compile but easier to debug/profile)");
static DEFINE_bool2(pre_log, p, false,
"Log before running each test. May be incomprehensible when threading");
static DEFINE_bool(cpu, true, "Run CPU-bound work?");
static DEFINE_bool(gpu, true, "Run GPU-bound work?");
static DEFINE_bool(dryRun, false,
"just print the tests that would be run, without actually running them.");
static DEFINE_string(images, "",
"List of images and/or directories to decode. A directory with no images"
" is treated as a fatal error.");
static DEFINE_bool(simpleCodec, false,
"Runs of a subset of the codec tests, always N32, Premul or Opaque");
static DEFINE_string2(match, m, nullptr,
"[~][^]substring[$] [...] of name to run.\n"
"Multiple matches may be separated by spaces.\n"
"~ causes a matching name to always be skipped\n"
"^ requires the start of the name to match\n"
"$ requires the end of the name to match\n"
"^ and $ requires an exact match\n"
"If a name does not match any list entry,\n"
"it is skipped unless some list entry starts with ~");
static DEFINE_bool2(quiet, q, false, "if true, don't print status updates.");
static DEFINE_bool2(verbose, v, false, "enable verbose output from the test driver.");
static DEFINE_string(skps, "skps", "Directory to read skps from.");
static DEFINE_string(mskps, "mskps", "Directory to read mskps from.");
static DEFINE_string(svgs, "", "Directory to read SVGs from, or a single SVG file.");
static DEFINE_string(texttraces, "", "Directory to read TextBlobTrace files from.");
static DEFINE_int_2(threads, j, -1,
"Run threadsafe tests on a threadpool with this many extra threads, "
"defaulting to one extra thread per core.");
static DEFINE_string2(writePath, w, "", "If set, write bitmaps here as .pngs.");
static DEFINE_string(key, "",
"Space-separated key/value pairs to add to JSON identifying this builder.");
static DEFINE_string(properties, "",
"Space-separated key/value pairs to add to JSON identifying this run.");
static DEFINE_bool(purgeBetweenBenches, false,
"Call SkGraphics::PurgeAllCaches() between each benchmark?");
static double now_ms() { return SkTime::GetNSecs() * 1e-6; }
static SkString humanize(double ms) {
if (FLAGS_verbose) return SkStringPrintf("%" PRIu64, (uint64_t)(ms*1e6));
return HumanizeMs(ms);
}
#define HUMANIZE(ms) humanize(ms).c_str()
bool Target::init(SkImageInfo info, Benchmark* bench) {
if (Benchmark::kRaster_Backend == config.backend) {
this->surface = SkSurface::MakeRaster(info);
if (!this->surface) {
return false;
}
}
return true;
}
bool Target::capturePixels(SkBitmap* bmp) {
SkCanvas* canvas = this->getCanvas();
if (!canvas) {
return false;
}
bmp->allocPixels(canvas->imageInfo());
if (!canvas->readPixels(*bmp, 0, 0)) {
SkDebugf("Can't read canvas pixels.\n");
return false;
}
return true;
}
struct GPUTarget : public Target {
explicit GPUTarget(const Config& c) : Target(c) {}
ContextInfo contextInfo;
std::unique_ptr<GrContextFactory> factory;
~GPUTarget() override {
// For Vulkan we need to release all our refs to the GrContext before destroy the vulkan
// context which happens at the end of this destructor. Thus we need to release the surface
// here which holds a ref to the GrContext.
surface.reset();
}
void setup() override {
this->contextInfo.testContext()->makeCurrent();
// Make sure we're done with whatever came before.
this->contextInfo.testContext()->finish();
}
void endTiming() override {
if (this->contextInfo.testContext()) {
this->contextInfo.testContext()->flushAndWaitOnSync(contextInfo.directContext());
}
}
void fence() override { this->contextInfo.testContext()->finish(); }
bool needsFrameTiming(int* maxFrameLag) const override {
if (!this->contextInfo.testContext()->getMaxGpuFrameLag(maxFrameLag)) {
// Frame lag is unknown.
*maxFrameLag = FLAGS_gpuFrameLag;
}
return true;
}
bool init(SkImageInfo info, Benchmark* bench) override {
GrContextOptions options = grContextOpts;
bench->modifyGrContextOptions(&options);
this->factory = std::make_unique<GrContextFactory>(options);
SkSurfaceProps props(this->config.surfaceFlags, kRGB_H_SkPixelGeometry);
this->surface = SkSurface::MakeRenderTarget(
this->factory->get(this->config.ctxType, this->config.ctxOverrides),
SkBudgeted::kNo, info, this->config.samples, &props);
this->contextInfo =
this->factory->getContextInfo(this->config.ctxType, this->config.ctxOverrides);
if (!this->surface) {
return false;
}
if (!this->contextInfo.testContext()->fenceSyncSupport()) {
SkDebugf("WARNING: GL context for config \"%s\" does not support fence sync. "
"Timings might not be accurate.\n", this->config.name.c_str());
}
return true;
}
void dumpStats() override {
auto context = this->contextInfo.directContext();
context->priv().printCacheStats();
context->priv().printGpuStats();
context->priv().printContextStats();
}
};
static double time(int loops, Benchmark* bench, Target* target) {
SkCanvas* canvas = target->getCanvas();
if (canvas) {
canvas->clear(SK_ColorWHITE);
}
bench->preDraw(canvas);
double start = now_ms();
canvas = target->beginTiming(canvas);
bench->draw(loops, canvas);
target->endTiming();
double elapsed = now_ms() - start;
bench->postDraw(canvas);
return elapsed;
}
static double estimate_timer_overhead() {
double overhead = 0;
for (int i = 0; i < FLAGS_overheadLoops; i++) {
double start = now_ms();
overhead += now_ms() - start;
}
return overhead / FLAGS_overheadLoops;
}
static int detect_forever_loops(int loops) {
// look for a magic run-forever value
if (loops < 0) {
loops = SK_MaxS32;
}
return loops;
}
static int clamp_loops(int loops) {
if (loops < 1) {
SkDebugf("ERROR: clamping loops from %d to 1. "
"There's probably something wrong with the bench.\n", loops);
return 1;
}
if (loops > FLAGS_maxLoops) {
SkDebugf("WARNING: clamping loops from %d to FLAGS_maxLoops, %d.\n", loops, FLAGS_maxLoops);
return FLAGS_maxLoops;
}
return loops;
}
static bool write_canvas_png(Target* target, const SkString& filename) {
if (filename.isEmpty()) {
return false;
}
if (target->getCanvas() &&
kUnknown_SkColorType == target->getCanvas()->imageInfo().colorType()) {
return false;
}
SkBitmap bmp;
if (!target->capturePixels(&bmp)) {
return false;
}
SkString dir = SkOSPath::Dirname(filename.c_str());
if (!sk_mkdir(dir.c_str())) {
SkDebugf("Can't make dir %s.\n", dir.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.isValid()) {
SkDebugf("Can't write %s.\n", filename.c_str());
return false;
}
if (!SkEncodeImage(&stream, bmp, SkEncodedImageFormat::kPNG, 100)) {
SkDebugf("Can't encode a PNG.\n");
return false;
}
return true;
}
static int kFailedLoops = -2;
static int setup_cpu_bench(const double overhead, Target* target, Benchmark* bench) {
// First figure out approximately how many loops of bench it takes to make overhead negligible.
double bench_plus_overhead = 0.0;
int round = 0;
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
while (bench_plus_overhead < overhead) {
if (round++ == FLAGS_maxCalibrationAttempts) {
SkDebugf("WARNING: Can't estimate loops for %s (%s vs. %s); skipping.\n",
bench->getUniqueName(), HUMANIZE(bench_plus_overhead), HUMANIZE(overhead));
return kFailedLoops;
}
bench_plus_overhead = time(1, bench, target);
}
}
// Later we'll just start and stop the timer once but loop N times.
// We'll pick N to make timer overhead negligible:
//
// overhead
// ------------------------- < FLAGS_overheadGoal
// overhead + N * Bench Time
//
// where bench_plus_overhead ~=~ overhead + Bench Time.
//
// Doing some math, we get:
//
// (overhead / FLAGS_overheadGoal) - overhead
// ------------------------------------------ < N
// bench_plus_overhead - overhead)
//
// Luckily, this also works well in practice. :)
if (kAutoTuneLoops == loops) {
const double numer = overhead / FLAGS_overheadGoal - overhead;
const double denom = bench_plus_overhead - overhead;
loops = (int)ceil(numer / denom);
loops = clamp_loops(loops);
} else {
loops = detect_forever_loops(loops);
}
return loops;
}
static int setup_gpu_bench(Target* target, Benchmark* bench, int maxGpuFrameLag) {
// First, figure out how many loops it'll take to get a frame up to FLAGS_gpuMs.
int loops = bench->calculateLoops(FLAGS_loops);
if (kAutoTuneLoops == loops) {
loops = 1;
double elapsed = 0;
do {
if (1<<30 == loops) {
// We're about to wrap. Something's wrong with the bench.
loops = 0;
break;
}
loops *= 2;
// If the GPU lets frames lag at all, we need to make sure we're timing
// _this_ round, not still timing last round.
for (int i = 0; i < maxGpuFrameLag; i++) {
elapsed = time(loops, bench, target);
}
} while (elapsed < FLAGS_gpuMs);
// We've overshot at least a little. Scale back linearly.
loops = (int)ceil(loops * FLAGS_gpuMs / elapsed);
loops = clamp_loops(loops);
// Make sure we're not still timing our calibration.
target->fence();
} else {
loops = detect_forever_loops(loops);
}
// Pretty much the same deal as the calibration: do some warmup to make
// sure we're timing steady-state pipelined frames.
for (int i = 0; i < maxGpuFrameLag; i++) {
time(loops, bench, target);
}
return loops;
}
#define kBogusContextType GrContextFactory::kGL_ContextType
#define kBogusContextOverrides GrContextFactory::ContextOverrides::kNone
static std::optional<Config> create_config(const SkCommandLineConfig* config) {
if (const auto* gpuConfig = config->asConfigGpu()) {
if (!FLAGS_gpu) {
SkDebugf("Skipping config '%s' as requested.\n", config->getTag().c_str());
return std::nullopt;
}
const auto ctxType = gpuConfig->getContextType();
const auto ctxOverrides = gpuConfig->getContextOverrides();
const auto sampleCount = gpuConfig->getSamples();
const auto colorType = gpuConfig->getColorType();
if (gpuConfig->getSurfType() != SkCommandLineConfigGpu::SurfType::kDefault) {
SkDebugf("This tool only supports the default surface type.");
return std::nullopt;
}
GrContextFactory factory(grContextOpts);
if (const auto ctx = factory.get(ctxType, ctxOverrides)) {
GrBackendFormat format = ctx->defaultBackendFormat(colorType, GrRenderable::kYes);
int supportedSampleCount =
ctx->priv().caps()->getRenderTargetSampleCount(sampleCount, format);
if (sampleCount != supportedSampleCount) {
SkDebugf("Configuration '%s' sample count %d is not a supported sample count.\n",
config->getTag().c_str(),
sampleCount);
return std::nullopt;
}
} else {
SkDebugf("No context was available matching config '%s'.\n", config->getTag().c_str());
return std::nullopt;
}
return Config{gpuConfig->getTag(),
Benchmark::kGPU_Backend,
colorType,
kPremul_SkAlphaType,
config->refColorSpace(),
sampleCount,
ctxType,
ctxOverrides,
gpuConfig->getSurfaceFlags()};
}
#define CPU_CONFIG(name, backend, color, alpha) \
if (config->getBackend().equals(name)) { \
if (!FLAGS_cpu) { \
SkDebugf("Skipping config '%s' as requested.\n", config->getTag().c_str()); \
return std::nullopt; \
} \
return Config{SkString(name), \
Benchmark::backend, \
color, \
alpha, \
config->refColorSpace(), \
0, \
kBogusContextType, \
kBogusContextOverrides, \
0}; \
}
CPU_CONFIG("nonrendering", kNonRendering_Backend, kUnknown_SkColorType, kUnpremul_SkAlphaType)
CPU_CONFIG("a8", kRaster_Backend, kAlpha_8_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG("565", kRaster_Backend, kRGB_565_SkColorType, kOpaque_SkAlphaType)
CPU_CONFIG("8888", kRaster_Backend, kN32_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG("rgba", kRaster_Backend, kRGBA_8888_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG("bgra", kRaster_Backend, kBGRA_8888_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG("f16", kRaster_Backend, kRGBA_F16_SkColorType, kPremul_SkAlphaType)
CPU_CONFIG("srgba", kRaster_Backend, kSRGBA_8888_SkColorType, kPremul_SkAlphaType)
#undef CPU_CONFIG
SkDebugf("Unknown config '%s'.\n", config->getTag().c_str());
return std::nullopt;
}
// Append all configs that are enabled and supported.
void create_configs(SkTArray<Config>* configs) {
SkCommandLineConfigArray array;
ParseConfigs(FLAGS_config, &array);
for (int i = 0; i < array.count(); ++i) {
if (std::optional<Config> config = create_config(array[i].get())) {
configs->push_back(*config);
}
}
// If no just default configs were requested, then we're okay.
if (array.count() == 0 || FLAGS_config.count() == 0 ||
// Otherwise, make sure that all specified configs have been created.
array.count() == configs->count()) {
return;
}
exit(1);
}
// disable warning : switch statement contains default but no 'case' labels
#if defined _WIN32
#pragma warning ( push )
#pragma warning ( disable : 4065 )
#endif
// If bench is enabled for config, returns a Target* for it, otherwise nullptr.
static Target* is_enabled(Benchmark* bench, const Config& config) {
if (!bench->isSuitableFor(config.backend)) {
return nullptr;
}
SkImageInfo info = SkImageInfo::Make(bench->getSize().fX, bench->getSize().fY,
config.color, config.alpha, config.colorSpace);
Target* target = nullptr;
switch (config.backend) {
case Benchmark::kGPU_Backend:
target = new GPUTarget(config);
break;
default:
target = new Target(config);
break;
}
if (!target->init(info, bench)) {
delete target;
return nullptr;
}
return target;
}
#if defined _WIN32
#pragma warning ( pop )
#endif
#ifdef SK_ENABLE_ANDROID_UTILS
static bool valid_brd_bench(sk_sp<SkData> encoded, SkColorType colorType, uint32_t sampleSize,
uint32_t minOutputSize, int* width, int* height) {
auto brd = android::skia::BitmapRegionDecoder::Make(encoded);
if (nullptr == brd) {
// This is indicates that subset decoding is not supported for a particular image format.
return false;
}
if (sampleSize * minOutputSize > (uint32_t) brd->width() || sampleSize * minOutputSize >
(uint32_t) brd->height()) {
// This indicates that the image is not large enough to decode a
// minOutputSize x minOutputSize subset at the given sampleSize.
return false;
}
// Set the image width and height. The calling code will use this to choose subsets to decode.
*width = brd->width();
*height = brd->height();
return true;
}
#endif
static void cleanup_run(Target* target) {
delete target;
}
static void collect_files(const CommandLineFlags::StringArray& paths,
const char* ext,
SkTArray<SkString>* list) {
for (int i = 0; i < paths.count(); ++i) {
if (SkStrEndsWith(paths[i], ext)) {
list->push_back(SkString(paths[i]));
} else {
SkOSFile::Iter it(paths[i], ext);
SkString path;
while (it.next(&path)) {
list->push_back(SkOSPath::Join(paths[i], path.c_str()));
}
}
}
}
class BenchmarkStream {
public:
BenchmarkStream() : fBenches(BenchRegistry::Head())
, fGMs(skiagm::GMRegistry::Head()) {
collect_files(FLAGS_skps, ".skp", &fSKPs);
collect_files(FLAGS_mskps, ".mskp", &fMSKPs);
collect_files(FLAGS_svgs, ".svg", &fSVGs);
collect_files(FLAGS_texttraces, ".trace", &fTextBlobTraces);
if (4 != sscanf(FLAGS_clip[0], "%d,%d,%d,%d",
&fClip.fLeft, &fClip.fTop, &fClip.fRight, &fClip.fBottom)) {
SkDebugf("Can't parse %s from --clip as an SkIRect.\n", FLAGS_clip[0]);
exit(1);
}
for (int i = 0; i < FLAGS_scales.count(); i++) {
if (1 != sscanf(FLAGS_scales[i], "%f", &fScales.push_back())) {
SkDebugf("Can't parse %s from --scales as an SkScalar.\n", FLAGS_scales[i]);
exit(1);
}
}
if (2 != sscanf(FLAGS_zoom[0], "%f,%lf", &fZoomMax, &fZoomPeriodMs)) {
SkDebugf("Can't parse %s from --zoom as a zoomMax,zoomPeriodMs.\n", FLAGS_zoom[0]);
exit(1);
}
// Prepare the images for decoding
if (!CommonFlags::CollectImages(FLAGS_images, &fImages)) {
exit(1);
}
// Choose the candidate color types for image decoding
fColorTypes.push_back(kN32_SkColorType);
if (!FLAGS_simpleCodec) {
fColorTypes.push_back(kRGB_565_SkColorType);
fColorTypes.push_back(kAlpha_8_SkColorType);
fColorTypes.push_back(kGray_8_SkColorType);
}
}
static sk_sp<SkPicture> ReadPicture(const char* path) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (CommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
return nullptr;
}
std::unique_ptr<SkStream> stream = SkStream::MakeFromFile(path);
if (!stream) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
return SkPicture::MakeFromStream(stream.get());
}
static std::unique_ptr<MSKPPlayer> ReadMSKP(const char* path) {
// Not strictly necessary, as it will be checked again later,
// but helps to avoid a lot of pointless work if we're going to skip it.
if (CommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
return nullptr;
}
std::unique_ptr<SkStreamSeekable> stream = SkStream::MakeFromFile(path);
if (!stream) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
return MSKPPlayer::Make(stream.get());
}
static sk_sp<SkPicture> ReadSVGPicture(const char* path) {
if (CommandLineFlags::ShouldSkip(FLAGS_match, SkOSPath::Basename(path).c_str())) {
return nullptr;
}
sk_sp<SkData> data(SkData::MakeFromFileName(path));
if (!data) {
SkDebugf("Could not read %s.\n", path);
return nullptr;
}
#if defined(SK_ENABLE_SVG)
SkMemoryStream stream(std::move(data));
sk_sp<SkSVGDOM> svgDom = SkSVGDOM::MakeFromStream(stream);
if (!svgDom) {
SkDebugf("Could not parse %s.\n", path);
return nullptr;
}
// Use the intrinsic SVG size if available, otherwise fall back to a default value.
static const SkSize kDefaultContainerSize = SkSize::Make(128, 128);
if (svgDom->containerSize().isEmpty()) {
svgDom->setContainerSize(kDefaultContainerSize);
}
SkPictureRecorder recorder;
svgDom->render(recorder.beginRecording(svgDom->containerSize().width(),
svgDom->containerSize().height()));
return recorder.finishRecordingAsPicture();
#else
return nullptr;
#endif // defined(SK_ENABLE_SVG)
}
Benchmark* next() {
std::unique_ptr<Benchmark> bench;
do {
bench.reset(this->rawNext());
if (!bench) {
return nullptr;
}
} while (CommandLineFlags::ShouldSkip(FLAGS_sourceType, fSourceType) ||
CommandLineFlags::ShouldSkip(FLAGS_benchType, fBenchType));
return bench.release();
}
Benchmark* rawNext() {
if (fBenches) {
Benchmark* bench = fBenches->get()(nullptr);
fBenches = fBenches->next();
fSourceType = "bench";
fBenchType = "micro";
return bench;
}
while (fGMs) {
std::unique_ptr<skiagm::GM> gm = fGMs->get()();
fGMs = fGMs->next();
if (gm->runAsBench()) {
fSourceType = "gm";
fBenchType = "micro";
return new GMBench(std::move(gm));
}
}
while (fCurrentTextBlobTrace < fTextBlobTraces.count()) {
SkString path = fTextBlobTraces[fCurrentTextBlobTrace++];
SkString basename = SkOSPath::Basename(path.c_str());
static constexpr char kEnding[] = ".trace";
if (basename.endsWith(kEnding)) {
basename.remove(basename.size() - strlen(kEnding), strlen(kEnding));
}
fSourceType = "texttrace";
fBenchType = "micro";
return CreateDiffCanvasBench(
SkStringPrintf("SkDiffBench-%s", basename.c_str()),
[path](){ return SkStream::MakeFromFile(path.c_str()); });
}
// First add all .skps as RecordingBenches.
while (fCurrentRecording < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentRecording++];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "recording";
fSKPBytes = static_cast<double>(pic->approximateBytesUsed());
fSKPOps = pic->approximateOpCount();
return new RecordingBench(name.c_str(), pic.get(), FLAGS_bbh);
}
// Add all .skps as DeserializePictureBenchs.
while (fCurrentDeserialPicture < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentDeserialPicture++];
sk_sp<SkData> data = SkData::MakeFromFileName(path.c_str());
if (!data) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "deserial";
fSKPBytes = static_cast<double>(data->size());
fSKPOps = 0;
return new DeserializePictureBench(name.c_str(), std::move(data));
}
// Then once each for each scale as SKPBenches (playback).
while (fCurrentScale < fScales.count()) {
while (fCurrentSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentSKP++];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
continue;
}
if (FLAGS_bbh) {
// The SKP we read off disk doesn't have a BBH. Re-record so it grows one.
SkRTreeFactory factory;
SkPictureRecorder recorder;
pic->playback(recorder.beginRecording(pic->cullRect().width(),
pic->cullRect().height(),
&factory));
pic = recorder.finishRecordingAsPicture();
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "skp";
fBenchType = "playback";
return new SKPBench(name.c_str(), pic.get(), fClip, fScales[fCurrentScale],
FLAGS_loopSKP);
}
while (fCurrentSVG < fSVGs.count()) {
const char* path = fSVGs[fCurrentSVG++].c_str();
if (sk_sp<SkPicture> pic = ReadSVGPicture(path)) {
fSourceType = "svg";
fBenchType = "playback";
return new SKPBench(SkOSPath::Basename(path).c_str(), pic.get(), fClip,
fScales[fCurrentScale], FLAGS_loopSKP);
}
}
fCurrentSKP = 0;
fCurrentSVG = 0;
fCurrentScale++;
}
// Now loop over each skp again if we have an animation
if (fZoomMax != 1.0f && fZoomPeriodMs > 0) {
while (fCurrentAnimSKP < fSKPs.count()) {
const SkString& path = fSKPs[fCurrentAnimSKP];
sk_sp<SkPicture> pic = ReadPicture(path.c_str());
if (!pic) {
fCurrentAnimSKP++;
continue;
}
fCurrentAnimSKP++;
SkString name = SkOSPath::Basename(path.c_str());
sk_sp<SKPAnimationBench::Animation> animation =
SKPAnimationBench::MakeZoomAnimation(fZoomMax, fZoomPeriodMs);
return new SKPAnimationBench(name.c_str(), pic.get(), fClip, std::move(animation),
FLAGS_loopSKP);
}
}
// Read all MSKPs as benches
while (fCurrentMSKP < fMSKPs.count()) {
const SkString& path = fMSKPs[fCurrentMSKP++];
std::unique_ptr<MSKPPlayer> player = ReadMSKP(path.c_str());
if (!player) {
continue;
}
SkString name = SkOSPath::Basename(path.c_str());
fSourceType = "mskp";
fBenchType = "mskp";
return new MSKPBench(std::move(name), std::move(player));
}
for (; fCurrentCodec < fImages.count(); fCurrentCodec++) {
fSourceType = "image";
fBenchType = "skcodec";
const SkString& path = fImages[fCurrentCodec];
if (CommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
std::unique_ptr<SkCodec> codec(SkCodec::MakeFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
const SkColorType colorType = fColorTypes[fCurrentColorType];
SkAlphaType alphaType = codec->getInfo().alphaType();
if (FLAGS_simpleCodec) {
if (kUnpremul_SkAlphaType == alphaType) {
alphaType = kPremul_SkAlphaType;
}
fCurrentColorType++;
} else {
switch (alphaType) {
case kOpaque_SkAlphaType:
// We only need to test one alpha type (opaque).
fCurrentColorType++;
break;
case kUnpremul_SkAlphaType:
case kPremul_SkAlphaType:
if (0 == fCurrentAlphaType) {
// Test unpremul first.
alphaType = kUnpremul_SkAlphaType;
fCurrentAlphaType++;
} else {
// Test premul.
alphaType = kPremul_SkAlphaType;
fCurrentAlphaType = 0;
fCurrentColorType++;
}
break;
default:
SkASSERT(false);
fCurrentColorType++;
break;
}
}
// Make sure we can decode to this color type and alpha type.
SkImageInfo info =
codec->getInfo().makeColorType(colorType).makeAlphaType(alphaType);
const size_t rowBytes = info.minRowBytes();
SkAutoMalloc storage(info.computeByteSize(rowBytes));
const SkCodec::Result result = codec->getPixels(
info, storage.get(), rowBytes);
switch (result) {
case SkCodec::kSuccess:
case SkCodec::kIncompleteInput:
return new CodecBench(SkOSPath::Basename(path.c_str()),
encoded.get(), colorType, alphaType);
case SkCodec::kInvalidConversion:
// This is okay. Not all conversions are valid.
break;
default:
// This represents some sort of failure.
SkASSERT(false);
break;
}
}
fCurrentColorType = 0;
}
// Run AndroidCodecBenches
const int sampleSizes[] = { 2, 4, 8 };
for (; fCurrentAndroidCodec < fImages.count(); fCurrentAndroidCodec++) {
fSourceType = "image";
fBenchType = "skandroidcodec";
const SkString& path = fImages[fCurrentAndroidCodec];
if (CommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
std::unique_ptr<SkAndroidCodec> codec(SkAndroidCodec::MakeFromData(encoded));
if (!codec) {
// Nothing to time.
SkDebugf("Cannot find codec for %s\n", path.c_str());
continue;
}
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(sampleSizes)) {
int sampleSize = sampleSizes[fCurrentSampleSize];
fCurrentSampleSize++;
if (10 * sampleSize > std::min(codec->getInfo().width(), codec->getInfo().height())) {
// Avoid benchmarking scaled decodes of already small images.
break;
}
return new AndroidCodecBench(SkOSPath::Basename(path.c_str()),
encoded.get(), sampleSize);
}
fCurrentSampleSize = 0;
}
#ifdef SK_ENABLE_ANDROID_UTILS
// Run the BRDBenches
// We intend to create benchmarks that model the use cases in
// android/libraries/social/tiledimage. In this library, an image is decoded in 512x512
// tiles. The image can be translated freely, so the location of a tile may be anywhere in
// the image. For that reason, we will benchmark decodes in five representative locations
// in the image. Additionally, this use case utilizes power of two scaling, so we will
// test on power of two sample sizes. The output tile is always 512x512, so, when a
// sampleSize is used, the size of the subset that is decoded is always
// (sampleSize*512)x(sampleSize*512).
// There are a few good reasons to only test on power of two sample sizes at this time:
// All use cases we are aware of only scale by powers of two.
// PNG decodes use the indicated sampling strategy regardless of the sample size, so
// these tests are sufficient to provide good coverage of our scaling options.
const uint32_t brdSampleSizes[] = { 1, 2, 4, 8, 16 };
const uint32_t minOutputSize = 512;
for (; fCurrentBRDImage < fImages.count(); fCurrentBRDImage++) {
fSourceType = "image";
fBenchType = "BRD";
const SkString& path = fImages[fCurrentBRDImage];
if (CommandLineFlags::ShouldSkip(FLAGS_match, path.c_str())) {
continue;
}
while (fCurrentColorType < fColorTypes.count()) {
while (fCurrentSampleSize < (int) SK_ARRAY_COUNT(brdSampleSizes)) {
while (fCurrentSubsetType <= kLastSingle_SubsetType) {
sk_sp<SkData> encoded(SkData::MakeFromFileName(path.c_str()));
const SkColorType colorType = fColorTypes[fCurrentColorType];
uint32_t sampleSize = brdSampleSizes[fCurrentSampleSize];
int currentSubsetType = fCurrentSubsetType++;
int width = 0;
int height = 0;
if (!valid_brd_bench(encoded, colorType, sampleSize, minOutputSize,
&width, &height)) {
break;
}
SkString basename = SkOSPath::Basename(path.c_str());
SkIRect subset;
const uint32_t subsetSize = sampleSize * minOutputSize;
switch (currentSubsetType) {
case kTopLeft_SubsetType:
basename.append("_TopLeft");
subset = SkIRect::MakeXYWH(0, 0, subsetSize, subsetSize);
break;
case kTopRight_SubsetType:
basename.append("_TopRight");
subset = SkIRect::MakeXYWH(width - subsetSize, 0, subsetSize,
subsetSize);
break;
case kMiddle_SubsetType:
basename.append("_Middle");
subset = SkIRect::MakeXYWH((width - subsetSize) / 2,
(height - subsetSize) / 2, subsetSize, subsetSize);
break;
case kBottomLeft_SubsetType:
basename.append("_BottomLeft");
subset = SkIRect::MakeXYWH(0, height - subsetSize, subsetSize,
subsetSize);
break;
case kBottomRight_SubsetType:
basename.append("_BottomRight");
subset = SkIRect::MakeXYWH(width - subsetSize,
height - subsetSize, subsetSize, subsetSize);
break;
default:
SkASSERT(false);
}
return new BitmapRegionDecoderBench(basename.c_str(), encoded.get(),
colorType, sampleSize, subset);
}
fCurrentSubsetType = 0;
fCurrentSampleSize++;
}
fCurrentSampleSize = 0;
fCurrentColorType++;
}
fCurrentColorType = 0;
}
#endif // SK_ENABLE_ANDROID_UTILS
return nullptr;
}
void fillCurrentOptions(NanoJSONResultsWriter& log) const {
log.appendString("source_type", fSourceType);
log.appendString("bench_type", fBenchType);
if (0 == strcmp(fSourceType, "skp")) {
log.appendString("clip",
SkStringPrintf("%d %d %d %d", fClip.fLeft, fClip.fTop,
fClip.fRight, fClip.fBottom).c_str());
SkASSERT_RELEASE(fCurrentScale < fScales.count()); // debugging paranoia
log.appendString("scale", SkStringPrintf("%.2g", fScales[fCurrentScale]).c_str());
}
}
void fillCurrentMetrics(NanoJSONResultsWriter& log) const {
if (0 == strcmp(fBenchType, "recording")) {
log.appendMetric("bytes", fSKPBytes);
log.appendMetric("ops", fSKPOps);
}
}
private:
#ifdef SK_ENABLE_ANDROID_UTILS
enum SubsetType {
kTopLeft_SubsetType = 0,
kTopRight_SubsetType = 1,
kMiddle_SubsetType = 2,
kBottomLeft_SubsetType = 3,
kBottomRight_SubsetType = 4,
kTranslate_SubsetType = 5,
kZoom_SubsetType = 6,
kLast_SubsetType = kZoom_SubsetType,
kLastSingle_SubsetType = kBottomRight_SubsetType,
};
#endif
const BenchRegistry* fBenches;
const skiagm::GMRegistry* fGMs;
SkIRect fClip;
SkTArray<SkScalar> fScales;
SkTArray<SkString> fSKPs;
SkTArray<SkString> fMSKPs;
SkTArray<SkString> fSVGs;
SkTArray<SkString> fTextBlobTraces;
SkTArray<SkString> fImages;
SkTArray<SkColorType, true> fColorTypes;
SkScalar fZoomMax;
double fZoomPeriodMs;
double fSKPBytes, fSKPOps;
const char* fSourceType; // What we're benching: bench, GM, SKP, ...
const char* fBenchType; // How we bench it: micro, recording, playback, ...
int fCurrentRecording = 0;
int fCurrentDeserialPicture = 0;
int fCurrentMSKP = 0;
int fCurrentScale = 0;
int fCurrentSKP = 0;
int fCurrentSVG = 0;
int fCurrentTextBlobTrace = 0;
int fCurrentCodec = 0;
int fCurrentAndroidCodec = 0;
#ifdef SK_ENABLE_ANDROID_UTILS
int fCurrentBRDImage = 0;
int fCurrentSubsetType = 0;
#endif
int fCurrentColorType = 0;
int fCurrentAlphaType = 0;
int fCurrentSampleSize = 0;
int fCurrentAnimSKP = 0;
};
// Some runs (mostly, Valgrind) are so slow that the bot framework thinks we've hung.
// This prints something every once in a while so that it knows we're still working.
static void start_keepalive() {
static std::thread* intentionallyLeaked = new std::thread([]{
for (;;) {
static const int kSec = 1200;
#if defined(SK_BUILD_FOR_WIN)
Sleep(kSec * 1000);
#else
sleep(kSec);
#endif
SkDebugf("\nBenchmarks still running...\n");
}
});
(void)intentionallyLeaked;
}
class NanobenchShaderErrorHandler : public GrContextOptions::ShaderErrorHandler {
void compileError(const char* shader, const char* errors) override {
// Nanobench should abort if any shader can't compile. Failure is much better than
// reporting meaningless performance metrics.
std::string message = SkShaderUtils::BuildShaderErrorMessage(shader, errors);
SK_ABORT("\n%s", message.c_str());
}
};
int main(int argc, char** argv) {
CommandLineFlags::Parse(argc, argv);
initializeEventTracingForTools();
#if defined(SK_BUILD_FOR_IOS)
cd_Documents();
#endif
SetupCrashHandler();
SkAutoGraphics ag;
SkTaskGroup::Enabler enabled(FLAGS_threads);
CommonFlags::SetCtxOptions(&grContextOpts);
NanobenchShaderErrorHandler errorHandler;
grContextOpts.fShaderErrorHandler = &errorHandler;
if (kAutoTuneLoops != FLAGS_loops) {
FLAGS_samples = 1;
FLAGS_gpuFrameLag = 0;
}
if (!FLAGS_writePath.isEmpty()) {
SkDebugf("Writing files to %s.\n", FLAGS_writePath[0]);
if (!sk_mkdir(FLAGS_writePath[0])) {
SkDebugf("Could not create %s. Files won't be written.\n", FLAGS_writePath[0]);
FLAGS_writePath.set(0, nullptr);
}
}
std::unique_ptr<SkWStream> logStream(new SkNullWStream);
if (!FLAGS_outResultsFile.isEmpty()) {
#if defined(SK_RELEASE)
logStream.reset(new SkFILEWStream(FLAGS_outResultsFile[0]));
#else
SkDebugf("I'm ignoring --outResultsFile because this is a Debug build.");
return 1;
#endif
}
NanoJSONResultsWriter log(logStream.get(), SkJSONWriter::Mode::kPretty);
log.beginObject(); // root
if (1 == FLAGS_properties.count() % 2) {
SkDebugf("ERROR: --properties must be passed with an even number of arguments.\n");
return 1;
}
for (int i = 1; i < FLAGS_properties.count(); i += 2) {
log.appendString(FLAGS_properties[i-1], FLAGS_properties[i]);
}
if (1 == FLAGS_key.count() % 2) {
SkDebugf("ERROR: --key must be passed with an even number of arguments.\n");
return 1;
}
if (FLAGS_key.count()) {
log.beginObject("key");
for (int i = 1; i < FLAGS_key.count(); i += 2) {
log.appendString(FLAGS_key[i - 1], FLAGS_key[i]);
}
log.endObject(); // key
}
const double overhead = estimate_timer_overhead();
if (!FLAGS_quiet && !FLAGS_csv) {
SkDebugf("Timer overhead: %s\n", HUMANIZE(overhead));
}
SkTArray<double> samples;
if (kAutoTuneLoops != FLAGS_loops) {
SkDebugf("Fixed number of loops; times would only be misleading so we won't print them.\n");
} else if (FLAGS_quiet) {
SkDebugf("! -> high variance, ? -> moderate variance\n");
SkDebugf(" micros \tbench\n");
} else if (FLAGS_csv) {
SkDebugf("min,median,mean,max,stddev,config,bench\n");
} else if (FLAGS_ms) {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\tsamples\tconfig\tbench\n");
} else {
SkDebugf("curr/maxrss\tloops\tmin\tmedian\tmean\tmax\tstddev\t%-*s\tconfig\tbench\n",
FLAGS_samples, "samples");
}
GrRecordingContextPriv::DMSAAStats combinedDMSAAStats;
SkTArray<Config> configs;
create_configs(&configs);
if (FLAGS_keepAlive) {
start_keepalive();
}
CommonFlags::SetAnalyticAA();
gSkForceRasterPipelineBlitter = FLAGS_forceRasterPipelineHP || FLAGS_forceRasterPipeline;
gForceHighPrecisionRasterPipeline = FLAGS_forceRasterPipelineHP;
gUseSkVMBlitter = FLAGS_skvm;
gSkVMAllowJIT = FLAGS_jit;
gSkVMJITViaDylib = FLAGS_dylib;
int runs = 0;
BenchmarkStream benchStream;
log.beginObject("results");
AutoreleasePool pool;
while (Benchmark* b = benchStream.next()) {
std::unique_ptr<Benchmark> bench(b);
if (CommandLineFlags::ShouldSkip(FLAGS_match, bench->getUniqueName())) {
continue;
}
if (!configs.empty()) {
log.beginBench(bench->getUniqueName(), bench->getSize().fX, bench->getSize().fY);
bench->delayedSetup();
}
for (int i = 0; i < configs.count(); ++i) {
Target* target = is_enabled(b, configs[i]);
if (!target) {
continue;
}
// During HWUI output this canvas may be nullptr.
SkCanvas* canvas = target->getCanvas();
const char* config = target->config.name.c_str();
if (FLAGS_pre_log || FLAGS_dryRun) {
SkDebugf("Running %s\t%s\n"
, bench->getUniqueName()
, config);
if (FLAGS_dryRun) {
continue;
}
}
if (FLAGS_purgeBetweenBenches) {
SkGraphics::PurgeAllCaches();
}
TRACE_EVENT2("skia", "Benchmark", "name", TRACE_STR_COPY(bench->getUniqueName()),
"config", TRACE_STR_COPY(config));
target->setup();
bench->perCanvasPreDraw(canvas);
int maxFrameLag;
int loops = target->needsFrameTiming(&maxFrameLag)
? setup_gpu_bench(target, bench.get(), maxFrameLag)
: setup_cpu_bench(overhead, target, bench.get());
if (kFailedLoops == loops) {
// Can't be timed. A warning note has already been printed.
cleanup_run(target);
continue;
}
if (runs == 0 && FLAGS_ms < 1000) {
// Run the first bench for 1000ms to warm up the nanobench if FLAGS_ms < 1000.
// Otherwise, the first few benches' measurements will be inaccurate.
auto stop = now_ms() + 1000;
do {
time(loops, bench.get(), target);
pool.drain();
} while (now_ms() < stop);
}
if (FLAGS_ms) {
samples.reset();
auto stop = now_ms() + FLAGS_ms;
do {
samples.push_back(time(loops, bench.get(), target) / loops);
pool.drain();
} while (now_ms() < stop);
} else {
samples.reset(FLAGS_samples);
for (int s = 0; s < FLAGS_samples; s++) {
samples[s] = time(loops, bench.get(), target) / loops;
pool.drain();
}
}
// Scale each result to the benchmark's own units, time/unit.
for (double& sample : samples) {
sample *= (1.0 / bench->getUnits());
}
SkTArray<SkString> keys;
SkTArray<double> values;
if (configs[i].backend == Benchmark::kGPU_Backend) {
if (FLAGS_gpuStatsDump) {
// TODO cache stats
bench->getGpuStats(canvas, &keys, &values);
}
if (FLAGS_dmsaaStatsDump && bench->getDMSAAStats(canvas->recordingContext())) {
const auto& dmsaaStats = canvas->recordingContext()->priv().dmsaaStats();
dmsaaStats.dumpKeyValuePairs(&keys, &values);
dmsaaStats.dump();
combinedDMSAAStats.merge(dmsaaStats);
}
}
bench->perCanvasPostDraw(canvas);
if (Benchmark::kNonRendering_Backend != target->config.backend &&
!FLAGS_writePath.isEmpty() && FLAGS_writePath[0]) {
SkString pngFilename = SkOSPath::Join(FLAGS_writePath[0], config);
pngFilename = SkOSPath::Join(pngFilename.c_str(), bench->getUniqueName());
pngFilename.append(".png");
write_canvas_png(target, pngFilename);
}
// Building stats.plot often shows up in profiles,
// so skip building it when we're not going to print it anyway.
const bool want_plot = !FLAGS_quiet && !FLAGS_ms;
Stats stats(samples, want_plot);
log.beginObject(config);
log.beginObject("options");
log.appendString("name", bench->getName());
benchStream.fillCurrentOptions(log);
log.endObject(); // options
// Metrics
log.appendMetric("min_ms", stats.min);
log.appendMetric("min_ratio", sk_ieee_double_divide(stats.median, stats.min));
log.beginArray("samples");
for (double sample : samples) {
log.appendDoubleDigits(sample, 16);
}
log.endArray(); // samples
benchStream.fillCurrentMetrics(log);
if (!keys.empty()) {
// dump to json, only SKPBench currently returns valid keys / values
SkASSERT(keys.count() == values.count());
for (int j = 0; j < keys.count(); j++) {
log.appendMetric(keys[j].c_str(), values[j]);
}
}
log.endObject(); // config
if (runs++ % FLAGS_flushEvery == 0) {
log.flush();
}
if (kAutoTuneLoops != FLAGS_loops) {
if (configs.count() == 1) {
config = ""; // Only print the config if we run the same bench on more than one.
}
SkDebugf("%4d/%-4dMB\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, bench->getUniqueName()
, config);
} else if (FLAGS_quiet) {
const char* mark = " ";
const double stddev_percent =
sk_ieee_double_divide(100 * sqrt(stats.var), stats.mean);
if (stddev_percent > 5) mark = "?";
if (stddev_percent > 10) mark = "!";
SkDebugf("%10.2f %s\t%s\t%s\n",
stats.median*1e3, mark, bench->getUniqueName(), config);
} else if (FLAGS_csv) {
const double stddev_percent =
sk_ieee_double_divide(100 * sqrt(stats.var), stats.mean);
SkDebugf("%g,%g,%g,%g,%g,%s,%s\n"
, stats.min
, stats.median
, stats.mean
, stats.max
, stddev_percent
, config
, bench->getUniqueName()
);
} else {
const double stddev_percent =
sk_ieee_double_divide(100 * sqrt(stats.var), stats.mean);
SkDebugf("%4d/%-4dMB\t%d\t%s\t%s\t%s\t%s\t%.0f%%\t%s\t%s\t%s\n"
, sk_tools::getCurrResidentSetSizeMB()
, sk_tools::getMaxResidentSetSizeMB()
, loops
, HUMANIZE(stats.min)
, HUMANIZE(stats.median)
, HUMANIZE(stats.mean)
, HUMANIZE(stats.max)
, stddev_percent
, FLAGS_ms ? to_string(samples.count()).c_str() : stats.plot.c_str()
, config
, bench->getUniqueName()
);
}
if (FLAGS_gpuStats && Benchmark::kGPU_Backend == configs[i].backend) {
target->dumpStats();
}
if (FLAGS_verbose) {
SkDebugf("Samples: ");
for (int j = 0; j < samples.count(); j++) {
SkDebugf("%s ", HUMANIZE(samples[j]));
}
SkDebugf("%s\n", bench->getUniqueName());
}
cleanup_run(target);
pool.drain();
}
if (!configs.empty()) {
log.endBench();
}
}
if (FLAGS_dmsaaStatsDump) {
SkDebugf("<<Total Combined DMSAA Stats>>\n");
combinedDMSAAStats.dump();
}
SkGraphics::PurgeAllCaches();
log.beginBench("memory_usage", 0, 0);
log.beginObject("meta"); // config
log.appendS32("max_rss_mb", sk_tools::getMaxResidentSetSizeMB());
log.endObject(); // config
log.endBench();
RunSkSLMemoryBenchmarks(&log);
log.endObject(); // results
log.endObject(); // root
log.flush();
return 0;
}