| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkMalloc_DEFINED |
| #define SkMalloc_DEFINED |
| |
| #include <cstddef> |
| #include <cstring> |
| |
| #include "include/core/SkTypes.h" |
| |
| /* |
| memory wrappers to be implemented by the porting layer (platform) |
| */ |
| |
| |
| /** Free memory returned by sk_malloc(). It is safe to pass null. */ |
| SK_API extern void sk_free(void*); |
| |
| /** |
| * Called internally if we run out of memory. The platform implementation must |
| * not return, but should either throw an exception or otherwise exit. |
| */ |
| SK_API extern void sk_out_of_memory(void); |
| |
| enum { |
| /** |
| * If this bit is set, the returned buffer must be zero-initialized. If this bit is not set |
| * the buffer can be uninitialized. |
| */ |
| SK_MALLOC_ZERO_INITIALIZE = 1 << 0, |
| |
| /** |
| * If this bit is set, the implementation must throw/crash/quit if the request cannot |
| * be fulfilled. If this bit is not set, then it should return nullptr on failure. |
| */ |
| SK_MALLOC_THROW = 1 << 1, |
| }; |
| /** |
| * Return a block of memory (at least 4-byte aligned) of at least the specified size. |
| * If the requested memory cannot be returned, either return nullptr or throw/exit, depending |
| * on the SK_MALLOC_THROW bit. If the allocation succeeds, the memory will be zero-initialized |
| * if the SK_MALLOC_ZERO_INITIALIZE bit was set. |
| * |
| * To free the memory, call sk_free() |
| */ |
| SK_API extern void* sk_malloc_flags(size_t size, unsigned flags); |
| |
| /** Same as standard realloc(), but this one never returns null on failure. It will throw |
| * an exception if it fails. |
| */ |
| SK_API extern void* sk_realloc_throw(void* buffer, size_t size); |
| |
| static inline void* sk_malloc_throw(size_t size) { |
| return sk_malloc_flags(size, SK_MALLOC_THROW); |
| } |
| |
| static inline void* sk_calloc_throw(size_t size) { |
| return sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_ZERO_INITIALIZE); |
| } |
| |
| static inline void* sk_calloc_canfail(size_t size) { |
| #if defined(SK_BUILD_FOR_FUZZER) |
| // To reduce the chance of OOM, pretend we can't allocate more than 200kb. |
| if (size > 200000) { |
| return nullptr; |
| } |
| #endif |
| return sk_malloc_flags(size, SK_MALLOC_ZERO_INITIALIZE); |
| } |
| |
| // Performs a safe multiply count * elemSize, checking for overflow |
| SK_API extern void* sk_calloc_throw(size_t count, size_t elemSize); |
| SK_API extern void* sk_malloc_throw(size_t count, size_t elemSize); |
| SK_API extern void* sk_realloc_throw(void* buffer, size_t count, size_t elemSize); |
| |
| /** |
| * These variants return nullptr on failure |
| */ |
| static inline void* sk_malloc_canfail(size_t size) { |
| #if defined(SK_BUILD_FOR_FUZZER) |
| // To reduce the chance of OOM, pretend we can't allocate more than 200kb. |
| if (size > 200000) { |
| return nullptr; |
| } |
| #endif |
| return sk_malloc_flags(size, 0); |
| } |
| SK_API extern void* sk_malloc_canfail(size_t count, size_t elemSize); |
| |
| // bzero is safer than memset, but we can't rely on it, so... sk_bzero() |
| static inline void sk_bzero(void* buffer, size_t size) { |
| // Please c.f. sk_careful_memcpy. It's undefined behavior to call memset(null, 0, 0). |
| if (size) { |
| memset(buffer, 0, size); |
| } |
| } |
| |
| /** |
| * sk_careful_memcpy() is just like memcpy(), but guards against undefined behavior. |
| * |
| * It is undefined behavior to call memcpy() with null dst or src, even if len is 0. |
| * If an optimizer is "smart" enough, it can exploit this to do unexpected things. |
| * memcpy(dst, src, 0); |
| * if (src) { |
| * printf("%x\n", *src); |
| * } |
| * In this code the compiler can assume src is not null and omit the if (src) {...} check, |
| * unconditionally running the printf, crashing the program if src really is null. |
| * Of the compilers we pay attention to only GCC performs this optimization in practice. |
| */ |
| static inline void* sk_careful_memcpy(void* dst, const void* src, size_t len) { |
| // When we pass >0 len we had better already be passing valid pointers. |
| // So we just need to skip calling memcpy when len == 0. |
| if (len) { |
| memcpy(dst,src,len); |
| } |
| return dst; |
| } |
| |
| static inline void* sk_careful_memmove(void* dst, const void* src, size_t len) { |
| // When we pass >0 len we had better already be passing valid pointers. |
| // So we just need to skip calling memcpy when len == 0. |
| if (len) { |
| memmove(dst,src,len); |
| } |
| return dst; |
| } |
| |
| static inline int sk_careful_memcmp(const void* a, const void* b, size_t len) { |
| // When we pass >0 len we had better already be passing valid pointers. |
| // So we just need to skip calling memcmp when len == 0. |
| if (len == 0) { |
| return 0; // we treat zero-length buffers as "equal" |
| } |
| return memcmp(a, b, len); |
| } |
| |
| #endif // SkMalloc_DEFINED |