| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkTArray_DEFINED |
| #define SkTArray_DEFINED |
| |
| #include "include/core/SkMath.h" |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkMalloc.h" |
| #include "include/private/SkSafe32.h" |
| #include "include/private/SkTLogic.h" |
| #include "include/private/SkTemplates.h" |
| #include "include/private/SkTo.h" |
| |
| #include <string.h> |
| #include <initializer_list> |
| #include <memory> |
| #include <new> |
| #include <utility> |
| |
| /** SkTArray<T> implements a typical, mostly std::vector-like array. |
| Each T will be default-initialized on allocation, and ~T will be called on destruction. |
| |
| MEM_MOVE controls the behavior when a T needs to be moved (e.g. when the array is resized) |
| - true: T will be bit-copied via memcpy. |
| - false: T will be moved via move-constructors. |
| |
| Modern implementations of std::vector<T> will generally provide similar performance |
| characteristics when used with appropriate care. Consider using std::vector<T> in new code. |
| */ |
| template <typename T, bool MEM_MOVE = false> class SkTArray { |
| private: |
| enum ReallocType { kExactFit, kGrowing, kShrinking }; |
| |
| public: |
| using value_type = T; |
| |
| /** |
| * Creates an empty array with no initial storage |
| */ |
| SkTArray() { this->init(0); } |
| |
| /** |
| * Creates an empty array that will preallocate space for reserveCount |
| * elements. |
| */ |
| explicit SkTArray(int reserveCount) : SkTArray() { this->reserve_back(reserveCount); } |
| |
| /** |
| * Copies one array to another. The new array will be heap allocated. |
| */ |
| SkTArray(const SkTArray& that) |
| : SkTArray(that.fItemArray, that.fCount) {} |
| |
| SkTArray(SkTArray&& that) { |
| if (that.fOwnMemory) { |
| fItemArray = that.fItemArray; |
| fCount = that.fCount; |
| fAllocCount = that.fAllocCount; |
| fOwnMemory = true; |
| fReserved = that.fReserved; |
| |
| that.fItemArray = nullptr; |
| that.fCount = 0; |
| that.fAllocCount = 0; |
| that.fOwnMemory = true; |
| that.fReserved = false; |
| } else { |
| this->init(that.fCount); |
| that.move(fItemArray); |
| that.fCount = 0; |
| } |
| } |
| |
| /** |
| * Creates a SkTArray by copying contents of a standard C array. The new |
| * array will be heap allocated. Be careful not to use this constructor |
| * when you really want the (void*, int) version. |
| */ |
| SkTArray(const T* array, int count) { |
| this->init(count); |
| this->copy(array); |
| } |
| /** |
| * Creates a SkTArray by copying contents of an initializer list. |
| */ |
| SkTArray(std::initializer_list<T> data) |
| : SkTArray(data.begin(), data.size()) {} |
| |
| SkTArray& operator=(const SkTArray& that) { |
| if (this == &that) { |
| return *this; |
| } |
| for (int i = 0; i < this->count(); ++i) { |
| fItemArray[i].~T(); |
| } |
| fCount = 0; |
| this->checkRealloc(that.count(), kExactFit); |
| fCount = that.fCount; |
| this->copy(that.fItemArray); |
| return *this; |
| } |
| SkTArray& operator=(SkTArray&& that) { |
| if (this == &that) { |
| return *this; |
| } |
| for (int i = 0; i < this->count(); ++i) { |
| fItemArray[i].~T(); |
| } |
| fCount = 0; |
| this->checkRealloc(that.count(), kExactFit); |
| fCount = that.fCount; |
| that.move(fItemArray); |
| that.fCount = 0; |
| return *this; |
| } |
| |
| ~SkTArray() { |
| for (int i = 0; i < this->count(); ++i) { |
| fItemArray[i].~T(); |
| } |
| if (fOwnMemory) { |
| sk_free(fItemArray); |
| } |
| } |
| |
| /** |
| * Resets to count() == 0 and resets any reserve count. |
| */ |
| void reset() { |
| this->pop_back_n(fCount); |
| fReserved = false; |
| } |
| |
| /** |
| * Resets to count() = n newly constructed T objects and resets any reserve count. |
| */ |
| void reset(int n) { |
| SkASSERT(n >= 0); |
| for (int i = 0; i < this->count(); ++i) { |
| fItemArray[i].~T(); |
| } |
| // Set fCount to 0 before calling checkRealloc so that no elements are moved. |
| fCount = 0; |
| this->checkRealloc(n, kExactFit); |
| fCount = n; |
| for (int i = 0; i < this->count(); ++i) { |
| new (fItemArray + i) T; |
| } |
| fReserved = false; |
| } |
| |
| /** |
| * Resets to a copy of a C array and resets any reserve count. |
| */ |
| void reset(const T* array, int count) { |
| for (int i = 0; i < this->count(); ++i) { |
| fItemArray[i].~T(); |
| } |
| fCount = 0; |
| this->checkRealloc(count, kExactFit); |
| fCount = count; |
| this->copy(array); |
| fReserved = false; |
| } |
| |
| /** |
| * Ensures there is enough reserved space for n additional elements. The is guaranteed at least |
| * until the array size grows above n and subsequently shrinks below n, any version of reset() |
| * is called, or reserve_back() is called again. |
| */ |
| void reserve_back(int n) { |
| SkASSERT(n >= 0); |
| if (n > 0) { |
| this->checkRealloc(n, kExactFit); |
| fReserved = fOwnMemory; |
| } else { |
| fReserved = false; |
| } |
| } |
| |
| void removeShuffle(int n) { |
| SkASSERT(n < this->count()); |
| int newCount = fCount - 1; |
| fCount = newCount; |
| fItemArray[n].~T(); |
| if (n != newCount) { |
| this->move(n, newCount); |
| } |
| } |
| |
| /** |
| * Number of elements in the array. |
| */ |
| int count() const { return fCount; } |
| |
| /** |
| * Is the array empty. |
| */ |
| bool empty() const { return !fCount; } |
| |
| /** |
| * Adds 1 new default-initialized T value and returns it by reference. Note |
| * the reference only remains valid until the next call that adds or removes |
| * elements. |
| */ |
| T& push_back() { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T; |
| } |
| |
| /** |
| * Version of above that uses a copy constructor to initialize the new item |
| */ |
| T& push_back(const T& t) { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T(t); |
| } |
| |
| /** |
| * Version of above that uses a move constructor to initialize the new item |
| */ |
| T& push_back(T&& t) { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T(std::move(t)); |
| } |
| |
| /** |
| * Construct a new T at the back of this array. |
| */ |
| template<class... Args> T& emplace_back(Args&&... args) { |
| void* newT = this->push_back_raw(1); |
| return *new (newT) T(std::forward<Args>(args)...); |
| } |
| |
| /** |
| * Allocates n more default-initialized T values, and returns the address of |
| * the start of that new range. Note: this address is only valid until the |
| * next API call made on the array that might add or remove elements. |
| */ |
| T* push_back_n(int n) { |
| SkASSERT(n >= 0); |
| void* newTs = this->push_back_raw(n); |
| for (int i = 0; i < n; ++i) { |
| new (static_cast<char*>(newTs) + i * sizeof(T)) T; |
| } |
| return static_cast<T*>(newTs); |
| } |
| |
| /** |
| * Version of above that uses a copy constructor to initialize all n items |
| * to the same T. |
| */ |
| T* push_back_n(int n, const T& t) { |
| SkASSERT(n >= 0); |
| void* newTs = this->push_back_raw(n); |
| for (int i = 0; i < n; ++i) { |
| new (static_cast<char*>(newTs) + i * sizeof(T)) T(t); |
| } |
| return static_cast<T*>(newTs); |
| } |
| |
| /** |
| * Version of above that uses a copy constructor to initialize the n items |
| * to separate T values. |
| */ |
| T* push_back_n(int n, const T t[]) { |
| SkASSERT(n >= 0); |
| this->checkRealloc(n, kGrowing); |
| for (int i = 0; i < n; ++i) { |
| new (fItemArray + fCount + i) T(t[i]); |
| } |
| fCount += n; |
| return fItemArray + fCount - n; |
| } |
| |
| /** |
| * Version of above that uses the move constructor to set n items. |
| */ |
| T* move_back_n(int n, T* t) { |
| SkASSERT(n >= 0); |
| this->checkRealloc(n, kGrowing); |
| for (int i = 0; i < n; ++i) { |
| new (fItemArray + fCount + i) T(std::move(t[i])); |
| } |
| fCount += n; |
| return fItemArray + fCount - n; |
| } |
| |
| /** |
| * Removes the last element. Not safe to call when count() == 0. |
| */ |
| void pop_back() { |
| SkASSERT(fCount > 0); |
| --fCount; |
| fItemArray[fCount].~T(); |
| this->checkRealloc(0, kShrinking); |
| } |
| |
| /** |
| * Removes the last n elements. Not safe to call when count() < n. |
| */ |
| void pop_back_n(int n) { |
| SkASSERT(n >= 0); |
| SkASSERT(this->count() >= n); |
| fCount -= n; |
| for (int i = 0; i < n; ++i) { |
| fItemArray[fCount + i].~T(); |
| } |
| this->checkRealloc(0, kShrinking); |
| } |
| |
| /** |
| * Pushes or pops from the back to resize. Pushes will be default |
| * initialized. |
| */ |
| void resize_back(int newCount) { |
| SkASSERT(newCount >= 0); |
| |
| if (newCount > this->count()) { |
| this->push_back_n(newCount - fCount); |
| } else if (newCount < this->count()) { |
| this->pop_back_n(fCount - newCount); |
| } |
| } |
| |
| /** Swaps the contents of this array with that array. Does a pointer swap if possible, |
| otherwise copies the T values. */ |
| void swap(SkTArray& that) { |
| using std::swap; |
| if (this == &that) { |
| return; |
| } |
| if (fOwnMemory && that.fOwnMemory) { |
| swap(fItemArray, that.fItemArray); |
| |
| auto count = fCount; |
| fCount = that.fCount; |
| that.fCount = count; |
| |
| auto allocCount = fAllocCount; |
| fAllocCount = that.fAllocCount; |
| that.fAllocCount = allocCount; |
| } else { |
| // This could be more optimal... |
| SkTArray copy(std::move(that)); |
| that = std::move(*this); |
| *this = std::move(copy); |
| } |
| } |
| |
| T* begin() { |
| return fItemArray; |
| } |
| const T* begin() const { |
| return fItemArray; |
| } |
| T* end() { |
| return fItemArray ? fItemArray + fCount : nullptr; |
| } |
| const T* end() const { |
| return fItemArray ? fItemArray + fCount : nullptr; |
| } |
| T* data() { return fItemArray; } |
| const T* data() const { return fItemArray; } |
| size_t size() const { return (size_t)fCount; } |
| void resize(size_t count) { this->resize_back((int)count); } |
| |
| /** |
| * Get the i^th element. |
| */ |
| T& operator[] (int i) { |
| SkASSERT(i < this->count()); |
| SkASSERT(i >= 0); |
| return fItemArray[i]; |
| } |
| |
| const T& operator[] (int i) const { |
| SkASSERT(i < this->count()); |
| SkASSERT(i >= 0); |
| return fItemArray[i]; |
| } |
| |
| T& at(int i) { return (*this)[i]; } |
| const T& at(int i) const { return (*this)[i]; } |
| |
| /** |
| * equivalent to operator[](0) |
| */ |
| T& front() { SkASSERT(fCount > 0); return fItemArray[0];} |
| |
| const T& front() const { SkASSERT(fCount > 0); return fItemArray[0];} |
| |
| /** |
| * equivalent to operator[](count() - 1) |
| */ |
| T& back() { SkASSERT(fCount); return fItemArray[fCount - 1];} |
| |
| const T& back() const { SkASSERT(fCount > 0); return fItemArray[fCount - 1];} |
| |
| /** |
| * equivalent to operator[](count()-1-i) |
| */ |
| T& fromBack(int i) { |
| SkASSERT(i >= 0); |
| SkASSERT(i < this->count()); |
| return fItemArray[fCount - i - 1]; |
| } |
| |
| const T& fromBack(int i) const { |
| SkASSERT(i >= 0); |
| SkASSERT(i < this->count()); |
| return fItemArray[fCount - i - 1]; |
| } |
| |
| bool operator==(const SkTArray<T, MEM_MOVE>& right) const { |
| int leftCount = this->count(); |
| if (leftCount != right.count()) { |
| return false; |
| } |
| for (int index = 0; index < leftCount; ++index) { |
| if (fItemArray[index] != right.fItemArray[index]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool operator!=(const SkTArray<T, MEM_MOVE>& right) const { |
| return !(*this == right); |
| } |
| |
| int capacity() const { |
| return fAllocCount; |
| } |
| |
| protected: |
| /** |
| * Creates an empty array that will use the passed storage block until it |
| * is insufficiently large to hold the entire array. |
| */ |
| template <int N> |
| SkTArray(SkAlignedSTStorage<N,T>* storage) { |
| this->initWithPreallocatedStorage(0, storage->get(), N); |
| } |
| |
| /** |
| * Copy a C array, using preallocated storage if preAllocCount >= |
| * count. Otherwise storage will only be used when array shrinks |
| * to fit. |
| */ |
| template <int N> |
| SkTArray(const T* array, int count, SkAlignedSTStorage<N,T>* storage) { |
| this->initWithPreallocatedStorage(count, storage->get(), N); |
| this->copy(array); |
| } |
| |
| private: |
| void init(int count) { |
| fCount = SkToU32(count); |
| if (!count) { |
| fAllocCount = 0; |
| fItemArray = nullptr; |
| } else { |
| fAllocCount = SkToU32(std::max(count, kMinHeapAllocCount)); |
| fItemArray = (T*)sk_malloc_throw((size_t)fAllocCount, sizeof(T)); |
| } |
| fOwnMemory = true; |
| fReserved = false; |
| } |
| |
| void initWithPreallocatedStorage(int count, void* preallocStorage, int preallocCount) { |
| SkASSERT(count >= 0); |
| SkASSERT(preallocCount > 0); |
| SkASSERT(preallocStorage); |
| fCount = count; |
| fItemArray = nullptr; |
| fReserved = false; |
| if (count > preallocCount) { |
| fAllocCount = std::max(count, kMinHeapAllocCount); |
| fItemArray = (T*)sk_malloc_throw(fAllocCount, sizeof(T)); |
| fOwnMemory = true; |
| } else { |
| fAllocCount = preallocCount; |
| fItemArray = (T*)preallocStorage; |
| fOwnMemory = false; |
| } |
| } |
| |
| /** In the following move and copy methods, 'dst' is assumed to be uninitialized raw storage. |
| * In the following move methods, 'src' is destroyed leaving behind uninitialized raw storage. |
| */ |
| void copy(const T* src) { |
| // Some types may be trivially copyable, in which case we *could* use memcopy; but |
| // MEM_MOVE == true implies that the type is trivially movable, and not necessarily |
| // trivially copyable (think sk_sp<>). So short of adding another template arg, we |
| // must be conservative and use copy construction. |
| for (int i = 0; i < this->count(); ++i) { |
| new (fItemArray + i) T(src[i]); |
| } |
| } |
| |
| template <bool E = MEM_MOVE> std::enable_if_t<E, void> move(int dst, int src) { |
| memcpy(&fItemArray[dst], &fItemArray[src], sizeof(T)); |
| } |
| template <bool E = MEM_MOVE> std::enable_if_t<E, void> move(void* dst) { |
| sk_careful_memcpy(dst, fItemArray, fCount * sizeof(T)); |
| } |
| |
| template <bool E = MEM_MOVE> std::enable_if_t<!E, void> move(int dst, int src) { |
| new (&fItemArray[dst]) T(std::move(fItemArray[src])); |
| fItemArray[src].~T(); |
| } |
| template <bool E = MEM_MOVE> std::enable_if_t<!E, void> move(void* dst) { |
| for (int i = 0; i < this->count(); ++i) { |
| new (static_cast<char*>(dst) + sizeof(T) * (size_t)i) T(std::move(fItemArray[i])); |
| fItemArray[i].~T(); |
| } |
| } |
| |
| static constexpr int kMinHeapAllocCount = 8; |
| |
| // Helper function that makes space for n objects, adjusts the count, but does not initialize |
| // the new objects. |
| void* push_back_raw(int n) { |
| this->checkRealloc(n, kGrowing); |
| void* ptr = fItemArray + fCount; |
| fCount += n; |
| return ptr; |
| } |
| |
| void checkRealloc(int delta, ReallocType reallocType) { |
| SkASSERT(fCount >= 0); |
| SkASSERT(fAllocCount >= 0); |
| SkASSERT(-delta <= this->count()); |
| |
| // Move into 64bit math temporarily, to avoid local overflows |
| int64_t newCount = fCount + delta; |
| |
| // We allow fAllocCount to be in the range [newCount, 3*newCount]. We also never shrink |
| // when we're currently using preallocated memory, would allocate less than |
| // kMinHeapAllocCount, or a reserve count was specified that has yet to be exceeded. |
| bool mustGrow = newCount > fAllocCount; |
| bool shouldShrink = fAllocCount > 3 * newCount && fOwnMemory && !fReserved; |
| if (!mustGrow && !shouldShrink) { |
| return; |
| } |
| |
| int64_t newAllocCount = newCount; |
| if (reallocType != kExactFit) { |
| // Whether we're growing or shrinking, leave at least 50% extra space for future growth. |
| newAllocCount += ((newCount + 1) >> 1); |
| // Align the new allocation count to kMinHeapAllocCount. |
| static_assert(SkIsPow2(kMinHeapAllocCount), "min alloc count not power of two."); |
| newAllocCount = (newAllocCount + (kMinHeapAllocCount - 1)) & ~(kMinHeapAllocCount - 1); |
| } |
| |
| // At small sizes the old and new alloc count can both be kMinHeapAllocCount. |
| if (newAllocCount == fAllocCount) { |
| return; |
| } |
| |
| fAllocCount = SkToU32(Sk64_pin_to_s32(newAllocCount)); |
| SkASSERT(fAllocCount >= newCount); |
| T* newItemArray = (T*)sk_malloc_throw((size_t)fAllocCount, sizeof(T)); |
| this->move(newItemArray); |
| if (fOwnMemory) { |
| sk_free(fItemArray); |
| } |
| fItemArray = newItemArray; |
| fOwnMemory = true; |
| fReserved = false; |
| } |
| |
| T* fItemArray; |
| uint32_t fOwnMemory : 1; |
| uint32_t fCount : 31; |
| uint32_t fReserved : 1; |
| uint32_t fAllocCount : 31; |
| }; |
| |
| template <typename T, bool M> static inline void swap(SkTArray<T, M>& a, SkTArray<T, M>& b) { |
| a.swap(b); |
| } |
| |
| template<typename T, bool MEM_MOVE> constexpr int SkTArray<T, MEM_MOVE>::kMinHeapAllocCount; |
| |
| /** |
| * Subclass of SkTArray that contains a preallocated memory block for the array. |
| */ |
| template <int N, typename T, bool MEM_MOVE = false> |
| class SkSTArray : private SkAlignedSTStorage<N,T>, public SkTArray<T, MEM_MOVE> { |
| private: |
| using STORAGE = SkAlignedSTStorage<N,T>; |
| using INHERITED = SkTArray<T, MEM_MOVE>; |
| |
| public: |
| SkSTArray() |
| : STORAGE{}, INHERITED(static_cast<STORAGE*>(this)) {} |
| |
| SkSTArray(const T* array, int count) |
| : STORAGE{}, INHERITED(array, count, static_cast<STORAGE*>(this)) {} |
| |
| SkSTArray(std::initializer_list<T> data) |
| : SkSTArray(data.begin(), data.size()) {} |
| |
| explicit SkSTArray(int reserveCount) |
| : SkSTArray() { |
| this->reserve_back(reserveCount); |
| } |
| |
| SkSTArray (const SkSTArray& that) : SkSTArray() { *this = that; } |
| explicit SkSTArray(const INHERITED& that) : SkSTArray() { *this = that; } |
| SkSTArray ( SkSTArray&& that) : SkSTArray() { *this = std::move(that); } |
| explicit SkSTArray( INHERITED&& that) : SkSTArray() { *this = std::move(that); } |
| |
| SkSTArray& operator=(const SkSTArray& that) { |
| INHERITED::operator=(that); |
| return *this; |
| } |
| SkSTArray& operator=(const INHERITED& that) { |
| INHERITED::operator=(that); |
| return *this; |
| } |
| |
| SkSTArray& operator=(SkSTArray&& that) { |
| INHERITED::operator=(std::move(that)); |
| return *this; |
| } |
| SkSTArray& operator=(INHERITED&& that) { |
| INHERITED::operator=(std::move(that)); |
| return *this; |
| } |
| }; |
| |
| #endif |