| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkTDArray_DEFINED |
| #define SkTDArray_DEFINED |
| |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkMalloc.h" |
| #include "include/private/SkTo.h" |
| |
| #include <algorithm> |
| #include <initializer_list> |
| #include <utility> |
| |
| /** SkTDArray<T> implements a std::vector-like array for raw data-only objects that do not require |
| construction or destruction. The constructor and destructor for T will not be called; T objects |
| will always be moved via raw memcpy. Newly created T objects will contain uninitialized memory. |
| |
| In most cases, std::vector<T> can provide a similar level of performance for POD objects when |
| used with appropriate care. In new code, consider std::vector<T> instead. |
| */ |
| template <typename T> class SkTDArray { |
| public: |
| SkTDArray() : fArray(nullptr), fReserve(0), fCount(0) {} |
| SkTDArray(const T src[], int count) { |
| SkASSERT(src || count == 0); |
| |
| fReserve = fCount = 0; |
| fArray = nullptr; |
| if (count) { |
| fArray = (T*)sk_malloc_throw(SkToSizeT(count) * sizeof(T)); |
| memcpy(fArray, src, sizeof(T) * SkToSizeT(count)); |
| fReserve = fCount = count; |
| } |
| } |
| SkTDArray(const std::initializer_list<T>& list) : SkTDArray(list.begin(), list.size()) {} |
| SkTDArray(const SkTDArray<T>& src) : fArray(nullptr), fReserve(0), fCount(0) { |
| SkTDArray<T> tmp(src.fArray, src.fCount); |
| this->swap(tmp); |
| } |
| SkTDArray(SkTDArray<T>&& src) : fArray(nullptr), fReserve(0), fCount(0) { |
| this->swap(src); |
| } |
| ~SkTDArray() { |
| sk_free(fArray); |
| } |
| |
| SkTDArray<T>& operator=(const SkTDArray<T>& src) { |
| if (this != &src) { |
| if (src.fCount > fReserve) { |
| SkTDArray<T> tmp(src.fArray, src.fCount); |
| this->swap(tmp); |
| } else { |
| sk_careful_memcpy(fArray, src.fArray, sizeof(T) * SkToSizeT(src.fCount)); |
| fCount = src.fCount; |
| } |
| } |
| return *this; |
| } |
| SkTDArray<T>& operator=(SkTDArray<T>&& src) { |
| if (this != &src) { |
| this->swap(src); |
| src.reset(); |
| } |
| return *this; |
| } |
| |
| friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
| return a.fCount == b.fCount && |
| (a.fCount == 0 || |
| !memcmp(a.fArray, b.fArray, SkToSizeT(a.fCount) * sizeof(T))); |
| } |
| friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) { |
| return !(a == b); |
| } |
| |
| void swap(SkTDArray<T>& that) { |
| using std::swap; |
| swap(fArray, that.fArray); |
| swap(fReserve, that.fReserve); |
| swap(fCount, that.fCount); |
| } |
| |
| bool isEmpty() const { return fCount == 0; } |
| bool empty() const { return this->isEmpty(); } |
| |
| /** |
| * Return the number of elements in the array |
| */ |
| int count() const { return fCount; } |
| size_t size() const { return fCount; } |
| |
| /** |
| * Return the total number of elements allocated. |
| * reserved() - count() gives you the number of elements you can add |
| * without causing an allocation. |
| */ |
| int reserved() const { return fReserve; } |
| |
| /** |
| * return the number of bytes in the array: count * sizeof(T) |
| */ |
| size_t bytes() const { return fCount * sizeof(T); } |
| |
| T* begin() { return fArray; } |
| const T* begin() const { return fArray; } |
| T* end() { return fArray ? fArray + fCount : nullptr; } |
| const T* end() const { return fArray ? fArray + fCount : nullptr; } |
| |
| T& operator[](int index) { |
| SkASSERT(index < fCount); |
| return fArray[index]; |
| } |
| const T& operator[](int index) const { |
| SkASSERT(index < fCount); |
| return fArray[index]; |
| } |
| |
| T& getAt(int index) { |
| return (*this)[index]; |
| } |
| |
| const T& back() const { SkASSERT(fCount > 0); return fArray[fCount-1]; } |
| T& back() { SkASSERT(fCount > 0); return fArray[fCount-1]; } |
| |
| void reset() { |
| if (fArray) { |
| sk_free(fArray); |
| fArray = nullptr; |
| fReserve = fCount = 0; |
| } else { |
| SkASSERT(fReserve == 0 && fCount == 0); |
| } |
| } |
| |
| void rewind() { |
| // same as setCount(0) |
| fCount = 0; |
| } |
| |
| /** |
| * Sets the number of elements in the array. |
| * If the array does not have space for count elements, it will increase |
| * the storage allocated to some amount greater than that required. |
| * It will never shrink the storage. |
| */ |
| void setCount(int count) { |
| SkASSERT(count >= 0); |
| if (count > fReserve) { |
| this->resizeStorageToAtLeast(count); |
| } |
| fCount = count; |
| } |
| |
| void setReserve(int reserve) { |
| SkASSERT(reserve >= 0); |
| if (reserve > fReserve) { |
| this->resizeStorageToAtLeast(reserve); |
| } |
| } |
| void reserve(size_t n) { |
| SkASSERT_RELEASE(SkTFitsIn<int>(n)); |
| this->setReserve(SkToInt(n)); |
| } |
| |
| T* prepend() { |
| this->adjustCount(1); |
| memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T)); |
| return fArray; |
| } |
| |
| T* append() { |
| return this->append(1, nullptr); |
| } |
| T* append(int count, const T* src = nullptr) { |
| int oldCount = fCount; |
| if (count) { |
| SkASSERT(src == nullptr || fArray == nullptr || |
| src + count <= fArray || fArray + oldCount <= src); |
| |
| this->adjustCount(count); |
| if (src) { |
| memcpy(fArray + oldCount, src, sizeof(T) * count); |
| } |
| } |
| return fArray + oldCount; |
| } |
| |
| T* insert(int index) { |
| return this->insert(index, 1, nullptr); |
| } |
| T* insert(int index, int count, const T* src = nullptr) { |
| SkASSERT(count); |
| SkASSERT(index <= fCount); |
| size_t oldCount = fCount; |
| this->adjustCount(count); |
| T* dst = fArray + index; |
| memmove(dst + count, dst, sizeof(T) * (oldCount - index)); |
| if (src) { |
| memcpy(dst, src, sizeof(T) * count); |
| } |
| return dst; |
| } |
| |
| void remove(int index, int count = 1) { |
| SkASSERT(index + count <= fCount); |
| fCount = fCount - count; |
| memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index)); |
| } |
| |
| void removeShuffle(int index) { |
| SkASSERT(index < fCount); |
| int newCount = fCount - 1; |
| fCount = newCount; |
| if (index != newCount) { |
| memcpy(fArray + index, fArray + newCount, sizeof(T)); |
| } |
| } |
| |
| int find(const T& elem) const { |
| const T* iter = fArray; |
| const T* stop = fArray + fCount; |
| |
| for (; iter < stop; iter++) { |
| if (*iter == elem) { |
| return SkToInt(iter - fArray); |
| } |
| } |
| return -1; |
| } |
| |
| int rfind(const T& elem) const { |
| const T* iter = fArray + fCount; |
| const T* stop = fArray; |
| |
| while (iter > stop) { |
| if (*--iter == elem) { |
| return SkToInt(iter - stop); |
| } |
| } |
| return -1; |
| } |
| |
| /** |
| * Returns true iff the array contains this element. |
| */ |
| bool contains(const T& elem) const { |
| return (this->find(elem) >= 0); |
| } |
| |
| /** |
| * Copies up to max elements into dst. The number of items copied is |
| * capped by count - index. The actual number copied is returned. |
| */ |
| int copyRange(T* dst, int index, int max) const { |
| SkASSERT(max >= 0); |
| SkASSERT(!max || dst); |
| if (index >= fCount) { |
| return 0; |
| } |
| int count = std::min(max, fCount - index); |
| memcpy(dst, fArray + index, sizeof(T) * count); |
| return count; |
| } |
| |
| void copy(T* dst) const { |
| this->copyRange(dst, 0, fCount); |
| } |
| |
| // routines to treat the array like a stack |
| void push_back(const T& v) { *this->append() = v; } |
| T* push() { return this->append(); } |
| const T& top() const { return (*this)[fCount - 1]; } |
| T& top() { return (*this)[fCount - 1]; } |
| void pop(T* elem) { SkASSERT(fCount > 0); if (elem) *elem = (*this)[fCount - 1]; --fCount; } |
| void pop() { SkASSERT(fCount > 0); --fCount; } |
| |
| void deleteAll() { |
| T* iter = fArray; |
| T* stop = fArray + fCount; |
| while (iter < stop) { |
| delete *iter; |
| iter += 1; |
| } |
| this->reset(); |
| } |
| |
| void freeAll() { |
| T* iter = fArray; |
| T* stop = fArray + fCount; |
| while (iter < stop) { |
| sk_free(*iter); |
| iter += 1; |
| } |
| this->reset(); |
| } |
| |
| void unrefAll() { |
| T* iter = fArray; |
| T* stop = fArray + fCount; |
| while (iter < stop) { |
| (*iter)->unref(); |
| iter += 1; |
| } |
| this->reset(); |
| } |
| |
| void safeUnrefAll() { |
| T* iter = fArray; |
| T* stop = fArray + fCount; |
| while (iter < stop) { |
| SkSafeUnref(*iter); |
| iter += 1; |
| } |
| this->reset(); |
| } |
| |
| #ifdef SK_DEBUG |
| void validate() const { |
| SkASSERT((fReserve == 0 && fArray == nullptr) || |
| (fReserve > 0 && fArray != nullptr)); |
| SkASSERT(fCount <= fReserve); |
| } |
| #endif |
| |
| void shrinkToFit() { |
| if (fReserve != fCount) { |
| SkASSERT(fReserve > fCount); |
| fReserve = fCount; |
| fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); |
| } |
| } |
| |
| private: |
| T* fArray; |
| int fReserve; // size of the allocation in fArray (#elements) |
| int fCount; // logical number of elements (fCount <= fReserve) |
| |
| /** |
| * Adjusts the number of elements in the array. |
| * This is the same as calling setCount(count() + delta). |
| */ |
| void adjustCount(int delta) { |
| SkASSERT(delta > 0); |
| |
| // We take care to avoid overflow here. |
| // The sum of fCount and delta is at most 4294967294, which fits fine in uint32_t. |
| uint32_t count = (uint32_t)fCount + (uint32_t)delta; |
| SkASSERT_RELEASE( SkTFitsIn<int>(count) ); |
| |
| this->setCount(SkTo<int>(count)); |
| } |
| |
| /** |
| * Increase the storage allocation such that it can hold (fCount + extra) |
| * elements. |
| * It never shrinks the allocation, and it may increase the allocation by |
| * more than is strictly required, based on a private growth heuristic. |
| * |
| * note: does NOT modify fCount |
| */ |
| void resizeStorageToAtLeast(int count) { |
| SkASSERT(count > fReserve); |
| |
| // We take care to avoid overflow here. |
| // The maximum value we can get for reserve here is 2684354563, which fits in uint32_t. |
| uint32_t reserve = (uint32_t)count + 4; |
| reserve += reserve / 4; |
| SkASSERT_RELEASE( SkTFitsIn<int>(reserve) ); |
| |
| fReserve = SkTo<int>(reserve); |
| fArray = (T*)sk_realloc_throw(fArray, (size_t)fReserve * sizeof(T)); |
| } |
| }; |
| |
| template <typename T> static inline void swap(SkTDArray<T>& a, SkTDArray<T>& b) { |
| a.swap(b); |
| } |
| |
| #endif |