| /* |
| * Copyright 2015 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkTHash_DEFINED |
| #define SkTHash_DEFINED |
| |
| #include "include/core/SkTypes.h" |
| #include "include/private/SkChecksum.h" |
| #include "include/private/SkTemplates.h" |
| #include <new> |
| #include <utility> |
| |
| // Before trying to use SkTHashTable, look below to see if SkTHashMap or SkTHashSet works for you. |
| // They're easier to use, usually perform the same, and have fewer sharp edges. |
| |
| // T and K are treated as ordinary copyable C++ types. |
| // Traits must have: |
| // - static K GetKey(T) |
| // - static uint32_t Hash(K) |
| // If the key is large and stored inside T, you may want to make K a const&. |
| // Similarly, if T is large you might want it to be a pointer. |
| template <typename T, typename K, typename Traits = T> |
| class SkTHashTable { |
| public: |
| SkTHashTable() = default; |
| ~SkTHashTable() = default; |
| |
| SkTHashTable(const SkTHashTable& that) { *this = that; } |
| SkTHashTable( SkTHashTable&& that) { *this = std::move(that); } |
| |
| SkTHashTable& operator=(const SkTHashTable& that) { |
| if (this != &that) { |
| fCount = that.fCount; |
| fCapacity = that.fCapacity; |
| fSlots.reset(that.fCapacity); |
| for (int i = 0; i < fCapacity; i++) { |
| fSlots[i] = that.fSlots[i]; |
| } |
| } |
| return *this; |
| } |
| |
| SkTHashTable& operator=(SkTHashTable&& that) { |
| if (this != &that) { |
| fCount = that.fCount; |
| fCapacity = that.fCapacity; |
| fSlots = std::move(that.fSlots); |
| |
| that.fCount = that.fCapacity = 0; |
| } |
| return *this; |
| } |
| |
| // Clear the table. |
| void reset() { *this = SkTHashTable(); } |
| |
| // How many entries are in the table? |
| int count() const { return fCount; } |
| |
| // How many slots does the table contain? (Note that unlike an array, hash tables can grow |
| // before reaching 100% capacity.) |
| int capacity() const { return fCapacity; } |
| |
| // Approximately how many bytes of memory do we use beyond sizeof(*this)? |
| size_t approxBytesUsed() const { return fCapacity * sizeof(Slot); } |
| |
| // !!!!!!!!!!!!!!!!! CAUTION !!!!!!!!!!!!!!!!! |
| // set(), find() and foreach() all allow mutable access to table entries. |
| // If you change an entry so that it no longer has the same key, all hell |
| // will break loose. Do not do that! |
| // |
| // Please prefer to use SkTHashMap or SkTHashSet, which do not have this danger. |
| |
| // The pointers returned by set() and find() are valid only until the next call to set(). |
| // The pointers you receive in foreach() are only valid for its duration. |
| |
| // Copy val into the hash table, returning a pointer to the copy now in the table. |
| // If there already is an entry in the table with the same key, we overwrite it. |
| T* set(T val) { |
| if (4 * fCount >= 3 * fCapacity) { |
| this->resize(fCapacity > 0 ? fCapacity * 2 : 4); |
| } |
| return this->uncheckedSet(std::move(val)); |
| } |
| |
| // If there is an entry in the table with this key, return a pointer to it. If not, null. |
| T* find(const K& key) const { |
| uint32_t hash = Hash(key); |
| int index = hash & (fCapacity-1); |
| for (int n = 0; n < fCapacity; n++) { |
| Slot& s = fSlots[index]; |
| if (s.empty()) { |
| return nullptr; |
| } |
| if (hash == s.hash && key == Traits::GetKey(*s)) { |
| return &*s; |
| } |
| index = this->next(index); |
| } |
| SkASSERT(fCapacity == 0); |
| return nullptr; |
| } |
| |
| // If there is an entry in the table with this key, return it. If not, null. |
| // This only works for pointer type T, and cannot be used to find an nullptr entry. |
| T findOrNull(const K& key) const { |
| if (T* p = this->find(key)) { |
| return *p; |
| } |
| return nullptr; |
| } |
| |
| // Remove the value with this key from the hash table. |
| void remove(const K& key) { |
| SkASSERT(this->find(key)); |
| |
| uint32_t hash = Hash(key); |
| int index = hash & (fCapacity-1); |
| for (int n = 0; n < fCapacity; n++) { |
| Slot& s = fSlots[index]; |
| SkASSERT(s.has_value()); |
| if (hash == s.hash && key == Traits::GetKey(*s)) { |
| this->removeSlot(index); |
| if (4 * fCount <= fCapacity && fCapacity > 4) { |
| this->resize(fCapacity / 2); |
| } |
| return; |
| } |
| index = this->next(index); |
| } |
| } |
| |
| // Call fn on every entry in the table. You may mutate the entries, but be very careful. |
| template <typename Fn> // f(T*) |
| void foreach(Fn&& fn) { |
| for (int i = 0; i < fCapacity; i++) { |
| if (fSlots[i].has_value()) { |
| fn(&*fSlots[i]); |
| } |
| } |
| } |
| |
| // Call fn on every entry in the table. You may not mutate anything. |
| template <typename Fn> // f(T) or f(const T&) |
| void foreach(Fn&& fn) const { |
| for (int i = 0; i < fCapacity; i++) { |
| if (fSlots[i].has_value()) { |
| fn(*fSlots[i]); |
| } |
| } |
| } |
| |
| // A basic iterator-like class which disallows mutation; sufficient for range-based for loops. |
| // Intended for use by SkTHashMap and SkTHashSet via begin() and end(). |
| // Adding or removing elements may invalidate all iterators. |
| template <typename SlotVal> |
| class Iter { |
| public: |
| using TTable = SkTHashTable<T, K, Traits>; |
| |
| Iter(const TTable* table, int slot) : fTable(table), fSlot(slot) {} |
| |
| static Iter MakeBegin(const TTable* table) { |
| return Iter{table, table->firstPopulatedSlot()}; |
| } |
| |
| static Iter MakeEnd(const TTable* table) { |
| return Iter{table, table->capacity()}; |
| } |
| |
| const SlotVal& operator*() const { |
| return *fTable->slot(fSlot); |
| } |
| |
| const SlotVal* operator->() const { |
| return fTable->slot(fSlot); |
| } |
| |
| bool operator==(const Iter& that) const { |
| // Iterators from different tables shouldn't be compared against each other. |
| SkASSERT(fTable == that.fTable); |
| return fSlot == that.fSlot; |
| } |
| |
| bool operator!=(const Iter& that) const { |
| return !(*this == that); |
| } |
| |
| Iter& operator++() { |
| fSlot = fTable->nextPopulatedSlot(fSlot); |
| return *this; |
| } |
| |
| Iter operator++(int) { |
| Iter old = *this; |
| this->operator++(); |
| return old; |
| } |
| |
| protected: |
| const TTable* fTable; |
| int fSlot; |
| }; |
| |
| private: |
| // Finds the first non-empty slot for an iterator. |
| int firstPopulatedSlot() const { |
| for (int i = 0; i < fCapacity; i++) { |
| if (fSlots[i].has_value()) { |
| return i; |
| } |
| } |
| return fCapacity; |
| } |
| |
| // Increments an iterator's slot. |
| int nextPopulatedSlot(int currentSlot) const { |
| for (int i = currentSlot + 1; i < fCapacity; i++) { |
| if (fSlots[i].has_value()) { |
| return i; |
| } |
| } |
| return fCapacity; |
| } |
| |
| // Reads from an iterator's slot. |
| const T* slot(int i) const { |
| SkASSERT(fSlots[i].has_value()); |
| return &*fSlots[i]; |
| } |
| |
| T* uncheckedSet(T&& val) { |
| const K& key = Traits::GetKey(val); |
| SkASSERT(key == key); |
| uint32_t hash = Hash(key); |
| int index = hash & (fCapacity-1); |
| for (int n = 0; n < fCapacity; n++) { |
| Slot& s = fSlots[index]; |
| if (s.empty()) { |
| // New entry. |
| s.emplace(std::move(val), hash); |
| fCount++; |
| return &*s; |
| } |
| if (hash == s.hash && key == Traits::GetKey(*s)) { |
| // Overwrite previous entry. |
| // Note: this triggers extra copies when adding the same value repeatedly. |
| s.emplace(std::move(val), hash); |
| return &*s; |
| } |
| |
| index = this->next(index); |
| } |
| SkASSERT(false); |
| return nullptr; |
| } |
| |
| void resize(int capacity) { |
| int oldCapacity = fCapacity; |
| SkDEBUGCODE(int oldCount = fCount); |
| |
| fCount = 0; |
| fCapacity = capacity; |
| SkAutoTArray<Slot> oldSlots = std::move(fSlots); |
| fSlots = SkAutoTArray<Slot>(capacity); |
| |
| for (int i = 0; i < oldCapacity; i++) { |
| Slot& s = oldSlots[i]; |
| if (s.has_value()) { |
| this->uncheckedSet(*std::move(s)); |
| } |
| } |
| SkASSERT(fCount == oldCount); |
| } |
| |
| void removeSlot(int index) { |
| fCount--; |
| |
| // Rearrange elements to restore the invariants for linear probing. |
| for (;;) { |
| Slot& emptySlot = fSlots[index]; |
| int emptyIndex = index; |
| int originalIndex; |
| // Look for an element that can be moved into the empty slot. |
| // If the empty slot is in between where an element landed, and its native slot, then |
| // move it to the empty slot. Don't move it if its native slot is in between where |
| // the element landed and the empty slot. |
| // [native] <= [empty] < [candidate] == GOOD, can move candidate to empty slot |
| // [empty] < [native] < [candidate] == BAD, need to leave candidate where it is |
| do { |
| index = this->next(index); |
| Slot& s = fSlots[index]; |
| if (s.empty()) { |
| // We're done shuffling elements around. Clear the last empty slot. |
| emptySlot.reset(); |
| return; |
| } |
| originalIndex = s.hash & (fCapacity - 1); |
| } while ((index <= originalIndex && originalIndex < emptyIndex) |
| || (originalIndex < emptyIndex && emptyIndex < index) |
| || (emptyIndex < index && index <= originalIndex)); |
| // Move the element to the empty slot. |
| Slot& moveFrom = fSlots[index]; |
| emptySlot = std::move(moveFrom); |
| } |
| } |
| |
| int next(int index) const { |
| index--; |
| if (index < 0) { index += fCapacity; } |
| return index; |
| } |
| |
| static uint32_t Hash(const K& key) { |
| uint32_t hash = Traits::Hash(key) & 0xffffffff; |
| return hash ? hash : 1; // We reserve hash 0 to mark empty. |
| } |
| |
| struct Slot { |
| Slot() = default; |
| ~Slot() { this->reset(); } |
| |
| Slot(const Slot& that) { *this = that; } |
| Slot& operator=(const Slot& that) { |
| if (this == &that) { |
| return *this; |
| } |
| if (hash) { |
| if (that.hash) { |
| val.storage = that.val.storage; |
| hash = that.hash; |
| } else { |
| this->reset(); |
| } |
| } else { |
| if (that.hash) { |
| new (&val.storage) T(that.val.storage); |
| hash = that.hash; |
| } else { |
| // do nothing, no value on either side |
| } |
| } |
| return *this; |
| } |
| |
| Slot(Slot&& that) { *this = std::move(that); } |
| Slot& operator=(Slot&& that) { |
| if (this == &that) { |
| return *this; |
| } |
| if (hash) { |
| if (that.hash) { |
| val.storage = std::move(that.val.storage); |
| hash = that.hash; |
| } else { |
| this->reset(); |
| } |
| } else { |
| if (that.hash) { |
| new (&val.storage) T(std::move(that.val.storage)); |
| hash = that.hash; |
| } else { |
| // do nothing, no value on either side |
| } |
| } |
| return *this; |
| } |
| |
| T& operator*() & { return val.storage; } |
| const T& operator*() const& { return val.storage; } |
| T&& operator*() && { return std::move(val.storage); } |
| const T&& operator*() const&& { return std::move(val.storage); } |
| |
| Slot& emplace(T&& v, uint32_t h) { |
| this->reset(); |
| new (&val.storage) T(std::move(v)); |
| hash = h; |
| return *this; |
| } |
| |
| bool has_value() const { return hash != 0; } |
| explicit operator bool() const { return this->has_value(); } |
| bool empty() const { return !this->has_value(); } |
| |
| void reset() { |
| if (hash) { |
| val.storage.~T(); |
| hash = 0; |
| } |
| } |
| |
| uint32_t hash = 0; |
| |
| private: |
| union Storage { |
| T storage; |
| Storage() {} |
| ~Storage() {} |
| } val; |
| }; |
| |
| int fCount = 0, |
| fCapacity = 0; |
| SkAutoTArray<Slot> fSlots; |
| }; |
| |
| // Maps K->V. A more user-friendly wrapper around SkTHashTable, suitable for most use cases. |
| // K and V are treated as ordinary copyable C++ types, with no assumed relationship between the two. |
| template <typename K, typename V, typename HashK = SkGoodHash> |
| class SkTHashMap { |
| public: |
| // Clear the map. |
| void reset() { fTable.reset(); } |
| |
| // How many key/value pairs are in the table? |
| int count() const { return fTable.count(); } |
| |
| // Approximately how many bytes of memory do we use beyond sizeof(*this)? |
| size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } |
| |
| // N.B. The pointers returned by set() and find() are valid only until the next call to set(). |
| |
| // Set key to val in the table, replacing any previous value with the same key. |
| // We copy both key and val, and return a pointer to the value copy now in the table. |
| V* set(K key, V val) { |
| Pair* out = fTable.set({std::move(key), std::move(val)}); |
| return &out->second; |
| } |
| |
| // If there is key/value entry in the table with this key, return a pointer to the value. |
| // If not, return null. |
| V* find(const K& key) const { |
| if (Pair* p = fTable.find(key)) { |
| return &p->second; |
| } |
| return nullptr; |
| } |
| |
| V& operator[](const K& key) { |
| if (V* val = this->find(key)) { |
| return *val; |
| } |
| return *this->set(key, V{}); |
| } |
| |
| // Remove the key/value entry in the table with this key. |
| void remove(const K& key) { |
| SkASSERT(this->find(key)); |
| fTable.remove(key); |
| } |
| |
| // Call fn on every key/value pair in the table. You may mutate the value but not the key. |
| template <typename Fn> // f(K, V*) or f(const K&, V*) |
| void foreach(Fn&& fn) { |
| fTable.foreach([&fn](Pair* p){ fn(p->first, &p->second); }); |
| } |
| |
| // Call fn on every key/value pair in the table. You may not mutate anything. |
| template <typename Fn> // f(K, V), f(const K&, V), f(K, const V&) or f(const K&, const V&). |
| void foreach(Fn&& fn) const { |
| fTable.foreach([&fn](const Pair& p){ fn(p.first, p.second); }); |
| } |
| |
| // Dereferencing an iterator gives back a key-value pair, suitable for structured binding. |
| struct Pair : public std::pair<K, V> { |
| using std::pair<K, V>::pair; |
| static const K& GetKey(const Pair& p) { return p.first; } |
| static auto Hash(const K& key) { return HashK()(key); } |
| }; |
| |
| using Iter = typename SkTHashTable<Pair, K>::template Iter<std::pair<K, V>>; |
| |
| Iter begin() const { |
| return Iter::MakeBegin(&fTable); |
| } |
| |
| Iter end() const { |
| return Iter::MakeEnd(&fTable); |
| } |
| |
| private: |
| SkTHashTable<Pair, K> fTable; |
| }; |
| |
| // A set of T. T is treated as an ordinary copyable C++ type. |
| template <typename T, typename HashT = SkGoodHash> |
| class SkTHashSet { |
| public: |
| // Clear the set. |
| void reset() { fTable.reset(); } |
| |
| // How many items are in the set? |
| int count() const { return fTable.count(); } |
| |
| // Is empty? |
| bool empty() const { return fTable.count() == 0; } |
| |
| // Approximately how many bytes of memory do we use beyond sizeof(*this)? |
| size_t approxBytesUsed() const { return fTable.approxBytesUsed(); } |
| |
| // Copy an item into the set. |
| void add(T item) { fTable.set(std::move(item)); } |
| |
| // Is this item in the set? |
| bool contains(const T& item) const { return SkToBool(this->find(item)); } |
| |
| // If an item equal to this is in the set, return a pointer to it, otherwise null. |
| // This pointer remains valid until the next call to add(). |
| const T* find(const T& item) const { return fTable.find(item); } |
| |
| // Remove the item in the set equal to this. |
| void remove(const T& item) { |
| SkASSERT(this->contains(item)); |
| fTable.remove(item); |
| } |
| |
| // Call fn on every item in the set. You may not mutate anything. |
| template <typename Fn> // f(T), f(const T&) |
| void foreach (Fn&& fn) const { |
| fTable.foreach(fn); |
| } |
| |
| private: |
| struct Traits { |
| static const T& GetKey(const T& item) { return item; } |
| static auto Hash(const T& item) { return HashT()(item); } |
| }; |
| |
| public: |
| using Iter = typename SkTHashTable<T, T, Traits>::template Iter<T>; |
| |
| Iter begin() const { |
| return Iter::MakeBegin(&fTable); |
| } |
| |
| Iter end() const { |
| return Iter::MakeEnd(&fTable); |
| } |
| |
| private: |
| SkTHashTable<T, T, Traits> fTable; |
| }; |
| |
| #endif//SkTHash_DEFINED |