| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/core/SkAAClip.h" |
| |
| #include "include/core/SkPath.h" |
| #include "include/private/SkColorData.h" |
| #include "include/private/SkMacros.h" |
| #include "include/private/SkTo.h" |
| #include "src/core/SkBlitter.h" |
| #include "src/core/SkRectPriv.h" |
| #include "src/core/SkScan.h" |
| #include <atomic> |
| #include <utility> |
| |
| namespace { |
| |
| class AutoAAClipValidate { |
| public: |
| AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) { |
| fClip.validate(); |
| } |
| ~AutoAAClipValidate() { |
| fClip.validate(); |
| } |
| private: |
| const SkAAClip& fClip; |
| }; |
| |
| #ifdef SK_DEBUG |
| #define AUTO_AACLIP_VALIDATE(clip) AutoAAClipValidate acv(clip) |
| #else |
| #define AUTO_AACLIP_VALIDATE(clip) |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static constexpr int32_t kMaxInt32 = 0x7FFFFFFF; |
| |
| #ifdef SK_DEBUG |
| // assert we're exactly width-wide, and then return the number of bytes used |
| static size_t compute_row_length(const uint8_t row[], int width) { |
| const uint8_t* origRow = row; |
| while (width > 0) { |
| int n = row[0]; |
| SkASSERT(n > 0); |
| SkASSERT(n <= width); |
| row += 2; |
| width -= n; |
| } |
| SkASSERT(0 == width); |
| return row - origRow; |
| } |
| #endif |
| |
| /* |
| * Data runs are packed [count, alpha] |
| */ |
| struct YOffset { |
| int32_t fY; |
| uint32_t fOffset; |
| }; |
| |
| class RowIter { |
| public: |
| RowIter(const uint8_t* row, const SkIRect& bounds) { |
| fRow = row; |
| fLeft = bounds.fLeft; |
| fBoundsRight = bounds.fRight; |
| if (row) { |
| fRight = bounds.fLeft + row[0]; |
| SkASSERT(fRight <= fBoundsRight); |
| fAlpha = row[1]; |
| fDone = false; |
| } else { |
| fDone = true; |
| fRight = kMaxInt32; |
| fAlpha = 0; |
| } |
| } |
| |
| bool done() const { return fDone; } |
| int left() const { return fLeft; } |
| int right() const { return fRight; } |
| U8CPU alpha() const { return fAlpha; } |
| void next() { |
| if (!fDone) { |
| fLeft = fRight; |
| if (fRight == fBoundsRight) { |
| fDone = true; |
| fRight = kMaxInt32; |
| fAlpha = 0; |
| } else { |
| fRow += 2; |
| fRight += fRow[0]; |
| fAlpha = fRow[1]; |
| SkASSERT(fRight <= fBoundsRight); |
| } |
| } |
| } |
| |
| private: |
| const uint8_t* fRow; |
| int fLeft; |
| int fRight; |
| int fBoundsRight; |
| bool fDone; |
| uint8_t fAlpha; |
| }; |
| |
| class Iter { |
| public: |
| Iter() = default; |
| |
| Iter(int y, const uint8_t* data, const YOffset* start, const YOffset* end) |
| : fCurrYOff(start) |
| , fStopYOff(end) |
| , fData(data + start->fOffset) |
| , fTop(y) |
| , fBottom(y + start->fY + 1) |
| , fDone(false) {} |
| |
| bool done() const { return fDone; } |
| int top() const { return fTop; } |
| int bottom() const { return fBottom; } |
| const uint8_t* data() const { return fData; } |
| |
| void next() { |
| if (!fDone) { |
| const YOffset* prev = fCurrYOff; |
| const YOffset* curr = prev + 1; |
| SkASSERT(curr <= fStopYOff); |
| |
| fTop = fBottom; |
| if (curr >= fStopYOff) { |
| fDone = true; |
| fBottom = kMaxInt32; |
| fData = nullptr; |
| } else { |
| fBottom += curr->fY - prev->fY; |
| fData += curr->fOffset - prev->fOffset; |
| fCurrYOff = curr; |
| } |
| } |
| } |
| |
| private: |
| const YOffset* fCurrYOff = nullptr; |
| const YOffset* fStopYOff = nullptr; |
| const uint8_t* fData = nullptr; |
| |
| int fTop = kMaxInt32; |
| int fBottom = kMaxInt32; |
| bool fDone = true; |
| }; |
| |
| } // namespace |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct SkAAClip::RunHead { |
| std::atomic<int32_t> fRefCnt; |
| int32_t fRowCount; |
| size_t fDataSize; |
| |
| YOffset* yoffsets() { |
| return (YOffset*)((char*)this + sizeof(RunHead)); |
| } |
| const YOffset* yoffsets() const { |
| return (const YOffset*)((const char*)this + sizeof(RunHead)); |
| } |
| uint8_t* data() { |
| return (uint8_t*)(this->yoffsets() + fRowCount); |
| } |
| const uint8_t* data() const { |
| return (const uint8_t*)(this->yoffsets() + fRowCount); |
| } |
| |
| static RunHead* Alloc(int rowCount, size_t dataSize) { |
| size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize; |
| RunHead* head = (RunHead*)sk_malloc_throw(size); |
| head->fRefCnt.store(1); |
| head->fRowCount = rowCount; |
| head->fDataSize = dataSize; |
| return head; |
| } |
| |
| static int ComputeRowSizeForWidth(int width) { |
| // 2 bytes per segment, where each segment can store up to 255 for count |
| int segments = 0; |
| while (width > 0) { |
| segments += 1; |
| int n = std::min(width, 255); |
| width -= n; |
| } |
| return segments * 2; // each segment is row[0] + row[1] (n + alpha) |
| } |
| |
| static RunHead* AllocRect(const SkIRect& bounds) { |
| SkASSERT(!bounds.isEmpty()); |
| int width = bounds.width(); |
| size_t rowSize = ComputeRowSizeForWidth(width); |
| RunHead* head = RunHead::Alloc(1, rowSize); |
| YOffset* yoff = head->yoffsets(); |
| yoff->fY = bounds.height() - 1; |
| yoff->fOffset = 0; |
| uint8_t* row = head->data(); |
| while (width > 0) { |
| int n = std::min(width, 255); |
| row[0] = n; |
| row[1] = 0xFF; |
| width -= n; |
| row += 2; |
| } |
| return head; |
| } |
| |
| static Iter Iterate(const SkAAClip& clip) { |
| const RunHead* head = clip.fRunHead; |
| if (!clip.fRunHead) { |
| // A null run head is an empty clip, so return aan already finished iterator. |
| return Iter(); |
| } |
| |
| return Iter(clip.getBounds().fTop, head->data(), head->yoffsets(), |
| head->yoffsets() + head->fRowCount); |
| } |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| class SkAAClip::Builder { |
| class Blitter; |
| |
| SkIRect fBounds; |
| struct Row { |
| int fY; |
| int fWidth; |
| SkTDArray<uint8_t>* fData; |
| }; |
| SkTDArray<Row> fRows; |
| Row* fCurrRow; |
| int fPrevY; |
| int fWidth; |
| int fMinY; |
| |
| public: |
| Builder(const SkIRect& bounds) : fBounds(bounds) { |
| fPrevY = -1; |
| fWidth = bounds.width(); |
| fCurrRow = nullptr; |
| fMinY = bounds.fTop; |
| } |
| |
| ~Builder() { |
| Row* row = fRows.begin(); |
| Row* stop = fRows.end(); |
| while (row < stop) { |
| delete row->fData; |
| row += 1; |
| } |
| } |
| |
| bool applyClipOp(SkAAClip* target, const SkAAClip& other, SkClipOp op); |
| bool blitPath(SkAAClip* target, const SkPath& path, bool doAA); |
| |
| private: |
| using AlphaProc = U8CPU (*)(U8CPU alphaA, U8CPU alphaB); |
| void operateX(int lastY, RowIter& iterA, RowIter& iterB, AlphaProc proc); |
| void operateY(const SkAAClip& A, const SkAAClip& B, SkClipOp op); |
| |
| void addRun(int x, int y, U8CPU alpha, int count) { |
| SkASSERT(count > 0); |
| SkASSERT(fBounds.contains(x, y)); |
| SkASSERT(fBounds.contains(x + count - 1, y)); |
| |
| x -= fBounds.left(); |
| y -= fBounds.top(); |
| |
| Row* row = fCurrRow; |
| if (y != fPrevY) { |
| SkASSERT(y > fPrevY); |
| fPrevY = y; |
| row = this->flushRow(true); |
| row->fY = y; |
| row->fWidth = 0; |
| SkASSERT(row->fData); |
| SkASSERT(0 == row->fData->count()); |
| fCurrRow = row; |
| } |
| |
| SkASSERT(row->fWidth <= x); |
| SkASSERT(row->fWidth < fBounds.width()); |
| |
| SkTDArray<uint8_t>& data = *row->fData; |
| |
| int gap = x - row->fWidth; |
| if (gap) { |
| AppendRun(data, 0, gap); |
| row->fWidth += gap; |
| SkASSERT(row->fWidth < fBounds.width()); |
| } |
| |
| AppendRun(data, alpha, count); |
| row->fWidth += count; |
| SkASSERT(row->fWidth <= fBounds.width()); |
| } |
| |
| void addColumn(int x, int y, U8CPU alpha, int height) { |
| SkASSERT(fBounds.contains(x, y + height - 1)); |
| |
| this->addRun(x, y, alpha, 1); |
| this->flushRowH(fCurrRow); |
| y -= fBounds.fTop; |
| SkASSERT(y == fCurrRow->fY); |
| fCurrRow->fY = y + height - 1; |
| } |
| |
| void addRectRun(int x, int y, int width, int height) { |
| SkASSERT(fBounds.contains(x + width - 1, y + height - 1)); |
| this->addRun(x, y, 0xFF, width); |
| |
| // we assum the rect must be all we'll see for these scanlines |
| // so we ensure our row goes all the way to our right |
| this->flushRowH(fCurrRow); |
| |
| y -= fBounds.fTop; |
| SkASSERT(y == fCurrRow->fY); |
| fCurrRow->fY = y + height - 1; |
| } |
| |
| void addAntiRectRun(int x, int y, int width, int height, |
| SkAlpha leftAlpha, SkAlpha rightAlpha) { |
| // According to SkBlitter.cpp, no matter whether leftAlpha is 0 or positive, |
| // we should always consider [x, x+1] as the left-most column and [x+1, x+1+width] |
| // as the rect with full alpha. |
| SkASSERT(fBounds.contains(x + width + (rightAlpha > 0 ? 1 : 0), |
| y + height - 1)); |
| SkASSERT(width >= 0); |
| |
| // Conceptually we're always adding 3 runs, but we should |
| // merge or omit them if possible. |
| if (leftAlpha == 0xFF) { |
| width++; |
| } else if (leftAlpha > 0) { |
| this->addRun(x++, y, leftAlpha, 1); |
| } else { |
| // leftAlpha is 0, ignore the left column |
| x++; |
| } |
| if (rightAlpha == 0xFF) { |
| width++; |
| } |
| if (width > 0) { |
| this->addRun(x, y, 0xFF, width); |
| } |
| if (rightAlpha > 0 && rightAlpha < 255) { |
| this->addRun(x + width, y, rightAlpha, 1); |
| } |
| |
| // if we never called addRun, we might not have a fCurrRow yet |
| if (fCurrRow) { |
| // we assume the rect must be all we'll see for these scanlines |
| // so we ensure our row goes all the way to our right |
| this->flushRowH(fCurrRow); |
| |
| y -= fBounds.fTop; |
| SkASSERT(y == fCurrRow->fY); |
| fCurrRow->fY = y + height - 1; |
| } |
| } |
| |
| bool finish(SkAAClip* target) { |
| this->flushRow(false); |
| |
| const Row* row = fRows.begin(); |
| const Row* stop = fRows.end(); |
| |
| size_t dataSize = 0; |
| while (row < stop) { |
| dataSize += row->fData->count(); |
| row += 1; |
| } |
| |
| if (0 == dataSize) { |
| return target->setEmpty(); |
| } |
| |
| SkASSERT(fMinY >= fBounds.fTop); |
| SkASSERT(fMinY < fBounds.fBottom); |
| int adjustY = fMinY - fBounds.fTop; |
| fBounds.fTop = fMinY; |
| |
| RunHead* head = RunHead::Alloc(fRows.count(), dataSize); |
| YOffset* yoffset = head->yoffsets(); |
| uint8_t* data = head->data(); |
| uint8_t* baseData = data; |
| |
| row = fRows.begin(); |
| SkDEBUGCODE(int prevY = row->fY - 1;) |
| while (row < stop) { |
| SkASSERT(prevY < row->fY); // must be monotonic |
| SkDEBUGCODE(prevY = row->fY); |
| |
| yoffset->fY = row->fY - adjustY; |
| yoffset->fOffset = SkToU32(data - baseData); |
| yoffset += 1; |
| |
| size_t n = row->fData->count(); |
| memcpy(data, row->fData->begin(), n); |
| SkASSERT(compute_row_length(data, fBounds.width()) == n); |
| data += n; |
| |
| row += 1; |
| } |
| |
| target->freeRuns(); |
| target->fBounds = fBounds; |
| target->fRunHead = head; |
| return target->trimBounds(); |
| } |
| |
| void dump() { |
| this->validate(); |
| int y; |
| for (y = 0; y < fRows.count(); ++y) { |
| const Row& row = fRows[y]; |
| SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth); |
| const SkTDArray<uint8_t>& data = *row.fData; |
| int count = data.count(); |
| SkASSERT(!(count & 1)); |
| const uint8_t* ptr = data.begin(); |
| for (int x = 0; x < count; x += 2) { |
| SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]); |
| ptr += 2; |
| } |
| SkDebugf("\n"); |
| } |
| } |
| |
| void validate() { |
| #ifdef SK_DEBUG |
| int prevY = -1; |
| for (int i = 0; i < fRows.count(); ++i) { |
| const Row& row = fRows[i]; |
| SkASSERT(prevY < row.fY); |
| SkASSERT(fWidth == row.fWidth); |
| int count = row.fData->count(); |
| const uint8_t* ptr = row.fData->begin(); |
| SkASSERT(!(count & 1)); |
| int w = 0; |
| for (int x = 0; x < count; x += 2) { |
| int n = ptr[0]; |
| SkASSERT(n > 0); |
| w += n; |
| SkASSERT(w <= fWidth); |
| ptr += 2; |
| } |
| SkASSERT(w == fWidth); |
| prevY = row.fY; |
| } |
| #endif |
| } |
| |
| void flushRowH(Row* row) { |
| // flush current row if needed |
| if (row->fWidth < fWidth) { |
| AppendRun(*row->fData, 0, fWidth - row->fWidth); |
| row->fWidth = fWidth; |
| } |
| } |
| |
| Row* flushRow(bool readyForAnother) { |
| Row* next = nullptr; |
| int count = fRows.count(); |
| if (count > 0) { |
| this->flushRowH(&fRows[count - 1]); |
| } |
| if (count > 1) { |
| // are our last two runs the same? |
| Row* prev = &fRows[count - 2]; |
| Row* curr = &fRows[count - 1]; |
| SkASSERT(prev->fWidth == fWidth); |
| SkASSERT(curr->fWidth == fWidth); |
| if (*prev->fData == *curr->fData) { |
| prev->fY = curr->fY; |
| if (readyForAnother) { |
| curr->fData->rewind(); |
| next = curr; |
| } else { |
| delete curr->fData; |
| fRows.removeShuffle(count - 1); |
| } |
| } else { |
| if (readyForAnother) { |
| next = fRows.append(); |
| next->fData = new SkTDArray<uint8_t>; |
| } |
| } |
| } else { |
| if (readyForAnother) { |
| next = fRows.append(); |
| next->fData = new SkTDArray<uint8_t>; |
| } |
| } |
| return next; |
| } |
| |
| static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) { |
| do { |
| int n = count; |
| if (n > 255) { |
| n = 255; |
| } |
| uint8_t* ptr = data.append(2); |
| ptr[0] = n; |
| ptr[1] = alpha; |
| count -= n; |
| } while (count > 0); |
| } |
| }; |
| |
| void SkAAClip::Builder::operateX(int lastY, RowIter& iterA, RowIter& iterB, AlphaProc proc) { |
| auto advanceRowIter = [](RowIter& iter, int& iterLeft, int& iterRite, int rite) { |
| if (rite == iterRite) { |
| iter.next(); |
| iterLeft = iter.left(); |
| iterRite = iter.right(); |
| } |
| }; |
| |
| int leftA = iterA.left(); |
| int riteA = iterA.right(); |
| int leftB = iterB.left(); |
| int riteB = iterB.right(); |
| |
| int prevRite = fBounds.fLeft; |
| |
| do { |
| U8CPU alphaA = 0; |
| U8CPU alphaB = 0; |
| int left, rite; |
| |
| if (leftA < leftB) { |
| left = leftA; |
| alphaA = iterA.alpha(); |
| if (riteA <= leftB) { |
| rite = riteA; |
| } else { |
| rite = leftA = leftB; |
| } |
| } else if (leftB < leftA) { |
| left = leftB; |
| alphaB = iterB.alpha(); |
| if (riteB <= leftA) { |
| rite = riteB; |
| } else { |
| rite = leftB = leftA; |
| } |
| } else { |
| left = leftA; // or leftB, since leftA == leftB |
| rite = leftA = leftB = std::min(riteA, riteB); |
| alphaA = iterA.alpha(); |
| alphaB = iterB.alpha(); |
| } |
| |
| if (left >= fBounds.fRight) { |
| break; |
| } |
| if (rite > fBounds.fRight) { |
| rite = fBounds.fRight; |
| } |
| |
| if (left >= fBounds.fLeft) { |
| SkASSERT(rite > left); |
| this->addRun(left, lastY, proc(alphaA, alphaB), rite - left); |
| prevRite = rite; |
| } |
| |
| advanceRowIter(iterA, leftA, riteA, rite); |
| advanceRowIter(iterB, leftB, riteB, rite); |
| } while (!iterA.done() || !iterB.done()); |
| |
| if (prevRite < fBounds.fRight) { |
| this->addRun(prevRite, lastY, 0, fBounds.fRight - prevRite); |
| } |
| } |
| |
| void SkAAClip::Builder::operateY(const SkAAClip& A, const SkAAClip& B, SkClipOp op) { |
| static const AlphaProc kDiff = [](U8CPU a, U8CPU b) { return SkMulDiv255Round(a, 0xFF - b); }; |
| static const AlphaProc kIntersect = [](U8CPU a, U8CPU b) { return SkMulDiv255Round(a, b); }; |
| AlphaProc proc = (op == SkClipOp::kDifference) ? kDiff : kIntersect; |
| |
| Iter iterA = RunHead::Iterate(A); |
| Iter iterB = RunHead::Iterate(B); |
| |
| SkASSERT(!iterA.done()); |
| int topA = iterA.top(); |
| int botA = iterA.bottom(); |
| SkASSERT(!iterB.done()); |
| int topB = iterB.top(); |
| int botB = iterB.bottom(); |
| |
| auto advanceIter = [](Iter& iter, int& iterTop, int& iterBot, int bot) { |
| if (bot == iterBot) { |
| iter.next(); |
| iterTop = iterBot; |
| SkASSERT(iterBot == iter.top()); |
| iterBot = iter.bottom(); |
| } |
| }; |
| |
| #if defined(SK_BUILD_FOR_FUZZER) |
| if ((botA - topA) > 100000 || (botB - topB) > 100000) { |
| return; |
| } |
| #endif |
| |
| do { |
| const uint8_t* rowA = nullptr; |
| const uint8_t* rowB = nullptr; |
| int top, bot; |
| |
| if (topA < topB) { |
| top = topA; |
| rowA = iterA.data(); |
| if (botA <= topB) { |
| bot = botA; |
| } else { |
| bot = topA = topB; |
| } |
| |
| } else if (topB < topA) { |
| top = topB; |
| rowB = iterB.data(); |
| if (botB <= topA) { |
| bot = botB; |
| } else { |
| bot = topB = topA; |
| } |
| } else { |
| top = topA; // or topB, since topA == topB |
| bot = topA = topB = std::min(botA, botB); |
| rowA = iterA.data(); |
| rowB = iterB.data(); |
| } |
| |
| if (top >= fBounds.fBottom) { |
| break; |
| } |
| |
| if (bot > fBounds.fBottom) { |
| bot = fBounds.fBottom; |
| } |
| SkASSERT(top < bot); |
| |
| if (!rowA && !rowB) { |
| this->addRun(fBounds.fLeft, bot - 1, 0, fBounds.width()); |
| } else if (top >= fBounds.fTop) { |
| SkASSERT(bot <= fBounds.fBottom); |
| RowIter rowIterA(rowA, rowA ? A.getBounds() : fBounds); |
| RowIter rowIterB(rowB, rowB ? B.getBounds() : fBounds); |
| this->operateX(bot - 1, rowIterA, rowIterB, proc); |
| } |
| |
| advanceIter(iterA, topA, botA, bot); |
| advanceIter(iterB, topB, botB, bot); |
| } while (!iterA.done() || !iterB.done()); |
| } |
| |
| class SkAAClip::Builder::Blitter final : public SkBlitter { |
| int fLastY; |
| |
| /* |
| If we see a gap of 1 or more empty scanlines while building in Y-order, |
| we inject an explicit empty scanline (alpha==0) |
| |
| See AAClipTest.cpp : test_path_with_hole() |
| */ |
| void checkForYGap(int y) { |
| SkASSERT(y >= fLastY); |
| if (fLastY > -SK_MaxS32) { |
| int gap = y - fLastY; |
| if (gap > 1) { |
| fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft); |
| } |
| } |
| fLastY = y; |
| } |
| |
| public: |
| Blitter(Builder* builder) { |
| fBuilder = builder; |
| fLeft = builder->fBounds.fLeft; |
| fRight = builder->fBounds.fRight; |
| fMinY = SK_MaxS32; |
| fLastY = -SK_MaxS32; // sentinel |
| } |
| |
| void finish() { |
| if (fMinY < SK_MaxS32) { |
| fBuilder->fMinY = fMinY; |
| } |
| } |
| |
| /** |
| Must evaluate clips in scan-line order, so don't want to allow blitV(), |
| but an AAClip can be clipped down to a single pixel wide, so we |
| must support it (given AntiRect semantics: minimum width is 2). |
| Instead we'll rely on the runtime asserts to guarantee Y monotonicity; |
| any failure cases that misses may have minor artifacts. |
| */ |
| void blitV(int x, int y, int height, SkAlpha alpha) override { |
| if (height == 1) { |
| // We're still in scan-line order if height is 1 |
| // This is useful for Analytic AA |
| const SkAlpha alphas[2] = {alpha, 0}; |
| const int16_t runs[2] = {1, 0}; |
| this->blitAntiH(x, y, alphas, runs); |
| } else { |
| this->recordMinY(y); |
| fBuilder->addColumn(x, y, alpha, height); |
| fLastY = y + height - 1; |
| } |
| } |
| |
| void blitRect(int x, int y, int width, int height) override { |
| this->recordMinY(y); |
| this->checkForYGap(y); |
| fBuilder->addRectRun(x, y, width, height); |
| fLastY = y + height - 1; |
| } |
| |
| void blitAntiRect(int x, int y, int width, int height, |
| SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
| this->recordMinY(y); |
| this->checkForYGap(y); |
| fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha); |
| fLastY = y + height - 1; |
| } |
| |
| void blitMask(const SkMask&, const SkIRect& clip) override |
| { unexpected(); } |
| |
| const SkPixmap* justAnOpaqueColor(uint32_t*) override { |
| return nullptr; |
| } |
| |
| void blitH(int x, int y, int width) override { |
| this->recordMinY(y); |
| this->checkForYGap(y); |
| fBuilder->addRun(x, y, 0xFF, width); |
| } |
| |
| void blitAntiH(int x, int y, const SkAlpha alpha[], const int16_t runs[]) override { |
| this->recordMinY(y); |
| this->checkForYGap(y); |
| for (;;) { |
| int count = *runs; |
| if (count <= 0) { |
| return; |
| } |
| |
| // The supersampler's buffer can be the width of the device, so |
| // we may have to trim the run to our bounds. Previously, we assert that |
| // the extra spans are always alpha==0. |
| // However, the analytic AA is too sensitive to precision errors |
| // so it may have extra spans with very tiny alpha because after several |
| // arithmatic operations, the edge may bleed the path boundary a little bit. |
| // Therefore, instead of always asserting alpha==0, we assert alpha < 0x10. |
| int localX = x; |
| int localCount = count; |
| if (x < fLeft) { |
| SkASSERT(0x10 > *alpha); |
| int gap = fLeft - x; |
| SkASSERT(gap <= count); |
| localX += gap; |
| localCount -= gap; |
| } |
| int right = x + count; |
| if (right > fRight) { |
| SkASSERT(0x10 > *alpha); |
| localCount -= right - fRight; |
| SkASSERT(localCount >= 0); |
| } |
| |
| if (localCount) { |
| fBuilder->addRun(localX, y, *alpha, localCount); |
| } |
| // Next run |
| runs += count; |
| alpha += count; |
| x += count; |
| } |
| } |
| |
| private: |
| Builder* fBuilder; |
| int fLeft; // cache of builder's bounds' left edge |
| int fRight; |
| int fMinY; |
| |
| /* |
| * We track this, in case the scan converter skipped some number of |
| * scanlines at the (relative to the bounds it was given). This allows |
| * the builder, during its finish, to trip its bounds down to the "real" |
| * top. |
| */ |
| void recordMinY(int y) { |
| if (y < fMinY) { |
| fMinY = y; |
| } |
| } |
| |
| void unexpected() { |
| SK_ABORT("---- did not expect to get called here"); |
| } |
| }; |
| |
| bool SkAAClip::Builder::applyClipOp(SkAAClip* target, const SkAAClip& other, SkClipOp op) { |
| this->operateY(*target, other, op); |
| return this->finish(target); |
| } |
| |
| bool SkAAClip::Builder::blitPath(SkAAClip* target, const SkPath& path, bool doAA) { |
| Blitter blitter(this); |
| SkRegion clip(fBounds); |
| |
| if (doAA) { |
| SkScan::AntiFillPath(path, clip, &blitter, true); |
| } else { |
| SkScan::FillPath(path, clip, &blitter); |
| } |
| |
| blitter.finish(); |
| return this->finish(target); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| void SkAAClip::copyToMask(SkMask* mask) const { |
| auto expandRowToMask = [](uint8_t* dst, const uint8_t* row, int width) { |
| while (width > 0) { |
| int n = row[0]; |
| SkASSERT(width >= n); |
| memset(dst, row[1], n); |
| dst += n; |
| row += 2; |
| width -= n; |
| } |
| SkASSERT(0 == width); |
| }; |
| |
| mask->fFormat = SkMask::kA8_Format; |
| if (this->isEmpty()) { |
| mask->fBounds.setEmpty(); |
| mask->fImage = nullptr; |
| mask->fRowBytes = 0; |
| return; |
| } |
| |
| mask->fBounds = fBounds; |
| mask->fRowBytes = fBounds.width(); |
| size_t size = mask->computeImageSize(); |
| mask->fImage = SkMask::AllocImage(size); |
| |
| Iter iter = RunHead::Iterate(*this); |
| uint8_t* dst = mask->fImage; |
| const int width = fBounds.width(); |
| |
| int y = fBounds.fTop; |
| while (!iter.done()) { |
| do { |
| expandRowToMask(dst, iter.data(), width); |
| dst += mask->fRowBytes; |
| } while (++y < iter.bottom()); |
| iter.next(); |
| } |
| } |
| |
| #ifdef SK_DEBUG |
| |
| void SkAAClip::validate() const { |
| if (nullptr == fRunHead) { |
| SkASSERT(fBounds.isEmpty()); |
| return; |
| } |
| SkASSERT(!fBounds.isEmpty()); |
| |
| const RunHead* head = fRunHead; |
| SkASSERT(head->fRefCnt.load() > 0); |
| SkASSERT(head->fRowCount > 0); |
| |
| const YOffset* yoff = head->yoffsets(); |
| const YOffset* ystop = yoff + head->fRowCount; |
| const int lastY = fBounds.height() - 1; |
| |
| // Y and offset must be monotonic |
| int prevY = -1; |
| int32_t prevOffset = -1; |
| while (yoff < ystop) { |
| SkASSERT(prevY < yoff->fY); |
| SkASSERT(yoff->fY <= lastY); |
| prevY = yoff->fY; |
| SkASSERT(prevOffset < (int32_t)yoff->fOffset); |
| prevOffset = yoff->fOffset; |
| const uint8_t* row = head->data() + yoff->fOffset; |
| size_t rowLength = compute_row_length(row, fBounds.width()); |
| SkASSERT(yoff->fOffset + rowLength <= head->fDataSize); |
| yoff += 1; |
| } |
| // check the last entry; |
| --yoff; |
| SkASSERT(yoff->fY == lastY); |
| } |
| |
| static void dump_one_row(const uint8_t* SK_RESTRICT row, |
| int width, int leading_num) { |
| if (leading_num) { |
| SkDebugf( "%03d ", leading_num ); |
| } |
| while (width > 0) { |
| int n = row[0]; |
| int val = row[1]; |
| char out = '.'; |
| if (val == 0xff) { |
| out = '*'; |
| } else if (val > 0) { |
| out = '+'; |
| } |
| for (int i = 0 ; i < n ; i++) { |
| SkDebugf( "%c", out ); |
| } |
| row += 2; |
| width -= n; |
| } |
| SkDebugf( "\n" ); |
| } |
| |
| void SkAAClip::debug(bool compress_y) const { |
| Iter iter = RunHead::Iterate(*this); |
| const int width = fBounds.width(); |
| |
| int y = fBounds.fTop; |
| while (!iter.done()) { |
| if (compress_y) { |
| dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1); |
| } else { |
| do { |
| dump_one_row(iter.data(), width, 0); |
| } while (++y < iter.bottom()); |
| } |
| iter.next(); |
| } |
| } |
| #endif |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| // Count the number of zeros on the left and right edges of the passed in |
| // RLE row. If 'row' is all zeros return 'width' in both variables. |
| static void count_left_right_zeros(const uint8_t* row, int width, |
| int* leftZ, int* riteZ) { |
| int zeros = 0; |
| do { |
| if (row[1]) { |
| break; |
| } |
| int n = row[0]; |
| SkASSERT(n > 0); |
| SkASSERT(n <= width); |
| zeros += n; |
| row += 2; |
| width -= n; |
| } while (width > 0); |
| *leftZ = zeros; |
| |
| if (0 == width) { |
| // this line is completely empty return 'width' in both variables |
| *riteZ = *leftZ; |
| return; |
| } |
| |
| zeros = 0; |
| while (width > 0) { |
| int n = row[0]; |
| SkASSERT(n > 0); |
| if (0 == row[1]) { |
| zeros += n; |
| } else { |
| zeros = 0; |
| } |
| row += 2; |
| width -= n; |
| } |
| *riteZ = zeros; |
| } |
| |
| // modify row in place, trimming off (zeros) from the left and right sides. |
| // return the number of bytes that were completely eliminated from the left |
| static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) { |
| int trim = 0; |
| while (leftZ > 0) { |
| SkASSERT(0 == row[1]); |
| int n = row[0]; |
| SkASSERT(n > 0); |
| SkASSERT(n <= width); |
| width -= n; |
| row += 2; |
| if (n > leftZ) { |
| row[-2] = n - leftZ; |
| break; |
| } |
| trim += 2; |
| leftZ -= n; |
| SkASSERT(leftZ >= 0); |
| } |
| |
| if (riteZ) { |
| // walk row to the end, and then we'll back up to trim riteZ |
| while (width > 0) { |
| int n = row[0]; |
| SkASSERT(n <= width); |
| width -= n; |
| row += 2; |
| } |
| // now skip whole runs of zeros |
| do { |
| row -= 2; |
| SkASSERT(0 == row[1]); |
| int n = row[0]; |
| SkASSERT(n > 0); |
| if (n > riteZ) { |
| row[0] = n - riteZ; |
| break; |
| } |
| riteZ -= n; |
| SkASSERT(riteZ >= 0); |
| } while (riteZ > 0); |
| } |
| |
| return trim; |
| } |
| |
| bool SkAAClip::trimLeftRight() { |
| if (this->isEmpty()) { |
| return false; |
| } |
| |
| AUTO_AACLIP_VALIDATE(*this); |
| |
| const int width = fBounds.width(); |
| RunHead* head = fRunHead; |
| YOffset* yoff = head->yoffsets(); |
| YOffset* stop = yoff + head->fRowCount; |
| uint8_t* base = head->data(); |
| |
| // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum |
| // number of zeros on the left and right of the clip. This information |
| // can be used to shrink the bounding box. |
| int leftZeros = width; |
| int riteZeros = width; |
| while (yoff < stop) { |
| int L, R; |
| count_left_right_zeros(base + yoff->fOffset, width, &L, &R); |
| SkASSERT(L + R < width || (L == width && R == width)); |
| if (L < leftZeros) { |
| leftZeros = L; |
| } |
| if (R < riteZeros) { |
| riteZeros = R; |
| } |
| if (0 == (leftZeros | riteZeros)) { |
| // no trimming to do |
| return true; |
| } |
| yoff += 1; |
| } |
| |
| SkASSERT(leftZeros || riteZeros); |
| if (width == leftZeros) { |
| SkASSERT(width == riteZeros); |
| return this->setEmpty(); |
| } |
| |
| this->validate(); |
| |
| fBounds.fLeft += leftZeros; |
| fBounds.fRight -= riteZeros; |
| SkASSERT(!fBounds.isEmpty()); |
| |
| // For now we don't realloc the storage (for time), we just shrink in place |
| // This means we don't have to do any memmoves either, since we can just |
| // play tricks with the yoff->fOffset for each row |
| yoff = head->yoffsets(); |
| while (yoff < stop) { |
| uint8_t* row = base + yoff->fOffset; |
| SkDEBUGCODE((void)compute_row_length(row, width);) |
| yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros); |
| SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);) |
| yoff += 1; |
| } |
| return true; |
| } |
| |
| static bool row_is_all_zeros(const uint8_t* row, int width) { |
| SkASSERT(width > 0); |
| do { |
| if (row[1]) { |
| return false; |
| } |
| int n = row[0]; |
| SkASSERT(n <= width); |
| width -= n; |
| row += 2; |
| } while (width > 0); |
| SkASSERT(0 == width); |
| return true; |
| } |
| |
| bool SkAAClip::trimTopBottom() { |
| if (this->isEmpty()) { |
| return false; |
| } |
| |
| this->validate(); |
| |
| const int width = fBounds.width(); |
| RunHead* head = fRunHead; |
| YOffset* yoff = head->yoffsets(); |
| YOffset* stop = yoff + head->fRowCount; |
| const uint8_t* base = head->data(); |
| |
| // Look to trim away empty rows from the top. |
| // |
| int skip = 0; |
| while (yoff < stop) { |
| const uint8_t* data = base + yoff->fOffset; |
| if (!row_is_all_zeros(data, width)) { |
| break; |
| } |
| skip += 1; |
| yoff += 1; |
| } |
| SkASSERT(skip <= head->fRowCount); |
| if (skip == head->fRowCount) { |
| return this->setEmpty(); |
| } |
| if (skip > 0) { |
| // adjust fRowCount and fBounds.fTop, and slide all the data up |
| // as we remove [skip] number of YOffset entries |
| yoff = head->yoffsets(); |
| int dy = yoff[skip - 1].fY + 1; |
| for (int i = skip; i < head->fRowCount; ++i) { |
| SkASSERT(yoff[i].fY >= dy); |
| yoff[i].fY -= dy; |
| } |
| YOffset* dst = head->yoffsets(); |
| size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize; |
| memmove(dst, dst + skip, size - skip * sizeof(YOffset)); |
| |
| fBounds.fTop += dy; |
| SkASSERT(!fBounds.isEmpty()); |
| head->fRowCount -= skip; |
| SkASSERT(head->fRowCount > 0); |
| |
| this->validate(); |
| // need to reset this after the memmove |
| base = head->data(); |
| } |
| |
| // Look to trim away empty rows from the bottom. |
| // We know that we have at least one non-zero row, so we can just walk |
| // backwards without checking for running past the start. |
| // |
| stop = yoff = head->yoffsets() + head->fRowCount; |
| do { |
| yoff -= 1; |
| } while (row_is_all_zeros(base + yoff->fOffset, width)); |
| skip = SkToInt(stop - yoff - 1); |
| SkASSERT(skip >= 0 && skip < head->fRowCount); |
| if (skip > 0) { |
| // removing from the bottom is easier than from the top, as we don't |
| // have to adjust any of the Y values, we just have to trim the array |
| memmove(stop - skip, stop, head->fDataSize); |
| |
| fBounds.fBottom = fBounds.fTop + yoff->fY + 1; |
| SkASSERT(!fBounds.isEmpty()); |
| head->fRowCount -= skip; |
| SkASSERT(head->fRowCount > 0); |
| } |
| this->validate(); |
| |
| return true; |
| } |
| |
| // can't validate before we're done, since trimming is part of the process of |
| // making us valid after the Builder. Since we build from top to bottom, its |
| // possible our fBounds.fBottom is bigger than our last scanline of data, so |
| // we trim fBounds.fBottom back up. |
| // |
| // TODO: check for duplicates in X and Y to further compress our data |
| // |
| bool SkAAClip::trimBounds() { |
| if (this->isEmpty()) { |
| return false; |
| } |
| |
| const RunHead* head = fRunHead; |
| const YOffset* yoff = head->yoffsets(); |
| |
| SkASSERT(head->fRowCount > 0); |
| const YOffset& lastY = yoff[head->fRowCount - 1]; |
| SkASSERT(lastY.fY + 1 <= fBounds.height()); |
| fBounds.fBottom = fBounds.fTop + lastY.fY + 1; |
| SkASSERT(lastY.fY + 1 == fBounds.height()); |
| SkASSERT(!fBounds.isEmpty()); |
| |
| return this->trimTopBottom() && this->trimLeftRight(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| SkAAClip::SkAAClip() { |
| fBounds.setEmpty(); |
| fRunHead = nullptr; |
| } |
| |
| SkAAClip::SkAAClip(const SkAAClip& src) { |
| SkDEBUGCODE(fBounds.setEmpty();) // need this for validate |
| fRunHead = nullptr; |
| *this = src; |
| } |
| |
| SkAAClip::~SkAAClip() { |
| this->freeRuns(); |
| } |
| |
| SkAAClip& SkAAClip::operator=(const SkAAClip& src) { |
| AUTO_AACLIP_VALIDATE(*this); |
| src.validate(); |
| |
| if (this != &src) { |
| this->freeRuns(); |
| fBounds = src.fBounds; |
| fRunHead = src.fRunHead; |
| if (fRunHead) { |
| fRunHead->fRefCnt++; |
| } |
| } |
| return *this; |
| } |
| |
| bool SkAAClip::setEmpty() { |
| this->freeRuns(); |
| fBounds.setEmpty(); |
| fRunHead = nullptr; |
| return false; |
| } |
| |
| bool SkAAClip::setRect(const SkIRect& bounds) { |
| if (bounds.isEmpty()) { |
| return this->setEmpty(); |
| } |
| |
| AUTO_AACLIP_VALIDATE(*this); |
| |
| this->freeRuns(); |
| fBounds = bounds; |
| fRunHead = RunHead::AllocRect(bounds); |
| SkASSERT(!this->isEmpty()); |
| return true; |
| } |
| |
| bool SkAAClip::isRect() const { |
| if (this->isEmpty()) { |
| return false; |
| } |
| |
| const RunHead* head = fRunHead; |
| if (head->fRowCount != 1) { |
| return false; |
| } |
| const YOffset* yoff = head->yoffsets(); |
| if (yoff->fY != fBounds.fBottom - 1) { |
| return false; |
| } |
| |
| const uint8_t* row = head->data() + yoff->fOffset; |
| int width = fBounds.width(); |
| do { |
| if (row[1] != 0xFF) { |
| return false; |
| } |
| int n = row[0]; |
| SkASSERT(n <= width); |
| width -= n; |
| row += 2; |
| } while (width > 0); |
| return true; |
| } |
| |
| bool SkAAClip::setRegion(const SkRegion& rgn) { |
| if (rgn.isEmpty()) { |
| return this->setEmpty(); |
| } |
| if (rgn.isRect()) { |
| return this->setRect(rgn.getBounds()); |
| } |
| |
| |
| const SkIRect& bounds = rgn.getBounds(); |
| const int offsetX = bounds.fLeft; |
| const int offsetY = bounds.fTop; |
| |
| SkTDArray<YOffset> yArray; |
| SkTDArray<uint8_t> xArray; |
| |
| yArray.setReserve(std::min(bounds.height(), 1024)); |
| xArray.setReserve(std::min(bounds.width(), 512) * 128); |
| |
| auto appendXRun = [&xArray](uint8_t value, int count) { |
| SkASSERT(count >= 0); |
| while (count > 0) { |
| int n = count; |
| if (n > 255) { |
| n = 255; |
| } |
| uint8_t* data = xArray.append(2); |
| data[0] = n; |
| data[1] = value; |
| count -= n; |
| } |
| }; |
| |
| SkRegion::Iterator iter(rgn); |
| int prevRight = 0; |
| int prevBot = 0; |
| YOffset* currY = nullptr; |
| |
| for (; !iter.done(); iter.next()) { |
| const SkIRect& r = iter.rect(); |
| SkASSERT(bounds.contains(r)); |
| |
| int bot = r.fBottom - offsetY; |
| SkASSERT(bot >= prevBot); |
| if (bot > prevBot) { |
| if (currY) { |
| // flush current row |
| appendXRun(0, bounds.width() - prevRight); |
| } |
| // did we introduce an empty-gap from the prev row? |
| int top = r.fTop - offsetY; |
| if (top > prevBot) { |
| currY = yArray.append(); |
| currY->fY = top - 1; |
| currY->fOffset = xArray.count(); |
| appendXRun(0, bounds.width()); |
| } |
| // create a new record for this Y value |
| currY = yArray.append(); |
| currY->fY = bot - 1; |
| currY->fOffset = xArray.count(); |
| prevRight = 0; |
| prevBot = bot; |
| } |
| |
| int x = r.fLeft - offsetX; |
| appendXRun(0, x - prevRight); |
| |
| int w = r.fRight - r.fLeft; |
| appendXRun(0xFF, w); |
| prevRight = x + w; |
| SkASSERT(prevRight <= bounds.width()); |
| } |
| // flush last row |
| appendXRun(0, bounds.width() - prevRight); |
| |
| // now pack everything into a RunHead |
| RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes()); |
| memcpy(head->yoffsets(), yArray.begin(), yArray.bytes()); |
| memcpy(head->data(), xArray.begin(), xArray.bytes()); |
| |
| this->setEmpty(); |
| fBounds = bounds; |
| fRunHead = head; |
| this->validate(); |
| return true; |
| } |
| |
| bool SkAAClip::setPath(const SkPath& path, const SkIRect& clip, bool doAA) { |
| AUTO_AACLIP_VALIDATE(*this); |
| |
| if (clip.isEmpty()) { |
| return this->setEmpty(); |
| } |
| |
| SkIRect ibounds; |
| // Since we assert that the BuilderBlitter will never blit outside the intersection |
| // of clip and ibounds, we create the builder with the snug bounds. |
| if (path.isInverseFillType()) { |
| ibounds = clip; |
| } else { |
| path.getBounds().roundOut(&ibounds); |
| if (ibounds.isEmpty() || !ibounds.intersect(clip)) { |
| return this->setEmpty(); |
| } |
| } |
| |
| Builder builder(ibounds); |
| return builder.blitPath(this, path, doAA); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkAAClip::op(const SkAAClip& other, SkClipOp op) { |
| AUTO_AACLIP_VALIDATE(*this); |
| |
| if (this->isEmpty()) { |
| // Once the clip is empty, it cannot become un-empty. |
| return false; |
| } |
| |
| SkIRect bounds = fBounds; |
| switch(op) { |
| case SkClipOp::kDifference: |
| if (other.isEmpty() || !SkIRect::Intersects(fBounds, other.fBounds)) { |
| // this remains unmodified and isn't empty |
| return true; |
| } |
| break; |
| |
| case SkClipOp::kIntersect: |
| if (other.isEmpty() || !bounds.intersect(other.fBounds)) { |
| // the intersected clip becomes empty |
| return this->setEmpty(); |
| } |
| break; |
| } |
| |
| |
| SkASSERT(SkIRect::Intersects(bounds, fBounds)); |
| SkASSERT(SkIRect::Intersects(bounds, other.fBounds)); |
| |
| Builder builder(bounds); |
| return builder.applyClipOp(this, other, op); |
| } |
| |
| bool SkAAClip::op(const SkIRect& rect, SkClipOp op) { |
| // It can be expensive to build a local aaclip before applying the op, so |
| // we first see if we can restrict the bounds of new rect to our current |
| // bounds, or note that the new rect subsumes our current clip. |
| SkIRect pixelBounds = fBounds; |
| if (!pixelBounds.intersect(rect)) { |
| // No change or clip becomes empty depending on 'op' |
| switch(op) { |
| case SkClipOp::kDifference: return !this->isEmpty(); |
| case SkClipOp::kIntersect: return this->setEmpty(); |
| } |
| SkUNREACHABLE; |
| } else if (pixelBounds == fBounds) { |
| // Wholly inside 'rect', so clip becomes empty or remains unchanged |
| switch(op) { |
| case SkClipOp::kDifference: return this->setEmpty(); |
| case SkClipOp::kIntersect: return !this->isEmpty(); |
| } |
| SkUNREACHABLE; |
| } else if (op == SkClipOp::kIntersect && this->quickContains(pixelBounds)) { |
| // We become just the remaining rectangle |
| return this->setRect(pixelBounds); |
| } else { |
| SkAAClip clip; |
| clip.setRect(rect); |
| return this->op(clip, op); |
| } |
| } |
| |
| bool SkAAClip::op(const SkRect& rect, SkClipOp op, bool doAA) { |
| if (!doAA) { |
| return this->op(rect.round(), op); |
| } else { |
| // Tighten bounds for "path" aaclip of the rect |
| SkIRect pixelBounds = fBounds; |
| if (!pixelBounds.intersect(rect.roundOut())) { |
| // No change or clip becomes empty depending on 'op' |
| switch(op) { |
| case SkClipOp::kDifference: return !this->isEmpty(); |
| case SkClipOp::kIntersect: return this->setEmpty(); |
| } |
| SkUNREACHABLE; |
| } else if (rect.contains(SkRect::Make(fBounds))) { |
| // Wholly inside 'rect', so clip becomes empty or remains unchanged |
| switch(op) { |
| case SkClipOp::kDifference: return this->setEmpty(); |
| case SkClipOp::kIntersect: return !this->isEmpty(); |
| } |
| SkUNREACHABLE; |
| } else if (op == SkClipOp::kIntersect && this->quickContains(pixelBounds)) { |
| // We become just the rect intersected with pixel bounds (preserving fractional coords |
| // for AA edges). |
| return this->setPath(SkPath::Rect(rect), pixelBounds, /*doAA=*/true); |
| } else { |
| SkAAClip rectClip; |
| rectClip.setPath(SkPath::Rect(rect), |
| op == SkClipOp::kDifference ? fBounds : pixelBounds, |
| /*doAA=*/true); |
| return this->op(rectClip, op); |
| } |
| } |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const { |
| if (nullptr == dst) { |
| return !this->isEmpty(); |
| } |
| |
| if (this->isEmpty()) { |
| return dst->setEmpty(); |
| } |
| |
| if (this != dst) { |
| fRunHead->fRefCnt++; |
| dst->freeRuns(); |
| dst->fRunHead = fRunHead; |
| dst->fBounds = fBounds; |
| } |
| dst->fBounds.offset(dx, dy); |
| return true; |
| } |
| |
| void SkAAClip::freeRuns() { |
| if (fRunHead) { |
| SkASSERT(fRunHead->fRefCnt.load() >= 1); |
| if (1 == fRunHead->fRefCnt--) { |
| sk_free(fRunHead); |
| } |
| } |
| } |
| |
| const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const { |
| SkASSERT(fRunHead); |
| |
| if (y < fBounds.fTop || y >= fBounds.fBottom) { |
| return nullptr; |
| } |
| y -= fBounds.y(); // our yoffs values are relative to the top |
| |
| const YOffset* yoff = fRunHead->yoffsets(); |
| while (yoff->fY < y) { |
| yoff += 1; |
| SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount); |
| } |
| |
| if (lastYForRow) { |
| *lastYForRow = fBounds.y() + yoff->fY; |
| } |
| return fRunHead->data() + yoff->fOffset; |
| } |
| |
| const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const { |
| SkASSERT(x >= fBounds.fLeft && x < fBounds.fRight); |
| x -= fBounds.x(); |
| |
| // first skip up to X |
| for (;;) { |
| int n = data[0]; |
| if (x < n) { |
| if (initialCount) { |
| *initialCount = n - x; |
| } |
| break; |
| } |
| data += 2; |
| x -= n; |
| } |
| return data; |
| } |
| |
| bool SkAAClip::quickContains(int left, int top, int right, int bottom) const { |
| if (this->isEmpty()) { |
| return false; |
| } |
| if (!fBounds.contains(SkIRect{left, top, right, bottom})) { |
| return false; |
| } |
| |
| int lastY SK_INIT_TO_AVOID_WARNING; |
| const uint8_t* row = this->findRow(top, &lastY); |
| if (lastY < bottom) { |
| return false; |
| } |
| // now just need to check in X |
| int count; |
| row = this->findX(row, left, &count); |
| |
| int rectWidth = right - left; |
| while (0xFF == row[1]) { |
| if (count >= rectWidth) { |
| return true; |
| } |
| rectWidth -= count; |
| row += 2; |
| count = row[0]; |
| } |
| return false; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width, |
| int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) { |
| // we don't read our initial n from data, since the caller may have had to |
| // clip it, hence the initialCount parameter. |
| int n = initialCount; |
| for (;;) { |
| if (n > width) { |
| n = width; |
| } |
| SkASSERT(n > 0); |
| runs[0] = n; |
| runs += n; |
| |
| aa[0] = data[1]; |
| aa += n; |
| |
| data += 2; |
| width -= n; |
| if (0 == width) { |
| break; |
| } |
| // load the next count |
| n = data[0]; |
| } |
| runs[0] = 0; // sentinel |
| } |
| |
| SkAAClipBlitter::~SkAAClipBlitter() { |
| sk_free(fScanlineScratch); |
| } |
| |
| void SkAAClipBlitter::ensureRunsAndAA() { |
| if (nullptr == fScanlineScratch) { |
| // add 1 so we can store the terminating run count of 0 |
| int count = fAAClipBounds.width() + 1; |
| // we use this either for fRuns + fAA, or a scaline of a mask |
| // which may be as deep as 32bits |
| fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor)); |
| fRuns = (int16_t*)fScanlineScratch; |
| fAA = (SkAlpha*)(fRuns + count); |
| } |
| } |
| |
| void SkAAClipBlitter::blitH(int x, int y, int width) { |
| SkASSERT(width > 0); |
| SkASSERT(fAAClipBounds.contains(x, y)); |
| SkASSERT(fAAClipBounds.contains(x + width - 1, y)); |
| |
| const uint8_t* row = fAAClip->findRow(y); |
| int initialCount; |
| row = fAAClip->findX(row, x, &initialCount); |
| |
| if (initialCount >= width) { |
| SkAlpha alpha = row[1]; |
| if (0 == alpha) { |
| return; |
| } |
| if (0xFF == alpha) { |
| fBlitter->blitH(x, y, width); |
| return; |
| } |
| } |
| |
| this->ensureRunsAndAA(); |
| expandToRuns(row, initialCount, width, fRuns, fAA); |
| |
| fBlitter->blitAntiH(x, y, fAA, fRuns); |
| } |
| |
| static void merge(const uint8_t* SK_RESTRICT row, int rowN, |
| const SkAlpha* SK_RESTRICT srcAA, |
| const int16_t* SK_RESTRICT srcRuns, |
| SkAlpha* SK_RESTRICT dstAA, |
| int16_t* SK_RESTRICT dstRuns, |
| int width) { |
| SkDEBUGCODE(int accumulated = 0;) |
| int srcN = srcRuns[0]; |
| // do we need this check? |
| if (0 == srcN) { |
| return; |
| } |
| |
| for (;;) { |
| SkASSERT(rowN > 0); |
| SkASSERT(srcN > 0); |
| |
| unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]); |
| int minN = std::min(srcN, rowN); |
| dstRuns[0] = minN; |
| dstRuns += minN; |
| dstAA[0] = newAlpha; |
| dstAA += minN; |
| |
| if (0 == (srcN -= minN)) { |
| srcN = srcRuns[0]; // refresh |
| srcRuns += srcN; |
| srcAA += srcN; |
| srcN = srcRuns[0]; // reload |
| if (0 == srcN) { |
| break; |
| } |
| } |
| if (0 == (rowN -= minN)) { |
| row += 2; |
| rowN = row[0]; // reload |
| } |
| |
| SkDEBUGCODE(accumulated += minN;) |
| SkASSERT(accumulated <= width); |
| } |
| dstRuns[0] = 0; |
| } |
| |
| void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[], |
| const int16_t runs[]) { |
| |
| const uint8_t* row = fAAClip->findRow(y); |
| int initialCount; |
| row = fAAClip->findX(row, x, &initialCount); |
| |
| this->ensureRunsAndAA(); |
| |
| merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width()); |
| fBlitter->blitAntiH(x, y, fAA, fRuns); |
| } |
| |
| void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
| if (fAAClip->quickContains(x, y, x + 1, y + height)) { |
| fBlitter->blitV(x, y, height, alpha); |
| return; |
| } |
| |
| for (;;) { |
| int lastY SK_INIT_TO_AVOID_WARNING; |
| const uint8_t* row = fAAClip->findRow(y, &lastY); |
| int dy = lastY - y + 1; |
| if (dy > height) { |
| dy = height; |
| } |
| height -= dy; |
| |
| row = fAAClip->findX(row, x); |
| SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]); |
| if (newAlpha) { |
| fBlitter->blitV(x, y, dy, newAlpha); |
| } |
| SkASSERT(height >= 0); |
| if (height <= 0) { |
| break; |
| } |
| y = lastY + 1; |
| } |
| } |
| |
| void SkAAClipBlitter::blitRect(int x, int y, int width, int height) { |
| if (fAAClip->quickContains(x, y, x + width, y + height)) { |
| fBlitter->blitRect(x, y, width, height); |
| return; |
| } |
| |
| while (--height >= 0) { |
| this->blitH(x, y, width); |
| y += 1; |
| } |
| } |
| |
| typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row, |
| int initialRowCount, void* dst); |
| |
| static void small_memcpy(void* dst, const void* src, size_t n) { |
| memcpy(dst, src, n); |
| } |
| |
| static void small_bzero(void* dst, size_t n) { |
| sk_bzero(dst, n); |
| } |
| |
| static inline uint8_t mergeOne(uint8_t value, unsigned alpha) { |
| return SkMulDiv255Round(value, alpha); |
| } |
| |
| static inline uint16_t mergeOne(uint16_t value, unsigned alpha) { |
| unsigned r = SkGetPackedR16(value); |
| unsigned g = SkGetPackedG16(value); |
| unsigned b = SkGetPackedB16(value); |
| return SkPackRGB16(SkMulDiv255Round(r, alpha), |
| SkMulDiv255Round(g, alpha), |
| SkMulDiv255Round(b, alpha)); |
| } |
| |
| template <typename T> |
| void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) { |
| const T* SK_RESTRICT src = static_cast<const T*>(inSrc); |
| T* SK_RESTRICT dst = static_cast<T*>(inDst); |
| for (;;) { |
| SkASSERT(rowN > 0); |
| SkASSERT(srcN > 0); |
| |
| int n = std::min(rowN, srcN); |
| unsigned rowA = row[1]; |
| if (0xFF == rowA) { |
| small_memcpy(dst, src, n * sizeof(T)); |
| } else if (0 == rowA) { |
| small_bzero(dst, n * sizeof(T)); |
| } else { |
| for (int i = 0; i < n; ++i) { |
| dst[i] = mergeOne(src[i], rowA); |
| } |
| } |
| |
| if (0 == (srcN -= n)) { |
| break; |
| } |
| |
| src += n; |
| dst += n; |
| |
| SkASSERT(rowN == n); |
| row += 2; |
| rowN = row[0]; |
| } |
| } |
| |
| static MergeAAProc find_merge_aa_proc(SkMask::Format format) { |
| switch (format) { |
| case SkMask::kBW_Format: |
| SkDEBUGFAIL("unsupported"); |
| return nullptr; |
| case SkMask::kA8_Format: |
| case SkMask::k3D_Format: |
| return mergeT<uint8_t> ; |
| case SkMask::kLCD16_Format: |
| return mergeT<uint16_t>; |
| default: |
| SkDEBUGFAIL("unsupported"); |
| return nullptr; |
| } |
| } |
| |
| static U8CPU bit2byte(int bitInAByte) { |
| SkASSERT(bitInAByte <= 0xFF); |
| // negation turns any non-zero into 0xFFFFFF??, so we just shift down |
| // some value >= 8 to get a full FF value |
| return -bitInAByte >> 8; |
| } |
| |
| static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) { |
| SkASSERT(SkMask::kBW_Format == srcMask.fFormat); |
| SkASSERT(SkMask::kA8_Format == dstMask->fFormat); |
| |
| const int width = srcMask.fBounds.width(); |
| const int height = srcMask.fBounds.height(); |
| |
| const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage; |
| const size_t srcRB = srcMask.fRowBytes; |
| uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage; |
| const size_t dstRB = dstMask->fRowBytes; |
| |
| const int wholeBytes = width >> 3; |
| const int leftOverBits = width & 7; |
| |
| for (int y = 0; y < height; ++y) { |
| uint8_t* SK_RESTRICT d = dst; |
| for (int i = 0; i < wholeBytes; ++i) { |
| int srcByte = src[i]; |
| d[0] = bit2byte(srcByte & (1 << 7)); |
| d[1] = bit2byte(srcByte & (1 << 6)); |
| d[2] = bit2byte(srcByte & (1 << 5)); |
| d[3] = bit2byte(srcByte & (1 << 4)); |
| d[4] = bit2byte(srcByte & (1 << 3)); |
| d[5] = bit2byte(srcByte & (1 << 2)); |
| d[6] = bit2byte(srcByte & (1 << 1)); |
| d[7] = bit2byte(srcByte & (1 << 0)); |
| d += 8; |
| } |
| if (leftOverBits) { |
| int srcByte = src[wholeBytes]; |
| for (int x = 0; x < leftOverBits; ++x) { |
| *d++ = bit2byte(srcByte & 0x80); |
| srcByte <<= 1; |
| } |
| } |
| src += srcRB; |
| dst += dstRB; |
| } |
| } |
| |
| void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) { |
| SkASSERT(fAAClip->getBounds().contains(clip)); |
| |
| if (fAAClip->quickContains(clip)) { |
| fBlitter->blitMask(origMask, clip); |
| return; |
| } |
| |
| const SkMask* mask = &origMask; |
| |
| // if we're BW, we need to upscale to A8 (ugh) |
| SkMask grayMask; |
| if (SkMask::kBW_Format == origMask.fFormat) { |
| grayMask.fFormat = SkMask::kA8_Format; |
| grayMask.fBounds = origMask.fBounds; |
| grayMask.fRowBytes = origMask.fBounds.width(); |
| size_t size = grayMask.computeImageSize(); |
| grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size, |
| SkAutoMalloc::kReuse_OnShrink); |
| |
| upscaleBW2A8(&grayMask, origMask); |
| mask = &grayMask; |
| } |
| |
| this->ensureRunsAndAA(); |
| |
| // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D |
| // data into a temp block to support it better (ugh) |
| |
| const void* src = mask->getAddr(clip.fLeft, clip.fTop); |
| const size_t srcRB = mask->fRowBytes; |
| const int width = clip.width(); |
| MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat); |
| |
| SkMask rowMask; |
| rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat; |
| rowMask.fBounds.fLeft = clip.fLeft; |
| rowMask.fBounds.fRight = clip.fRight; |
| rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1 |
| rowMask.fImage = (uint8_t*)fScanlineScratch; |
| |
| int y = clip.fTop; |
| const int stopY = y + clip.height(); |
| |
| do { |
| int localStopY SK_INIT_TO_AVOID_WARNING; |
| const uint8_t* row = fAAClip->findRow(y, &localStopY); |
| // findRow returns last Y, not stop, so we add 1 |
| localStopY = std::min(localStopY + 1, stopY); |
| |
| int initialCount; |
| row = fAAClip->findX(row, clip.fLeft, &initialCount); |
| do { |
| mergeProc(src, width, row, initialCount, rowMask.fImage); |
| rowMask.fBounds.fTop = y; |
| rowMask.fBounds.fBottom = y + 1; |
| fBlitter->blitMask(rowMask, rowMask.fBounds); |
| src = (const void*)((const char*)src + srcRB); |
| } while (++y < localStopY); |
| } while (y < stopY); |
| } |
| |
| const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) { |
| return nullptr; |
| } |