| /* |
| * Copyright 2014 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| #include "src/gpu/effects/GrMatrixConvolutionEffect.h" |
| |
| #include "include/private/SkHalf.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrProxyProvider.h" |
| #include "src/gpu/GrRecordingContextPriv.h" |
| #include "src/gpu/GrTexture.h" |
| #include "src/gpu/GrTextureProxy.h" |
| #include "src/gpu/GrThreadSafeCache.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/SkGr.h" |
| #include "src/gpu/effects/GrTextureEffect.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/glsl/GrGLSLProgramDataManager.h" |
| #include "src/gpu/glsl/GrGLSLUniformHandler.h" |
| |
| class GrMatrixConvolutionEffect::Impl : public ProgramImpl { |
| public: |
| void emitCode(EmitArgs&) override; |
| |
| private: |
| void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; |
| |
| typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; |
| |
| void emitKernelBlock(EmitArgs&, SkIPoint); |
| |
| UniformHandle fKernelUni; |
| UniformHandle fKernelOffsetUni; |
| UniformHandle fGainUni; |
| UniformHandle fBiasUni; |
| UniformHandle fKernelBiasUni; |
| |
| using INHERITED = ProgramImpl; |
| }; |
| |
| GrMatrixConvolutionEffect::KernelWrapper::MakeResult |
| GrMatrixConvolutionEffect::KernelWrapper::Make(GrRecordingContext* rContext, |
| SkISize size, |
| const GrCaps& caps, |
| const SkScalar* values) { |
| if (!rContext || !values || size.isEmpty()) { |
| return {}; |
| } |
| |
| const int length = size.area(); |
| // Small kernel -> just fill the array. |
| KernelWrapper result(size); |
| if (length <= kMaxUniformSize) { |
| for (int i = 0; i < length; i++) { |
| result.fArray[i] = SkScalarToFloat(values[i]); |
| } |
| return {result, nullptr}; |
| } |
| |
| BiasAndGain& scalableSampler = result.fBiasAndGain; |
| bool useA16 = |
| rContext->defaultBackendFormat(kA16_float_SkColorType, GrRenderable::kNo).isValid(); |
| SkScalar min = values[0]; |
| if (!useA16) { |
| // Determine min and max values to figure out inner gain & bias. |
| SkScalar max = values[0]; |
| for (int i = 1; i < length; i++) { |
| if (values[i] < min) { |
| min = values[i]; |
| } |
| if (values[i] > max) { |
| max = values[i]; |
| } |
| } |
| // Treat near-0 gain (i.e. box blur) as 1, and let the kernelBias |
| // move everything up to the final value. |
| const SkScalar computedGain = max - min; |
| scalableSampler.fGain = |
| SkScalarNearlyZero(computedGain) ? 1.0f : SkScalarToFloat(computedGain); |
| // Inner bias is pre-inner-gain so we divide that out. |
| scalableSampler.fBias = SkScalarToFloat(min) / scalableSampler.fGain; |
| } |
| |
| // TODO: Pick cache or dont-cache based on observed perf. |
| static constexpr bool kCacheKernelTexture = true; |
| |
| skgpu::UniqueKey key; |
| if (kCacheKernelTexture) { |
| static const skgpu::UniqueKey::Domain kDomain = skgpu::UniqueKey::GenerateDomain(); |
| skgpu::UniqueKey::Builder builder(&key, kDomain, length, "Matrix Convolution Kernel"); |
| // Texture cache key is the exact content of the kernel. |
| static_assert(sizeof(float) == 4); |
| for (int i = 0; i < length; i++) { |
| builder[i] = *(const uint32_t*)&values[i]; |
| } |
| builder.finish(); |
| } |
| |
| // Find or create a texture. |
| auto threadSafeCache = rContext->priv().threadSafeCache(); |
| |
| SkColorType colorType = useA16 ? kA16_float_SkColorType : kAlpha_8_SkColorType; |
| |
| GrSurfaceProxyView view; |
| if (kCacheKernelTexture && (view = threadSafeCache->find(key))) { |
| SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin); |
| auto kernelFP = GrTextureEffect::Make(std::move(view), kUnknown_SkAlphaType); |
| return {result, std::move(kernelFP)}; |
| } |
| |
| SkBitmap bm; |
| auto info = SkImageInfo::Make({length, 1}, colorType, kPremul_SkAlphaType, nullptr); |
| if (!bm.tryAllocPixels(info)) { |
| return {}; |
| } |
| for (int i = 0; i < length; i++) { |
| if (useA16) { |
| *bm.getAddr16(i, 0) = SkFloatToHalf(values[i]); |
| } else { |
| *bm.getAddr8(i, 0) = |
| SkScalarRoundToInt((values[i] - min) / scalableSampler.fGain * 255); |
| } |
| } |
| bm.setImmutable(); |
| |
| view = std::get<0>(GrMakeUncachedBitmapProxyView(rContext, bm)); |
| if (!view) { |
| return {}; |
| } |
| |
| if (kCacheKernelTexture) { |
| view = threadSafeCache->add(key, view); |
| } |
| |
| SkASSERT(view.origin() == kTopLeft_GrSurfaceOrigin); |
| auto kernelFP = GrTextureEffect::Make(std::move(view), kUnknown_SkAlphaType); |
| return {result, std::move(kernelFP)}; |
| } |
| |
| bool GrMatrixConvolutionEffect::KernelWrapper::operator==(const KernelWrapper& k) const { |
| if (fSize != k.fSize) { |
| return false; |
| } else if (this->isSampled()) { |
| return fBiasAndGain == k.fBiasAndGain; |
| } else { |
| return std::equal(fArray.begin(), fArray.begin() + fSize.area(), k.fArray.begin()); |
| } |
| } |
| |
| bool GrMatrixConvolutionEffect::KernelWrapper::BiasAndGain::operator==( |
| const BiasAndGain& k) const { |
| return fGain == k.fGain && fBias == k.fBias; |
| } |
| |
| // For sampled kernels, emit a for loop that does all the kernel accumulation. |
| // For uniform kernels, emit a single iteration. Function is called repeatedly in a for loop. |
| // loc is ignored for sampled kernels. |
| void GrMatrixConvolutionEffect::Impl::emitKernelBlock(EmitArgs& args, SkIPoint loc) { |
| const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>(); |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| int kernelWidth = mce.fKernel.size().width(); |
| int kernelHeight = mce.fKernel.size().height(); |
| int kernelArea = kernelWidth * kernelHeight; |
| |
| if (mce.fKernel.isSampled()) { |
| fragBuilder->codeAppendf("for (int i = 0; i < %d; ++i)", (int)kernelArea); |
| } |
| |
| GrGLSLShaderBuilder::ShaderBlock block(fragBuilder); |
| |
| fragBuilder->codeAppend("half k;"); |
| fragBuilder->codeAppend("half2 sourceOffset;"); |
| if (mce.fKernel.isSampled()) { |
| const char* kernelBias = uniformHandler->getUniformCStr(fKernelBiasUni); |
| SkString kernelSample = this->invokeChild(1, args, "float2(float(i) + 0.5, 0.5)"); |
| fragBuilder->codeAppendf("k = %s.w + %s;", kernelSample.c_str(), kernelBias); |
| fragBuilder->codeAppendf("sourceOffset.y = floor(half(i) / %d);", kernelWidth); |
| fragBuilder->codeAppendf("sourceOffset.x = half(i) - sourceOffset.y * %d;", kernelWidth); |
| } else { |
| fragBuilder->codeAppendf("sourceOffset = half2(%d, %d);", loc.x(), loc.y()); |
| int offset = loc.y() * kernelWidth + loc.x(); |
| const char* kernel = uniformHandler->getUniformCStr(fKernelUni); |
| fragBuilder->codeAppendf("k = %s[%d][%d];", kernel, offset / 4, offset & 0x3); |
| } |
| |
| auto sample = this->invokeChild(0, args, "coord + sourceOffset"); |
| fragBuilder->codeAppendf("half4 c = %s;", sample.c_str()); |
| if (!mce.fConvolveAlpha) { |
| fragBuilder->codeAppend("c = unpremul(c);"); |
| fragBuilder->codeAppend("c.rgb = saturate(c.rgb);"); |
| } |
| fragBuilder->codeAppend("sum += c * k;"); |
| } |
| |
| void GrMatrixConvolutionEffect::Impl::emitCode(EmitArgs& args) { |
| const GrMatrixConvolutionEffect& mce = args.fFp.cast<GrMatrixConvolutionEffect>(); |
| |
| int kernelWidth = mce.fKernel.size().width(); |
| int kernelHeight = mce.fKernel.size().height(); |
| |
| int arrayCount = (kernelWidth * kernelHeight + 3) / 4; |
| SkASSERT(4 * arrayCount >= kernelWidth * kernelHeight); |
| |
| GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; |
| if (mce.fKernel.isSampled()) { |
| fKernelBiasUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, |
| SkSLType::kHalf, "KernelBias"); |
| } else { |
| fKernelUni = uniformHandler->addUniformArray(&mce, kFragment_GrShaderFlag, |
| SkSLType::kHalf4, "Kernel", arrayCount); |
| } |
| fKernelOffsetUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, SkSLType::kHalf2, |
| "KernelOffset"); |
| fGainUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, SkSLType::kHalf, "Gain"); |
| fBiasUni = uniformHandler->addUniform(&mce, kFragment_GrShaderFlag, SkSLType::kHalf, "Bias"); |
| |
| const char* kernelOffset = uniformHandler->getUniformCStr(fKernelOffsetUni); |
| const char* gain = uniformHandler->getUniformCStr(fGainUni); |
| const char* bias = uniformHandler->getUniformCStr(fBiasUni); |
| |
| GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; |
| fragBuilder->codeAppend("half4 sum = half4(0);"); |
| fragBuilder->codeAppendf("float2 coord = %s - %s;", args.fSampleCoord, kernelOffset); |
| |
| if (mce.fKernel.isSampled()) { |
| this->emitKernelBlock(args, {}); |
| } else { |
| for (int x = 0; x < kernelWidth; ++x) { |
| for (int y = 0; y < kernelHeight; ++y) { |
| this->emitKernelBlock(args, SkIPoint::Make(x, y)); |
| } |
| } |
| } |
| |
| fragBuilder->codeAppendf("half4 color;"); |
| if (mce.fConvolveAlpha) { |
| fragBuilder->codeAppendf("color = sum * %s + %s;", gain, bias); |
| fragBuilder->codeAppendf("color.a = saturate(color.a);"); |
| fragBuilder->codeAppendf("color.rgb = clamp(color.rgb, 0.0, color.a);"); |
| } else { |
| auto sample = this->invokeChild(0, args); |
| fragBuilder->codeAppendf("half4 c = %s;", sample.c_str()); |
| fragBuilder->codeAppendf("color.a = c.a;"); |
| fragBuilder->codeAppendf("color.rgb = saturate(sum.rgb * %s + %s);", gain, bias); |
| fragBuilder->codeAppendf("color.rgb *= color.a;"); |
| } |
| fragBuilder->codeAppendf("return color;"); |
| } |
| |
| void GrMatrixConvolutionEffect::Impl::onSetData(const GrGLSLProgramDataManager& pdman, |
| const GrFragmentProcessor& processor) { |
| const GrMatrixConvolutionEffect& conv = processor.cast<GrMatrixConvolutionEffect>(); |
| pdman.set2f(fKernelOffsetUni, conv.fKernelOffset.fX, conv.fKernelOffset.fY); |
| float totalGain = conv.fGain; |
| if (conv.fKernel.isSampled()) { |
| totalGain *= conv.fKernel.biasAndGain().fGain; |
| pdman.set1f(fKernelBiasUni, conv.fKernel.biasAndGain().fBias); |
| } else { |
| int kernelCount = conv.fKernel.size().area(); |
| int arrayCount = (kernelCount + 3) / 4; |
| SkASSERT(4 * arrayCount >= kernelCount); |
| pdman.set4fv(fKernelUni, arrayCount, conv.fKernel.array().data()); |
| } |
| pdman.set1f(fBiasUni, conv.fBias); |
| pdman.set1f(fGainUni, totalGain); |
| } |
| |
| GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(std::unique_ptr<GrFragmentProcessor> child, |
| const KernelWrapper& kernel, |
| std::unique_ptr<GrFragmentProcessor> kernelFP, |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| bool convolveAlpha) |
| // To advertise either the modulation or opaqueness optimizations we'd have to examine the |
| // parameters. |
| : INHERITED(kGrMatrixConvolutionEffect_ClassID, kNone_OptimizationFlags) |
| , fKernel(kernel) |
| , fGain(SkScalarToFloat(gain)) |
| , fBias(SkScalarToFloat(bias) / 255.0f) |
| , fConvolveAlpha(convolveAlpha) { |
| this->registerChild(std::move(child), SkSL::SampleUsage::Explicit()); |
| this->registerChild(std::move(kernelFP), SkSL::SampleUsage::Explicit()); |
| fKernelOffset = {static_cast<float>(kernelOffset.x()), |
| static_cast<float>(kernelOffset.y())}; |
| this->setUsesSampleCoordsDirectly(); |
| } |
| |
| GrMatrixConvolutionEffect::GrMatrixConvolutionEffect(const GrMatrixConvolutionEffect& that) |
| : INHERITED(that) |
| , fKernel(that.fKernel) |
| , fGain(that.fGain) |
| , fBias(that.fBias) |
| , fKernelOffset(that.fKernelOffset) |
| , fConvolveAlpha(that.fConvolveAlpha) {} |
| |
| std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::clone() const { |
| return std::unique_ptr<GrFragmentProcessor>(new GrMatrixConvolutionEffect(*this)); |
| } |
| |
| void GrMatrixConvolutionEffect::onAddToKey(const GrShaderCaps& caps, |
| skgpu::KeyBuilder* b) const { |
| SkASSERT(this->fKernel.size().width() <= 0x7FFF && this->fKernel.size().height() <= 0xFFFF); |
| uint32_t key = this->fKernel.size().width() << 16 | this->fKernel.size().height(); |
| key |= fConvolveAlpha ? 1U << 31 : 0; |
| b->add32(key); |
| } |
| |
| std::unique_ptr<GrFragmentProcessor::ProgramImpl> |
| GrMatrixConvolutionEffect::onMakeProgramImpl() const { |
| return std::make_unique<Impl>(); |
| } |
| |
| bool GrMatrixConvolutionEffect::onIsEqual(const GrFragmentProcessor& sBase) const { |
| const GrMatrixConvolutionEffect& s = sBase.cast<GrMatrixConvolutionEffect>(); |
| return fKernel == s.fKernel && |
| fGain == s.fGain && |
| fBias == s.fBias && |
| fKernelOffset == s.fKernelOffset && |
| fConvolveAlpha == s.fConvolveAlpha; |
| } |
| |
| std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::Make(GrRecordingContext* context, |
| GrSurfaceProxyView srcView, |
| const SkIRect& srcBounds, |
| const SkISize& kernelSize, |
| const SkScalar* kernel, |
| SkScalar gain, |
| SkScalar bias, |
| const SkIPoint& kernelOffset, |
| GrSamplerState::WrapMode wm, |
| bool convolveAlpha, |
| const GrCaps& caps) { |
| auto [kernelWrapper, kernelFP] = KernelWrapper::Make(context, kernelSize, caps, kernel); |
| if (!kernelWrapper.isValid()) { |
| return nullptr; |
| } |
| GrSamplerState sampler(wm, GrSamplerState::Filter::kNearest); |
| auto child = GrTextureEffect::MakeSubset(std::move(srcView), kPremul_SkAlphaType, SkMatrix::I(), |
| sampler, SkRect::Make(srcBounds), caps); |
| return std::unique_ptr<GrFragmentProcessor>( |
| new GrMatrixConvolutionEffect(std::move(child), kernelWrapper, std::move(kernelFP), |
| gain, bias, kernelOffset, convolveAlpha)); |
| } |
| |
| GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrMatrixConvolutionEffect); |
| |
| #if GR_TEST_UTILS |
| std::unique_ptr<GrFragmentProcessor> GrMatrixConvolutionEffect::TestCreate(GrProcessorTestData* d) { |
| auto [view, ct, at] = d->randomView(); |
| |
| static constexpr size_t kMaxTestKernelSize = 2 * kMaxUniformSize; |
| int width = d->fRandom->nextRangeU(1, kMaxTestKernelSize); |
| int height = d->fRandom->nextRangeU(1, kMaxTestKernelSize / width); |
| SkISize kernelSize = SkISize::Make(width, height); |
| std::unique_ptr<SkScalar[]> kernel(new SkScalar[width * height]); |
| for (int i = 0; i < width * height; i++) { |
| kernel.get()[i] = d->fRandom->nextSScalar1(); |
| } |
| SkScalar gain = d->fRandom->nextSScalar1(); |
| SkScalar bias = d->fRandom->nextSScalar1(); |
| |
| uint32_t kernalOffsetX = d->fRandom->nextRangeU(0, kernelSize.width()); |
| uint32_t kernalOffsetY = d->fRandom->nextRangeU(0, kernelSize.height()); |
| SkIPoint kernelOffset = SkIPoint::Make(kernalOffsetX, kernalOffsetY); |
| |
| uint32_t boundsX = d->fRandom->nextRangeU(0, view.width()); |
| uint32_t boundsY = d->fRandom->nextRangeU(0, view.height()); |
| uint32_t boundsW = d->fRandom->nextRangeU(0, view.width()); |
| uint32_t boundsH = d->fRandom->nextRangeU(0, view.height()); |
| SkIRect bounds = SkIRect::MakeXYWH(boundsX, boundsY, boundsW, boundsH); |
| |
| auto wm = static_cast<GrSamplerState::WrapMode>( |
| d->fRandom->nextULessThan(GrSamplerState::kWrapModeCount)); |
| bool convolveAlpha = d->fRandom->nextBool(); |
| return GrMatrixConvolutionEffect::Make(d->context(), |
| std::move(view), |
| bounds, |
| kernelSize, |
| kernel.get(), |
| gain, |
| bias, |
| kernelOffset, |
| wm, |
| convolveAlpha, |
| *d->caps()); |
| } |
| #endif |