| /* |
| * Copyright 2019 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/tessellate/shaders/GrPathTessellationShader.h" |
| |
| #include "src/core/SkMathPriv.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
| #include "src/gpu/tessellate/PathTessellator.h" |
| #include "src/gpu/tessellate/Tessellation.h" |
| #include "src/gpu/tessellate/WangsFormula.h" |
| |
| using skgpu::PatchAttribs; |
| using skgpu::VertexWriter; |
| |
| namespace { |
| |
| // Uses instanced draws to triangulate standalone closed curves with a "middle-out" topology. |
| // Middle-out draws a triangle with vertices at T=[0, 1/2, 1] and then recurses breadth first: |
| // |
| // depth=0: T=[0, 1/2, 1] |
| // depth=1: T=[0, 1/4, 2/4], T=[2/4, 3/4, 1] |
| // depth=2: T=[0, 1/8, 2/8], T=[2/8, 3/8, 4/8], T=[4/8, 5/8, 6/8], T=[6/8, 7/8, 1] |
| // ... |
| // |
| // The shader determines how many segments are required to render each individual curve smoothly, |
| // and emits empty triangles at any vertices whose sk_VertexIDs are higher than necessary. It is the |
| // caller's responsibility to draw enough vertices per instance for the most complex curve in the |
| // batch to render smoothly (i.e., NumTrianglesAtResolveLevel() * 3). |
| class MiddleOutShader : public GrPathTessellationShader { |
| public: |
| MiddleOutShader(const GrShaderCaps& shaderCaps, const SkMatrix& viewMatrix, |
| const SkPMColor4f& color, PatchAttribs attribs) |
| : GrPathTessellationShader(kTessellate_MiddleOutShader_ClassID, |
| GrPrimitiveType::kTriangles, 0, viewMatrix, color, attribs) { |
| fInstanceAttribs.emplace_back("p01", kFloat4_GrVertexAttribType, SkSLType::kFloat4); |
| fInstanceAttribs.emplace_back("p23", kFloat4_GrVertexAttribType, SkSLType::kFloat4); |
| if (fAttribs & PatchAttribs::kFanPoint) { |
| fInstanceAttribs.emplace_back("fanPointAttrib", |
| kFloat2_GrVertexAttribType, |
| SkSLType::kFloat2); |
| } |
| if (fAttribs & PatchAttribs::kColor) { |
| fInstanceAttribs.emplace_back("colorAttrib", |
| (fAttribs & PatchAttribs::kWideColorIfEnabled) |
| ? kFloat4_GrVertexAttribType |
| : kUByte4_norm_GrVertexAttribType, |
| SkSLType::kHalf4); |
| } |
| if (fAttribs & PatchAttribs::kExplicitCurveType) { |
| // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support |
| // infinity can't detect this. On these platforms we also write out an extra float with |
| // each patch that explicitly tells the shader what type of curve it is. |
| fInstanceAttribs.emplace_back("curveType", kFloat_GrVertexAttribType, SkSLType::kFloat); |
| } |
| this->setInstanceAttributesWithImplicitOffsets(fInstanceAttribs.data(), |
| fInstanceAttribs.count()); |
| SkASSERT(fInstanceAttribs.count() <= kMaxInstanceAttribCount); |
| SkASSERT(this->instanceStride() == |
| sizeof(SkPoint) * 4 + skgpu::PatchAttribsStride(fAttribs)); |
| |
| constexpr static Attribute kVertexAttrib("resolveLevel_and_idx", kFloat2_GrVertexAttribType, |
| SkSLType::kFloat2); |
| this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1); |
| } |
| |
| int maxTessellationSegments(const GrShaderCaps&) const override { |
| return 1 << skgpu::PathTessellator::kMaxFixedResolveLevel; |
| } |
| |
| private: |
| const char* name() const final { return "tessellate_MiddleOutShader"; } |
| void addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const final { |
| // When color is in a uniform, it's always wide so we need to ignore kWideColorIfEnabled. |
| // When color is in an attrib, its wideness is accounted for as part of the attrib key in |
| // GrGeometryProcessor::getAttributeKey(). |
| // Either way, we get the correct key by ignoring . |
| b->add32((uint32_t)(fAttribs & ~PatchAttribs::kWideColorIfEnabled)); |
| } |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const final; |
| |
| constexpr static int kMaxInstanceAttribCount = 5; |
| SkSTArray<kMaxInstanceAttribCount, Attribute> fInstanceAttribs; |
| }; |
| |
| std::unique_ptr<GrGeometryProcessor::ProgramImpl> MiddleOutShader::makeProgramImpl( |
| const GrShaderCaps&) const { |
| class Impl : public GrPathTessellationShader::Impl { |
| void emitVertexCode(const GrShaderCaps& shaderCaps, |
| const GrPathTessellationShader& shader, |
| GrGLSLVertexBuilder* v, |
| GrGLSLVaryingHandler* varyingHandler, |
| GrGPArgs* gpArgs) override { |
| const MiddleOutShader& middleOutShader = shader.cast<MiddleOutShader>(); |
| v->defineConstant("PRECISION", skgpu::kTessellationPrecision); |
| v->defineConstant("MAX_FIXED_RESOLVE_LEVEL", |
| (float)skgpu::PathTessellator::kMaxFixedResolveLevel); |
| v->defineConstant("MAX_FIXED_SEGMENTS", |
| (float)(1 << skgpu::PathTessellator::kMaxFixedResolveLevel)); |
| v->insertFunction(skgpu::wangs_formula::as_sksl().c_str()); |
| if (middleOutShader.fAttribs & PatchAttribs::kExplicitCurveType) { |
| v->insertFunction(SkStringPrintf(R"( |
| bool is_conic_curve() { |
| return curveType != %g; |
| })", skgpu::kCubicCurveType).c_str()); |
| v->insertFunction(SkStringPrintf(R"( |
| bool is_triangular_conic_curve() { |
| return curveType == %g; |
| })", skgpu::kTriangularConicCurveType).c_str()); |
| } else { |
| SkASSERT(shaderCaps.infinitySupport()); |
| v->insertFunction(R"( |
| bool is_conic_curve() { return isinf(p23.w); } |
| bool is_triangular_conic_curve() { return isinf(p23.z); })"); |
| } |
| if (shaderCaps.bitManipulationSupport()) { |
| v->insertFunction(R"( |
| float ldexp_portable(float x, float p) { |
| return ldexp(x, int(p)); |
| })"); |
| } else { |
| v->insertFunction(R"( |
| float ldexp_portable(float x, float p) { |
| return x * exp2(p); |
| })"); |
| } |
| v->codeAppend(R"( |
| float resolveLevel = resolveLevel_and_idx.x; |
| float idxInResolveLevel = resolveLevel_and_idx.y; |
| float2 localcoord;)"); |
| if (middleOutShader.fAttribs & PatchAttribs::kFanPoint) { |
| v->codeAppend(R"( |
| // A negative resolve level means this is the fan point. |
| if (resolveLevel < 0) { |
| localcoord = fanPointAttrib; |
| } else)"); // Fall through to next if (). |
| } |
| v->codeAppend(R"( |
| if (is_triangular_conic_curve()) { |
| // This patch is an exact triangle. |
| localcoord = (resolveLevel != 0) ? p01.zw |
| : (idxInResolveLevel != 0) ? p23.xy |
| : p01.xy; |
| } else { |
| float2 p0=p01.xy, p1=p01.zw, p2=p23.xy, p3=p23.zw; |
| float w = -1; // w < 0 tells us to treat the instance as an integral cubic. |
| float maxResolveLevel; |
| if (is_conic_curve()) { |
| // Conics are 3 points, with the weight in p3. |
| w = p3.x; |
| maxResolveLevel = wangs_formula_conic_log2(PRECISION, AFFINE_MATRIX * p0, |
| AFFINE_MATRIX * p1, |
| AFFINE_MATRIX * p2, w); |
| p1 *= w; // Unproject p1. |
| p3 = p2; // Duplicate the endpoint for shared code that also runs on cubics. |
| } else { |
| // The patch is an integral cubic. |
| maxResolveLevel = wangs_formula_cubic_log2(PRECISION, p0, p1, p2, p3, |
| AFFINE_MATRIX); |
| } |
| if (resolveLevel > maxResolveLevel) { |
| // This vertex is at a higher resolve level than we need. Demote to a lower |
| // resolveLevel, which will produce a degenerate triangle. |
| idxInResolveLevel = floor(ldexp_portable(idxInResolveLevel, |
| maxResolveLevel - resolveLevel)); |
| resolveLevel = maxResolveLevel; |
| } |
| // Promote our location to a discrete position in the maximum fixed resolve level. |
| // This is extra paranoia to ensure we get the exact same fp32 coordinates for |
| // colocated points from different resolve levels (e.g., the vertices T=3/4 and |
| // T=6/8 should be exactly colocated). |
| float fixedVertexID = floor(.5 + ldexp_portable( |
| idxInResolveLevel, MAX_FIXED_RESOLVE_LEVEL - resolveLevel)); |
| if (0 < fixedVertexID && fixedVertexID < MAX_FIXED_SEGMENTS) { |
| float T = fixedVertexID * (1 / MAX_FIXED_SEGMENTS); |
| |
| // Evaluate at T. Use De Casteljau's for its accuracy and stability. |
| float2 ab = mix(p0, p1, T); |
| float2 bc = mix(p1, p2, T); |
| float2 cd = mix(p2, p3, T); |
| float2 abc = mix(ab, bc, T); |
| float2 bcd = mix(bc, cd, T); |
| float2 abcd = mix(abc, bcd, T); |
| |
| // Evaluate the conic weight at T. |
| float u = mix(1.0, w, T); |
| float v = w + 1 - u; // == mix(w, 1, T) |
| float uv = mix(u, v, T); |
| |
| localcoord = (w < 0) ? /*cubic*/ abcd : /*conic*/ abc/uv; |
| } else { |
| localcoord = (fixedVertexID == 0) ? p0.xy : p3.xy; |
| } |
| } |
| float2 vertexpos = AFFINE_MATRIX * localcoord + TRANSLATE;)"); |
| gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localcoord"); |
| gpArgs->fPositionVar.set(SkSLType::kFloat2, "vertexpos"); |
| if (middleOutShader.fAttribs & PatchAttribs::kColor) { |
| GrGLSLVarying colorVarying(SkSLType::kHalf4); |
| varyingHandler->addVarying("color", |
| &colorVarying, |
| GrGLSLVaryingHandler::Interpolation::kCanBeFlat); |
| v->codeAppendf("%s = colorAttrib;", colorVarying.vsOut()); |
| fVaryingColorName = colorVarying.fsIn(); |
| } |
| } |
| }; |
| return std::make_unique<Impl>(); |
| } |
| |
| } // namespace |
| |
| GrPathTessellationShader* GrPathTessellationShader::MakeMiddleOutFixedCountShader( |
| const GrShaderCaps& shaderCaps, |
| SkArenaAlloc* arena, |
| const SkMatrix& viewMatrix, |
| const SkPMColor4f& color, |
| PatchAttribs attribs) { |
| // We should use explicit curve type when, and only when, there isn't infinity support. |
| // Otherwise the GPU can infer curve type based on infinity. |
| SkASSERT(shaderCaps.infinitySupport() != (attribs & PatchAttribs::kExplicitCurveType)); |
| return arena->make<MiddleOutShader>(shaderCaps, viewMatrix, color, attribs); |
| } |