| /* |
| * Copyright 2020 Google LLC. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "src/gpu/tessellate/shaders/GrStrokeTessellationShader.h" |
| |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/glsl/GrGLSLVarying.h" |
| #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
| #include "src/gpu/tessellate/StrokeTessellator.h" |
| |
| GrStrokeTessellationShader::GrStrokeTessellationShader(const GrShaderCaps& shaderCaps, |
| Mode mode, |
| PatchAttribs attribs, |
| const SkMatrix& viewMatrix, |
| const SkStrokeRec& stroke, |
| SkPMColor4f color, |
| int8_t maxParametricSegments_log2) |
| : GrTessellationShader(kTessellate_GrStrokeTessellationShader_ClassID, |
| (mode == Mode::kHardwareTessellation) |
| ? GrPrimitiveType::kPatches |
| : GrPrimitiveType::kTriangleStrip, |
| (mode == Mode::kHardwareTessellation) ? 1 : 0, viewMatrix, color) |
| , fMode(mode) |
| , fPatchAttribs(attribs | PatchAttribs::kJoinControlPoint) |
| , fStroke(stroke) |
| , fMaxParametricSegments_log2(maxParametricSegments_log2) { |
| // We should use explicit curve type when, and only when, there isn't infinity support. |
| // Otherwise the GPU can infer curve type based on infinity. |
| SkASSERT(shaderCaps.infinitySupport() != (attribs & PatchAttribs::kExplicitCurveType)); |
| if (fMode == Mode::kHardwareTessellation) { |
| // Explicit curve type is not implemented for tessellation shaders. |
| SkASSERT(!(attribs & PatchAttribs::kExplicitCurveType)); |
| } |
| if (fMode == Mode::kHardwareTessellation) { |
| // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic |
| // with w=p3.x. |
| // |
| // If p0 == prevCtrlPtAttr, then no join is emitted. |
| // |
| // pts=[p0, p3, p3, p3] is a reserved pattern that means this patch is a join only, |
| // whose start and end tangents are (p0 - inputPrevCtrlPt) and (p3 - p0). |
| // |
| // pts=[p0, p0, p0, p3] is a reserved pattern that means this patch is a "bowtie", or |
| // double-sided round join, anchored on p0 and rotating from (p0 - prevCtrlPtAttr) to |
| // (p3 - p0). |
| fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4); |
| fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4); |
| // A join calculates its starting angle using prevCtrlPtAttr. |
| fAttribs.emplace_back("prevCtrlPtAttr", kFloat2_GrVertexAttribType, SkSLType::kFloat2); |
| } else { |
| // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic |
| // with w=p3.x. |
| // |
| // An empty stroke (p0==p1==p2==p3) is a special case that denotes a circle, or |
| // 180-degree point stroke. |
| fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4); |
| fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4); |
| if (fMode == Mode::kLog2Indirect) { |
| // argsAttr.xy contains the lastControlPoint for setting up the join. |
| // |
| // "argsAttr.z=numTotalEdges" tells the shader the literal number of edges in the |
| // triangle strip being rendered (i.e., it should be vertexCount/2). If |
| // numTotalEdges is negative and the join type is "kRound", it also instructs the |
| // shader to only allocate one segment the preceding round join. |
| fAttribs.emplace_back("argsAttr", kFloat3_GrVertexAttribType, SkSLType::kFloat3); |
| } else { |
| SkASSERT(fMode == Mode::kFixedCount); |
| // argsAttr contains the lastControlPoint for setting up the join. |
| fAttribs.emplace_back("argsAttr", kFloat2_GrVertexAttribType, SkSLType::kFloat2); |
| } |
| } |
| if (fPatchAttribs & PatchAttribs::kStrokeParams) { |
| fAttribs.emplace_back("dynamicStrokeAttr", kFloat2_GrVertexAttribType, |
| SkSLType::kFloat2); |
| } |
| if (fPatchAttribs & PatchAttribs::kColor) { |
| fAttribs.emplace_back("dynamicColorAttr", |
| (fPatchAttribs & PatchAttribs::kWideColorIfEnabled) |
| ? kFloat4_GrVertexAttribType |
| : kUByte4_norm_GrVertexAttribType, |
| SkSLType::kHalf4); |
| } |
| if (fPatchAttribs & PatchAttribs::kExplicitCurveType) { |
| // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support |
| // infinity can't detect this. On these platforms we write out an extra float with each |
| // patch that explicitly tells the shader what type of curve it is. |
| fAttribs.emplace_back("curveTypeAttr", kFloat_GrVertexAttribType, SkSLType::kFloat); |
| } |
| if (fMode == Mode::kHardwareTessellation) { |
| this->setVertexAttributesWithImplicitOffsets(fAttribs.data(), fAttribs.count()); |
| SkASSERT(this->vertexStride() == sizeof(SkPoint) * 4 + PatchAttribsStride(fPatchAttribs)); |
| } else { |
| this->setInstanceAttributesWithImplicitOffsets(fAttribs.data(), fAttribs.count()); |
| SkASSERT(this->instanceStride() == sizeof(SkPoint) * 4 + PatchAttribsStride(fPatchAttribs)); |
| if (!shaderCaps.vertexIDSupport()) { |
| constexpr static Attribute kVertexAttrib("edgeID", kFloat_GrVertexAttribType, |
| SkSLType::kFloat); |
| this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1); |
| } |
| } |
| SkASSERT(fAttribs.count() <= kMaxAttribCount); |
| } |
| |
| const char* GrStrokeTessellationShader::Impl::kCosineBetweenVectorsFn = R"( |
| float cosine_between_vectors(float2 a, float2 b) { |
| // FIXME(crbug.com/800804,skbug.com/11268): This can overflow if we don't normalize exponents. |
| float ab_cosTheta = dot(a,b); |
| float ab_pow2 = dot(a,a) * dot(b,b); |
| return (ab_pow2 == 0.0) ? 1.0 : clamp(ab_cosTheta * inversesqrt(ab_pow2), -1.0, 1.0); |
| })"; |
| |
| // Extends the middle radius to either the miter point, or the bevel edge if we surpassed the miter |
| // limit and need to revert to a bevel join. |
| const char* GrStrokeTessellationShader::Impl::kMiterExtentFn = R"( |
| float miter_extent(float cosTheta, float miterLimit) { |
| float x = fma(cosTheta, .5, .5); |
| return (x * miterLimit * miterLimit >= 1.0) ? inversesqrt(x) : sqrt(x); |
| })"; |
| |
| // Returns the number of radial segments required for each radian of rotation, in order for the |
| // curve to appear "smooth" as defined by the parametricPrecision. |
| const char* GrStrokeTessellationShader::Impl::kNumRadialSegmentsPerRadianFn = R"( |
| float num_radial_segments_per_radian(float parametricPrecision, float strokeRadius) { |
| return .5 / acos(max(1.0 - 1.0/(parametricPrecision * strokeRadius), -1.0)); |
| })"; |
| |
| // Unlike mix(), this does not return b when t==1. But it otherwise seems to get better |
| // precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points. |
| // We override this result anyway when t==1 so it shouldn't be a problem. |
| const char* GrStrokeTessellationShader::Impl::kUncheckedMixFn = R"( |
| float unchecked_mix(float a, float b, float T) { |
| return fma(b - a, T, a); |
| } |
| float2 unchecked_mix(float2 a, float2 b, float T) { |
| return fma(b - a, float2(T), a); |
| } |
| float4 unchecked_mix(float4 a, float4 b, float4 T) { |
| return fma(b - a, T, a); |
| })"; |
| |
| void GrStrokeTessellationShader::Impl::emitTessellationCode( |
| const GrStrokeTessellationShader& shader, SkString* code, GrGPArgs* gpArgs, |
| const GrShaderCaps& shaderCaps) const { |
| // The subclass is responsible to define the following symbols before calling this method: |
| // |
| // // Functions. |
| // float2 unchecked_mix(float2, float2, float); |
| // float unchecked_mix(float, float, float); |
| // |
| // // Values provided by either uniforms or attribs. |
| // float2 p0, p1, p2, p3; |
| // float w; |
| // float STROKE_RADIUS; |
| // float 2x2 AFFINE_MATRIX; |
| // float2 TRANSLATE; |
| // |
| // // Values calculated by the specific subclass. |
| // float combinedEdgeID; |
| // bool isFinalEdge; |
| // float numParametricSegments; |
| // float radsPerSegment; |
| // float2 tan0; |
| // float2 tan1; |
| // float strokeOutset; |
| // |
| code->appendf(R"( |
| float2 tangent, strokeCoord; |
| if (combinedEdgeID != 0 && !isFinalEdge) { |
| // Compute the location and tangent direction of the stroke edge with the integral id |
| // "combinedEdgeID", where combinedEdgeID is the sorted-order index of parametric and radial |
| // edges. Start by finding the tangent function's power basis coefficients. These define a |
| // tangent direction (scaled by some uniform value) as: |
| // |T^2| |
| // Tangent_Direction(T) = dx,dy = |A 2B C| * |T | |
| // |. . .| |1 | |
| float2 A, B, C = p1 - p0; |
| float2 D = p3 - p0; |
| if (w >= 0.0) { |
| // P0..P2 represent a conic and P3==P2. The derivative of a conic has a cumbersome |
| // order-4 denominator. However, this isn't necessary if we are only interested in a |
| // vector in the same *direction* as a given tangent line. Since the denominator scales |
| // dx and dy uniformly, we can throw it out completely after evaluating the derivative |
| // with the standard quotient rule. This leaves us with a simpler quadratic function |
| // that we use to find a tangent. |
| C *= w; |
| B = .5*D - C; |
| A = (w - 1.0) * D; |
| p1 *= w; |
| } else { |
| float2 E = p2 - p1; |
| B = E - C; |
| A = fma(float2(-3), E, D); |
| } |
| // FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C at |
| // this point in order to prevent fp32 overflow. |
| |
| // Now find the coefficients that give a tangent direction from a parametric edge ID: |
| // |
| // |parametricEdgeID^2| |
| // Tangent_Direction(parametricEdgeID) = dx,dy = |A B_ C_| * |parametricEdgeID | |
| // |. . .| |1 | |
| // |
| float2 B_ = B * (numParametricSegments * 2.0); |
| float2 C_ = C * (numParametricSegments * numParametricSegments); |
| |
| // Run a binary search to determine the highest parametric edge that is located on or before |
| // the combinedEdgeID. A combined ID is determined by the sum of complete parametric and |
| // radial segments behind it. i.e., find the highest parametric edge where: |
| // |
| // parametricEdgeID + floor(numRadialSegmentsAtParametricT) <= combinedEdgeID |
| // |
| float lastParametricEdgeID = 0.0; |
| float maxParametricEdgeID = min(numParametricSegments - 1.0, combinedEdgeID); |
| // FIXME(crbug.com/800804,skbug.com/11268): This normalize() can overflow. |
| float2 tan0norm = normalize(tan0); |
| float negAbsRadsPerSegment = -abs(radsPerSegment); |
| float maxRotation0 = (1.0 + combinedEdgeID) * abs(radsPerSegment); |
| for (int exp = %i - 1; exp >= 0; --exp) { |
| // Test the parametric edge at lastParametricEdgeID + 2^exp. |
| float testParametricID = lastParametricEdgeID + exp2(float(exp)); |
| if (testParametricID <= maxParametricEdgeID) { |
| float2 testTan = fma(float2(testParametricID), A, B_); |
| testTan = fma(float2(testParametricID), testTan, C_); |
| float cosRotation = dot(normalize(testTan), tan0norm); |
| float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0); |
| maxRotation = min(maxRotation, PI); |
| // Is rotation <= maxRotation? (i.e., is the number of complete radial segments |
| // behind testT, + testParametricID <= combinedEdgeID?) |
| if (cosRotation >= cos(maxRotation)) { |
| // testParametricID is on or before the combinedEdgeID. Keep it! |
| lastParametricEdgeID = testParametricID; |
| } |
| } |
| } |
| |
| // Find the T value of the parametric edge at lastParametricEdgeID. |
| float parametricT = lastParametricEdgeID / numParametricSegments; |
| |
| // Now that we've identified the highest parametric edge on or before the |
| // combinedEdgeID, the highest radial edge is easy: |
| float lastRadialEdgeID = combinedEdgeID - lastParametricEdgeID; |
| |
| // Find the angle of tan0, or the angle between tan0norm and the positive x axis. |
| float angle0 = acos(clamp(tan0norm.x, -1.0, 1.0)); |
| angle0 = tan0norm.y >= 0.0 ? angle0 : -angle0; |
| |
| // Find the tangent vector on the edge at lastRadialEdgeID. |
| float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0); |
| tangent = float2(cos(radialAngle), sin(radialAngle)); |
| float2 norm = float2(-tangent.y, tangent.x); |
| |
| // Find the T value where the tangent is orthogonal to norm. This is a quadratic: |
| // |
| // dot(norm, Tangent_Direction(T)) == 0 |
| // |
| // |T^2| |
| // norm * |A 2B C| * |T | == 0 |
| // |. . .| |1 | |
| // |
| float a=dot(norm,A), b_over_2=dot(norm,B), c=dot(norm,C); |
| float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0.0); |
| float q = sqrt(discr_over_4); |
| if (b_over_2 > 0.0) { |
| q = -q; |
| } |
| q -= b_over_2; |
| |
| // Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180 |
| // degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root |
| // nearest .5. |
| float _5qa = -.5*q*a; |
| float2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? float2(q,a) : float2(c,q); |
| float radialT = (root.t != 0.0) ? root.s / root.t : 0.0; |
| radialT = clamp(radialT, 0.0, 1.0); |
| |
| if (lastRadialEdgeID == 0.0) { |
| // The root finder above can become unstable when lastRadialEdgeID == 0 (e.g., if |
| // there are roots at exatly 0 and 1 both). radialT should always == 0 in this case. |
| radialT = 0.0; |
| } |
| |
| // Now that we've identified the T values of the last parametric and radial edges, our final |
| // T value for combinedEdgeID is whichever is larger. |
| float T = max(parametricT, radialT); |
| |
| // Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability. |
| float2 ab = unchecked_mix(p0, p1, T); |
| float2 bc = unchecked_mix(p1, p2, T); |
| float2 cd = unchecked_mix(p2, p3, T); |
| float2 abc = unchecked_mix(ab, bc, T); |
| float2 bcd = unchecked_mix(bc, cd, T); |
| float2 abcd = unchecked_mix(abc, bcd, T); |
| |
| // Evaluate the conic weight at T. |
| float u = unchecked_mix(1.0, w, T); |
| float v = w + 1 - u; // == mix(w, 1, T) |
| float uv = unchecked_mix(u, v, T); |
| |
| // If we went with T=parametricT, then update the tangent. Otherwise leave it at the radial |
| // tangent found previously. (In the event that parametricT == radialT, we keep the radial |
| // tangent.) |
| if (T != radialT) { |
| tangent = (w >= 0.0) ? bc*u - ab*v : bcd - abc; |
| } |
| |
| strokeCoord = (w >= 0.0) ? abc/uv : abcd; |
| } else { |
| // Edges at the beginning and end of the strip use exact endpoints and tangents. This |
| // ensures crack-free seaming between instances. |
| tangent = (combinedEdgeID == 0) ? tan0 : tan1; |
| strokeCoord = (combinedEdgeID == 0) ? p0 : p3; |
| })", shader.maxParametricSegments_log2() /* Parametric/radial sort loop count. */); |
| |
| code->append(R"( |
| // FIXME(crbug.com/800804,skbug.com/11268): This normalize() can overflow. |
| float2 ortho = normalize(float2(tangent.y, -tangent.x)); |
| strokeCoord += ortho * (STROKE_RADIUS * strokeOutset);)"); |
| |
| if (!shader.stroke().isHairlineStyle()) { |
| // Normal case. Do the transform after tessellation. |
| code->append(R"( |
| float2 devCoord = AFFINE_MATRIX * strokeCoord + TRANSLATE;)"); |
| gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord"); |
| gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "strokeCoord"); |
| } else { |
| // Hairline case. The scale and skew already happened before tessellation. |
| code->append(R"( |
| float2 devCoord = strokeCoord + TRANSLATE; |
| float2 localCoord = inverse(AFFINE_MATRIX) * strokeCoord;)"); |
| gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord"); |
| gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localCoord"); |
| } |
| } |
| |
| void GrStrokeTessellationShader::Impl::emitFragmentCode(const GrStrokeTessellationShader& shader, |
| const EmitArgs& args) { |
| if (!shader.hasDynamicColor()) { |
| // The fragment shader just outputs a uniform color. |
| const char* colorUniformName; |
| fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag, |
| SkSLType::kHalf4, "color", |
| &colorUniformName); |
| args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, colorUniformName); |
| } else { |
| args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, |
| fDynamicColorName.c_str()); |
| } |
| args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage); |
| } |
| |
| void GrStrokeTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman, |
| const GrShaderCaps&, |
| const GrGeometryProcessor& geomProc) { |
| const auto& shader = geomProc.cast<GrStrokeTessellationShader>(); |
| const auto& stroke = shader.stroke(); |
| |
| if (!shader.hasDynamicStroke()) { |
| // Set up the tessellation control uniforms. |
| skgpu::StrokeTolerances tolerances; |
| if (!stroke.isHairlineStyle()) { |
| tolerances = skgpu::StrokeTolerances::MakeNonHairline(shader.viewMatrix().getMaxScale(), |
| stroke.getWidth()); |
| } else { |
| // In the hairline case we transform prior to tessellation. Set up tolerances for an |
| // identity viewMatrix and a strokeWidth of 1. |
| tolerances = skgpu::StrokeTolerances::MakeNonHairline(1, 1); |
| } |
| float strokeRadius = (stroke.isHairlineStyle()) ? .5f : stroke.getWidth() * .5; |
| pdman.set4f(fTessControlArgsUniform, |
| tolerances.fParametricPrecision, // PARAMETRIC_PRECISION |
| tolerances.fNumRadialSegmentsPerRadian, // NUM_RADIAL_SEGMENTS_PER_RADIAN |
| skgpu::GetJoinType(stroke), // JOIN_TYPE |
| strokeRadius); // STROKE_RADIUS |
| } else { |
| SkASSERT(!stroke.isHairlineStyle()); |
| float maxScale = shader.viewMatrix().getMaxScale(); |
| pdman.set1f(fTessControlArgsUniform, |
| skgpu::StrokeTolerances::CalcParametricPrecision(maxScale)); |
| } |
| |
| if (shader.mode() == GrStrokeTessellationShader::Mode::kFixedCount) { |
| SkASSERT(shader.fixedCountNumTotalEdges() != 0); |
| pdman.set1f(fEdgeCountUniform, (float)shader.fixedCountNumTotalEdges()); |
| } |
| |
| // Set up the view matrix, if any. |
| const SkMatrix& m = shader.viewMatrix(); |
| pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY()); |
| pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(), |
| m.getScaleY()); |
| |
| if (!shader.hasDynamicColor()) { |
| pdman.set4fv(fColorUniform, 1, shader.color().vec()); |
| } |
| } |
| |
| void GrStrokeTessellationShader::addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const { |
| bool keyNeedsJoin = (fMode != Mode::kHardwareTessellation) && |
| !(fPatchAttribs & PatchAttribs::kStrokeParams); |
| SkASSERT((int)fMode >> 2 == 0); |
| SkASSERT(fStroke.getJoin() >> 2 == 0); |
| // Attribs get worked into the key automatically during GrGeometryProcessor::getAttributeKey(). |
| // When color is in a uniform, it's always wide. kWideColor doesn't need to be considered here. |
| uint32_t key = (uint32_t)(fPatchAttribs & ~PatchAttribs::kColor); |
| key = (key << 2) | (uint32_t)fMode; |
| key = (key << 2) | ((keyNeedsJoin) ? fStroke.getJoin() : 0); |
| key = (key << 1) | (uint32_t)fStroke.isHairlineStyle(); |
| key = (key << 8) | fMaxParametricSegments_log2; |
| b->add32(key); |
| } |
| |
| std::unique_ptr<GrGeometryProcessor::ProgramImpl> GrStrokeTessellationShader::makeProgramImpl( |
| const GrShaderCaps&) const { |
| switch (fMode) { |
| case Mode::kHardwareTessellation: |
| return std::make_unique<HardwareImpl>(); |
| case Mode::kLog2Indirect: |
| case Mode::kFixedCount: |
| return std::make_unique<InstancedImpl>(); |
| } |
| SkUNREACHABLE; |
| } |