blob: 1c2602c266b017d98c5c77e770997f10650a8ebf [file] [log] [blame]
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <algorithm>
#include "include/core/SkMallocPixelRef.h"
#include "include/private/SkFloatBits.h"
#include "include/private/SkHalf.h"
#include "include/private/SkTPin.h"
#include "include/private/SkVx.h"
#include "src/core/SkColorSpacePriv.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkMatrixProvider.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkVM.h"
#include "src/core/SkWriteBuffer.h"
#include "src/shaders/gradients/Sk4fLinearGradient.h"
#include "src/shaders/gradients/SkGradientShaderPriv.h"
#include "src/shaders/gradients/SkLinearGradient.h"
#include "src/shaders/gradients/SkRadialGradient.h"
#include "src/shaders/gradients/SkSweepGradient.h"
#include "src/shaders/gradients/SkTwoPointConicalGradient.h"
enum GradientSerializationFlags {
// Bits 29:31 used for various boolean flags
kHasPosition_GSF = 0x80000000,
kHasLocalMatrix_GSF = 0x40000000,
kHasColorSpace_GSF = 0x20000000,
// Bits 12:28 unused
// Bits 8:11 for fTileMode
kTileModeShift_GSF = 8,
kTileModeMask_GSF = 0xF,
// Bits 0:7 for fGradFlags (note that kForce4fContext_PrivateFlag is 0x80)
kGradFlagsShift_GSF = 0,
kGradFlagsMask_GSF = 0xFF,
};
void SkGradientShaderBase::Descriptor::flatten(SkWriteBuffer& buffer) const {
uint32_t flags = 0;
if (fPos) {
flags |= kHasPosition_GSF;
}
if (fLocalMatrix) {
flags |= kHasLocalMatrix_GSF;
}
sk_sp<SkData> colorSpaceData = fColorSpace ? fColorSpace->serialize() : nullptr;
if (colorSpaceData) {
flags |= kHasColorSpace_GSF;
}
SkASSERT(static_cast<uint32_t>(fTileMode) <= kTileModeMask_GSF);
flags |= ((unsigned)fTileMode << kTileModeShift_GSF);
SkASSERT(fGradFlags <= kGradFlagsMask_GSF);
flags |= (fGradFlags << kGradFlagsShift_GSF);
buffer.writeUInt(flags);
buffer.writeColor4fArray(fColors, fCount);
if (colorSpaceData) {
buffer.writeDataAsByteArray(colorSpaceData.get());
}
if (fPos) {
buffer.writeScalarArray(fPos, fCount);
}
if (fLocalMatrix) {
buffer.writeMatrix(*fLocalMatrix);
}
}
template <int N, typename T, bool MEM_MOVE>
static bool validate_array(SkReadBuffer& buffer, size_t count, SkSTArray<N, T, MEM_MOVE>* array) {
if (!buffer.validateCanReadN<T>(count)) {
return false;
}
array->resize_back(count);
return true;
}
bool SkGradientShaderBase::DescriptorScope::unflatten(SkReadBuffer& buffer) {
// New gradient format. Includes floating point color, color space, densely packed flags
uint32_t flags = buffer.readUInt();
fTileMode = (SkTileMode)((flags >> kTileModeShift_GSF) & kTileModeMask_GSF);
fGradFlags = (flags >> kGradFlagsShift_GSF) & kGradFlagsMask_GSF;
fCount = buffer.getArrayCount();
if (!(validate_array(buffer, fCount, &fColorStorage) &&
buffer.readColor4fArray(fColorStorage.begin(), fCount))) {
return false;
}
fColors = fColorStorage.begin();
if (SkToBool(flags & kHasColorSpace_GSF)) {
sk_sp<SkData> data = buffer.readByteArrayAsData();
fColorSpace = data ? SkColorSpace::Deserialize(data->data(), data->size()) : nullptr;
} else {
fColorSpace = nullptr;
}
if (SkToBool(flags & kHasPosition_GSF)) {
if (!(validate_array(buffer, fCount, &fPosStorage) &&
buffer.readScalarArray(fPosStorage.begin(), fCount))) {
return false;
}
fPos = fPosStorage.begin();
} else {
fPos = nullptr;
}
if (SkToBool(flags & kHasLocalMatrix_GSF)) {
fLocalMatrix = &fLocalMatrixStorage;
buffer.readMatrix(&fLocalMatrixStorage);
} else {
fLocalMatrix = nullptr;
}
return buffer.isValid();
}
////////////////////////////////////////////////////////////////////////////////////////////
SkGradientShaderBase::SkGradientShaderBase(const Descriptor& desc, const SkMatrix& ptsToUnit)
: INHERITED(desc.fLocalMatrix)
, fPtsToUnit(ptsToUnit)
, fColorSpace(desc.fColorSpace ? desc.fColorSpace : SkColorSpace::MakeSRGB())
, fColorsAreOpaque(true)
{
fPtsToUnit.getType(); // Precache so reads are threadsafe.
SkASSERT(desc.fCount > 1);
fGradFlags = static_cast<uint8_t>(desc.fGradFlags);
SkASSERT((unsigned)desc.fTileMode < kSkTileModeCount);
fTileMode = desc.fTileMode;
/* Note: we let the caller skip the first and/or last position.
i.e. pos[0] = 0.3, pos[1] = 0.7
In these cases, we insert entries to ensure that the final data
will be bracketed by [0, 1].
i.e. our_pos[0] = 0, our_pos[1] = 0.3, our_pos[2] = 0.7, our_pos[3] = 1
Thus colorCount (the caller's value, and fColorCount (our value) may
differ by up to 2. In the above example:
colorCount = 2
fColorCount = 4
*/
fColorCount = desc.fCount;
// check if we need to add in start and/or end position/colors
bool needsFirst = false;
bool needsLast = false;
if (desc.fPos) {
needsFirst = desc.fPos[0] != 0;
needsLast = desc.fPos[desc.fCount - 1] != SK_Scalar1;
fColorCount += needsFirst + needsLast;
}
size_t storageSize = fColorCount * (sizeof(SkColor4f) + (desc.fPos ? sizeof(SkScalar) : 0));
fOrigColors4f = reinterpret_cast<SkColor4f*>(fStorage.reset(storageSize));
fOrigPos = desc.fPos ? reinterpret_cast<SkScalar*>(fOrigColors4f + fColorCount)
: nullptr;
// Now copy over the colors, adding the dummies as needed
SkColor4f* origColors = fOrigColors4f;
if (needsFirst) {
*origColors++ = desc.fColors[0];
}
for (int i = 0; i < desc.fCount; ++i) {
origColors[i] = desc.fColors[i];
fColorsAreOpaque = fColorsAreOpaque && (desc.fColors[i].fA == 1);
}
if (needsLast) {
origColors += desc.fCount;
*origColors = desc.fColors[desc.fCount - 1];
}
if (desc.fPos) {
SkScalar prev = 0;
SkScalar* origPosPtr = fOrigPos;
*origPosPtr++ = prev; // force the first pos to 0
int startIndex = needsFirst ? 0 : 1;
int count = desc.fCount + needsLast;
bool uniformStops = true;
const SkScalar uniformStep = desc.fPos[startIndex] - prev;
for (int i = startIndex; i < count; i++) {
// Pin the last value to 1.0, and make sure pos is monotonic.
auto curr = (i == desc.fCount) ? 1 : SkTPin(desc.fPos[i], prev, 1.0f);
uniformStops &= SkScalarNearlyEqual(uniformStep, curr - prev);
*origPosPtr++ = prev = curr;
}
// If the stops are uniform, treat them as implicit.
if (uniformStops) {
fOrigPos = nullptr;
}
}
}
SkGradientShaderBase::~SkGradientShaderBase() {}
void SkGradientShaderBase::flatten(SkWriteBuffer& buffer) const {
Descriptor desc;
desc.fColors = fOrigColors4f;
desc.fColorSpace = fColorSpace;
desc.fPos = fOrigPos;
desc.fCount = fColorCount;
desc.fTileMode = fTileMode;
desc.fGradFlags = fGradFlags;
const SkMatrix& m = this->getLocalMatrix();
desc.fLocalMatrix = m.isIdentity() ? nullptr : &m;
desc.flatten(buffer);
}
static void add_stop_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f Fs, SkPMColor4f Bs) {
(ctx->fs[0])[stop] = Fs.fR;
(ctx->fs[1])[stop] = Fs.fG;
(ctx->fs[2])[stop] = Fs.fB;
(ctx->fs[3])[stop] = Fs.fA;
(ctx->bs[0])[stop] = Bs.fR;
(ctx->bs[1])[stop] = Bs.fG;
(ctx->bs[2])[stop] = Bs.fB;
(ctx->bs[3])[stop] = Bs.fA;
}
static void add_const_color(SkRasterPipeline_GradientCtx* ctx, size_t stop, SkPMColor4f color) {
add_stop_color(ctx, stop, { 0, 0, 0, 0 }, color);
}
// Calculate a factor F and a bias B so that color = F*t + B when t is in range of
// the stop. Assume that the distance between stops is 1/gapCount.
static void init_stop_evenly(
SkRasterPipeline_GradientCtx* ctx, float gapCount, size_t stop, SkPMColor4f c_l, SkPMColor4f c_r) {
// Clankium's GCC 4.9 targeting ARMv7 is barfing when we use Sk4f math here, so go scalar...
SkPMColor4f Fs = {
(c_r.fR - c_l.fR) * gapCount,
(c_r.fG - c_l.fG) * gapCount,
(c_r.fB - c_l.fB) * gapCount,
(c_r.fA - c_l.fA) * gapCount,
};
SkPMColor4f Bs = {
c_l.fR - Fs.fR*(stop/gapCount),
c_l.fG - Fs.fG*(stop/gapCount),
c_l.fB - Fs.fB*(stop/gapCount),
c_l.fA - Fs.fA*(stop/gapCount),
};
add_stop_color(ctx, stop, Fs, Bs);
}
// For each stop we calculate a bias B and a scale factor F, such that
// for any t between stops n and n+1, the color we want is B[n] + F[n]*t.
static void init_stop_pos(
SkRasterPipeline_GradientCtx* ctx, size_t stop, float t_l, float t_r, SkPMColor4f c_l, SkPMColor4f c_r) {
// See note about Clankium's old compiler in init_stop_evenly().
SkPMColor4f Fs = {
(c_r.fR - c_l.fR) / (t_r - t_l),
(c_r.fG - c_l.fG) / (t_r - t_l),
(c_r.fB - c_l.fB) / (t_r - t_l),
(c_r.fA - c_l.fA) / (t_r - t_l),
};
SkPMColor4f Bs = {
c_l.fR - Fs.fR*t_l,
c_l.fG - Fs.fG*t_l,
c_l.fB - Fs.fB*t_l,
c_l.fA - Fs.fA*t_l,
};
ctx->ts[stop] = t_l;
add_stop_color(ctx, stop, Fs, Bs);
}
bool SkGradientShaderBase::onAppendStages(const SkStageRec& rec) const {
SkRasterPipeline* p = rec.fPipeline;
SkArenaAlloc* alloc = rec.fAlloc;
SkRasterPipeline_DecalTileCtx* decal_ctx = nullptr;
SkMatrix matrix;
if (!this->computeTotalInverse(rec.fMatrixProvider.localToDevice(), rec.fLocalM, &matrix)) {
return false;
}
matrix.postConcat(fPtsToUnit);
SkRasterPipeline_<256> postPipeline;
p->append(SkRasterPipeline::seed_shader);
p->append_matrix(alloc, matrix);
this->appendGradientStages(alloc, p, &postPipeline);
switch(fTileMode) {
case SkTileMode::kMirror: p->append(SkRasterPipeline::mirror_x_1); break;
case SkTileMode::kRepeat: p->append(SkRasterPipeline::repeat_x_1); break;
case SkTileMode::kDecal:
decal_ctx = alloc->make<SkRasterPipeline_DecalTileCtx>();
decal_ctx->limit_x = SkBits2Float(SkFloat2Bits(1.0f) + 1);
// reuse mask + limit_x stage, or create a custom decal_1 that just stores the mask
p->append(SkRasterPipeline::decal_x, decal_ctx);
[[fallthrough]];
case SkTileMode::kClamp:
if (!fOrigPos) {
// We clamp only when the stops are evenly spaced.
// If not, there may be hard stops, and clamping ruins hard stops at 0 and/or 1.
// In that case, we must make sure we're using the general "gradient" stage,
// which is the only stage that will correctly handle unclamped t.
p->append(SkRasterPipeline::clamp_x_1);
}
break;
}
const bool premulGrad = fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag;
// Transform all of the colors to destination color space
SkColor4fXformer xformedColors(fOrigColors4f, fColorCount, fColorSpace.get(), rec.fDstCS);
auto prepareColor = [premulGrad, &xformedColors](int i) {
SkColor4f c = xformedColors.fColors[i];
return premulGrad ? c.premul()
: SkPMColor4f{ c.fR, c.fG, c.fB, c.fA };
};
// The two-stop case with stops at 0 and 1.
if (fColorCount == 2 && fOrigPos == nullptr) {
const SkPMColor4f c_l = prepareColor(0),
c_r = prepareColor(1);
// See F and B below.
auto ctx = alloc->make<SkRasterPipeline_EvenlySpaced2StopGradientCtx>();
(Sk4f::Load(c_r.vec()) - Sk4f::Load(c_l.vec())).store(ctx->f);
( Sk4f::Load(c_l.vec())).store(ctx->b);
ctx->interpolatedInPremul = premulGrad;
p->append(SkRasterPipeline::evenly_spaced_2_stop_gradient, ctx);
} else {
auto* ctx = alloc->make<SkRasterPipeline_GradientCtx>();
ctx->interpolatedInPremul = premulGrad;
// Note: In order to handle clamps in search, the search assumes a stop conceptully placed
// at -inf. Therefore, the max number of stops is fColorCount+1.
for (int i = 0; i < 4; i++) {
// Allocate at least at for the AVX2 gather from a YMM register.
ctx->fs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
ctx->bs[i] = alloc->makeArray<float>(std::max(fColorCount+1, 8));
}
if (fOrigPos == nullptr) {
// Handle evenly distributed stops.
size_t stopCount = fColorCount;
float gapCount = stopCount - 1;
SkPMColor4f c_l = prepareColor(0);
for (size_t i = 0; i < stopCount - 1; i++) {
SkPMColor4f c_r = prepareColor(i + 1);
init_stop_evenly(ctx, gapCount, i, c_l, c_r);
c_l = c_r;
}
add_const_color(ctx, stopCount - 1, c_l);
ctx->stopCount = stopCount;
p->append(SkRasterPipeline::evenly_spaced_gradient, ctx);
} else {
// Handle arbitrary stops.
ctx->ts = alloc->makeArray<float>(fColorCount+1);
// Remove the default stops inserted by SkGradientShaderBase::SkGradientShaderBase
// because they are naturally handled by the search method.
int firstStop;
int lastStop;
if (fColorCount > 2) {
firstStop = fOrigColors4f[0] != fOrigColors4f[1] ? 0 : 1;
lastStop = fOrigColors4f[fColorCount - 2] != fOrigColors4f[fColorCount - 1]
? fColorCount - 1 : fColorCount - 2;
} else {
firstStop = 0;
lastStop = 1;
}
size_t stopCount = 0;
float t_l = fOrigPos[firstStop];
SkPMColor4f c_l = prepareColor(firstStop);
add_const_color(ctx, stopCount++, c_l);
// N.B. lastStop is the index of the last stop, not one after.
for (int i = firstStop; i < lastStop; i++) {
float t_r = fOrigPos[i + 1];
SkPMColor4f c_r = prepareColor(i + 1);
SkASSERT(t_l <= t_r);
if (t_l < t_r) {
init_stop_pos(ctx, stopCount, t_l, t_r, c_l, c_r);
stopCount += 1;
}
t_l = t_r;
c_l = c_r;
}
ctx->ts[stopCount] = t_l;
add_const_color(ctx, stopCount++, c_l);
ctx->stopCount = stopCount;
p->append(SkRasterPipeline::gradient, ctx);
}
}
if (decal_ctx) {
p->append(SkRasterPipeline::check_decal_mask, decal_ctx);
}
if (!premulGrad && !this->colorsAreOpaque()) {
p->append(SkRasterPipeline::premul);
}
p->extend(postPipeline);
return true;
}
skvm::Color SkGradientShaderBase::onProgram(skvm::Builder* p,
skvm::Coord device, skvm::Coord local,
skvm::Color /*paint*/,
const SkMatrixProvider& mats, const SkMatrix* localM,
const SkColorInfo& dstInfo,
skvm::Uniforms* uniforms, SkArenaAlloc* alloc) const {
SkMatrix inv;
if (!this->computeTotalInverse(mats.localToDevice(), localM, &inv)) {
return {};
}
inv.postConcat(fPtsToUnit);
inv.normalizePerspective();
local = SkShaderBase::ApplyMatrix(p, inv, local, uniforms);
skvm::I32 mask = p->splat(~0);
skvm::F32 t = this->transformT(p,uniforms, local, &mask);
// Perhaps unexpectedly, clamping is handled naturally by our search, so we
// don't explicitly clamp t to [0,1]. That clamp would break hard stops
// right at 0 or 1 boundaries in kClamp mode. (kRepeat and kMirror always
// produce values in [0,1].)
switch(fTileMode) {
case SkTileMode::kClamp:
break;
case SkTileMode::kDecal:
mask &= (t == clamp01(t));
break;
case SkTileMode::kRepeat:
t = fract(t);
break;
case SkTileMode::kMirror: {
// t = | (t-1) - 2*(floor( (t-1)*0.5 )) - 1 |
// {-A-} {--------B-------}
skvm::F32 A = t - 1.0f,
B = floor(A * 0.5f);
t = abs(A - (B + B) - 1.0f);
} break;
}
// Transform our colors as we want them interpolated, in dst color space, possibly premul.
SkImageInfo common = SkImageInfo::Make(fColorCount,1, kRGBA_F32_SkColorType
, kUnpremul_SkAlphaType),
src = common.makeColorSpace(fColorSpace),
dst = common.makeColorSpace(dstInfo.refColorSpace());
if (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag) {
dst = dst.makeAlphaType(kPremul_SkAlphaType);
}
std::vector<float> rgba(4*fColorCount); // TODO: SkSTArray?
SkAssertResult(SkConvertPixels(dst, rgba.data(), dst.minRowBytes(),
src, fOrigColors4f, src.minRowBytes()));
// Transform our colors into a scale factor f and bias b such that for
// any t between stops i and i+1, the color we want is mad(t, f[i], b[i]).
using F4 = skvx::Vec<4,float>;
struct FB { F4 f,b; };
skvm::Color color;
auto uniformF = [&](float x) { return p->uniformF(uniforms->pushF(x)); };
if (fColorCount == 2) {
// 2-stop gradients have colors at 0 and 1, and so must be evenly spaced.
SkASSERT(fOrigPos == nullptr);
// With 2 stops, we upload the single FB as uniforms and interpolate directly with t.
F4 lo = F4::Load(rgba.data() + 0),
hi = F4::Load(rgba.data() + 4);
F4 F = hi - lo,
B = lo;
auto T = clamp01(t);
color = {
T * uniformF(F[0]) + uniformF(B[0]),
T * uniformF(F[1]) + uniformF(B[1]),
T * uniformF(F[2]) + uniformF(B[2]),
T * uniformF(F[3]) + uniformF(B[3]),
};
} else {
// To handle clamps in search we add a conceptual stop at t=-inf, so we
// may need up to fColorCount+1 FBs and fColorCount t stops between them:
//
// FBs: [color 0] [color 0->1] [color 1->2] [color 2->3] ...
// stops: (-inf) t0 t1 t2 ...
//
// Both these arrays could end up shorter if any hard stops share the same t.
FB* fb = alloc->makeArrayDefault<FB>(fColorCount+1);
std::vector<float> stops; // TODO: SkSTArray?
stops.reserve(fColorCount);
// Here's our conceptual stop at t=-inf covering all t<=0, clamping to our first color.
float t_lo = this->getPos(0);
F4 color_lo = F4::Load(rgba.data());
fb[0] = { 0.0f, color_lo };
// N.B. No stops[] entry for this implicit -inf.
// Now the non-edge cases, calculating scale and bias between adjacent normal stops.
for (int i = 1; i < fColorCount; i++) {
float t_hi = this->getPos(i);
F4 color_hi = F4::Load(rgba.data() + 4*i);
// If t_lo == t_hi, we're on a hard stop, and transition immediately to the next color.
SkASSERT(t_lo <= t_hi);
if (t_lo < t_hi) {
F4 f = (color_hi - color_lo) / (t_hi - t_lo),
b = color_lo - f*t_lo;
stops.push_back(t_lo);
fb[stops.size()] = {f,b};
}
t_lo = t_hi;
color_lo = color_hi;
}
// Anything >= our final t clamps to our final color.
stops.push_back(t_lo);
fb[stops.size()] = { 0.0f, color_lo };
// We'll gather FBs from that array we just created.
skvm::Uniform fbs = uniforms->pushPtr(fb);
// Find the two stops we need to interpolate.
skvm::I32 ix;
if (fOrigPos == nullptr) {
// Evenly spaced stops... we can calculate ix directly.
// Of note: we need to clamp t and skip over that conceptual -inf stop we made up.
ix = trunc(clamp01(t) * uniformF(stops.size() - 1) + 1.0f);
} else {
// Starting ix at 0 bakes in our conceptual first stop at -inf.
// TODO: good place to experiment with a loop in skvm.... stops.size() can be huge.
ix = p->splat(0);
for (float stop : stops) {
// ix += (t >= stop) ? +1 : 0 ~~>
// ix -= (t >= stop) ? -1 : 0
ix -= (t >= uniformF(stop));
}
// TODO: we could skip any of the default stops GradientShaderBase's ctor added
// to ensure the full [0,1] span is covered. This linear search doesn't need
// them for correctness, and it'd be up to two fewer stops to check.
// N.B. we do still need those stops for the fOrigPos == nullptr direct math path.
}
// A scale factor and bias for each lane, 8 total.
// TODO: simpler, faster, tidier to push 8 uniform pointers, one for each struct lane?
ix = shl(ix, 3);
skvm::F32 Fr = gatherF(fbs, ix + 0);
skvm::F32 Fg = gatherF(fbs, ix + 1);
skvm::F32 Fb = gatherF(fbs, ix + 2);
skvm::F32 Fa = gatherF(fbs, ix + 3);
skvm::F32 Br = gatherF(fbs, ix + 4);
skvm::F32 Bg = gatherF(fbs, ix + 5);
skvm::F32 Bb = gatherF(fbs, ix + 6);
skvm::F32 Ba = gatherF(fbs, ix + 7);
// This is what we've been building towards!
color = {
t * Fr + Br,
t * Fg + Bg,
t * Fb + Bb,
t * Fa + Ba,
};
}
// If we interpolated unpremul, premul now to match our output convention.
if (0 == (fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
&& !fColorsAreOpaque) {
color = premul(color);
}
return {
pun_to_F32(mask & pun_to_I32(color.r)),
pun_to_F32(mask & pun_to_I32(color.g)),
pun_to_F32(mask & pun_to_I32(color.b)),
pun_to_F32(mask & pun_to_I32(color.a)),
};
}
bool SkGradientShaderBase::isOpaque() const {
return fColorsAreOpaque && (this->getTileMode() != SkTileMode::kDecal);
}
static unsigned rounded_divide(unsigned numer, unsigned denom) {
return (numer + (denom >> 1)) / denom;
}
bool SkGradientShaderBase::onAsLuminanceColor(SkColor* lum) const {
// we just compute an average color.
// possibly we could weight this based on the proportional width for each color
// assuming they are not evenly distributed in the fPos array.
int r = 0;
int g = 0;
int b = 0;
const int n = fColorCount;
// TODO: use linear colors?
for (int i = 0; i < n; ++i) {
SkColor c = this->getLegacyColor(i);
r += SkColorGetR(c);
g += SkColorGetG(c);
b += SkColorGetB(c);
}
*lum = SkColorSetRGB(rounded_divide(r, n), rounded_divide(g, n), rounded_divide(b, n));
return true;
}
SkColor4fXformer::SkColor4fXformer(const SkColor4f* colors, int colorCount,
SkColorSpace* src, SkColorSpace* dst) {
fColors = colors;
if (dst && !SkColorSpace::Equals(src, dst)) {
fStorage.reset(colorCount);
auto info = SkImageInfo::Make(colorCount,1, kRGBA_F32_SkColorType, kUnpremul_SkAlphaType);
auto dstInfo = info.makeColorSpace(sk_ref_sp(dst));
auto srcInfo = info.makeColorSpace(sk_ref_sp(src));
SkAssertResult(SkConvertPixels(dstInfo, fStorage.begin(), info.minRowBytes(),
srcInfo, fColors , info.minRowBytes()));
fColors = fStorage.begin();
}
}
void SkGradientShaderBase::commonAsAGradient(GradientInfo* info) const {
if (info) {
if (info->fColorCount >= fColorCount) {
if (info->fColors) {
for (int i = 0; i < fColorCount; ++i) {
info->fColors[i] = this->getLegacyColor(i);
}
}
if (info->fColorOffsets) {
for (int i = 0; i < fColorCount; ++i) {
info->fColorOffsets[i] = this->getPos(i);
}
}
}
info->fColorCount = fColorCount;
info->fTileMode = fTileMode;
info->fGradientFlags = fGradFlags;
}
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Return true if these parameters are valid/legal/safe to construct a gradient
//
static bool valid_grad(const SkColor4f colors[], const SkScalar pos[], int count,
SkTileMode tileMode) {
return nullptr != colors && count >= 1 && (unsigned)tileMode < kSkTileModeCount;
}
static void desc_init(SkGradientShaderBase::Descriptor* desc,
const SkColor4f colors[], sk_sp<SkColorSpace> colorSpace,
const SkScalar pos[], int colorCount,
SkTileMode mode, uint32_t flags, const SkMatrix* localMatrix) {
SkASSERT(colorCount > 1);
desc->fColors = colors;
desc->fColorSpace = std::move(colorSpace);
desc->fPos = pos;
desc->fCount = colorCount;
desc->fTileMode = mode;
desc->fGradFlags = flags;
desc->fLocalMatrix = localMatrix;
}
static SkColor4f average_gradient_color(const SkColor4f colors[], const SkScalar pos[],
int colorCount) {
// The gradient is a piecewise linear interpolation between colors. For a given interval,
// the integral between the two endpoints is 0.5 * (ci + cj) * (pj - pi), which provides that
// intervals average color. The overall average color is thus the sum of each piece. The thing
// to keep in mind is that the provided gradient definition may implicitly use p=0 and p=1.
Sk4f blend(0.0f);
for (int i = 0; i < colorCount - 1; ++i) {
// Calculate the average color for the interval between pos(i) and pos(i+1)
Sk4f c0 = Sk4f::Load(&colors[i]);
Sk4f c1 = Sk4f::Load(&colors[i + 1]);
// when pos == null, there are colorCount uniformly distributed stops, going from 0 to 1,
// so pos[i + 1] - pos[i] = 1/(colorCount-1)
SkScalar w;
if (pos) {
// Match position fixing in SkGradientShader's constructor, clamping positions outside
// [0, 1] and forcing the sequence to be monotonic
SkScalar p0 = SkTPin(pos[i], 0.f, 1.f);
SkScalar p1 = SkTPin(pos[i + 1], p0, 1.f);
w = p1 - p0;
// And account for any implicit intervals at the start or end of the positions
if (i == 0) {
if (p0 > 0.0f) {
// The first color is fixed between p = 0 to pos[0], so 0.5*(ci + cj)*(pj - pi)
// becomes 0.5*(c + c)*(pj - 0) = c * pj
Sk4f c = Sk4f::Load(&colors[0]);
blend += p0 * c;
}
}
if (i == colorCount - 2) {
if (p1 < 1.f) {
// The last color is fixed between pos[n-1] to p = 1, so 0.5*(ci + cj)*(pj - pi)
// becomes 0.5*(c + c)*(1 - pi) = c * (1 - pi)
Sk4f c = Sk4f::Load(&colors[colorCount - 1]);
blend += (1.f - p1) * c;
}
}
} else {
w = 1.f / (colorCount - 1);
}
blend += 0.5f * w * (c1 + c0);
}
SkColor4f avg;
blend.store(&avg);
return avg;
}
// The default SkScalarNearlyZero threshold of .0024 is too big and causes regressions for svg
// gradients defined in the wild.
static constexpr SkScalar kDegenerateThreshold = SK_Scalar1 / (1 << 15);
// Except for special circumstances of clamped gradients, every gradient shape--when degenerate--
// can be mapped to the same fallbacks. The specific shape factories must account for special
// clamped conditions separately, this will always return the last color for clamped gradients.
static sk_sp<SkShader> make_degenerate_gradient(const SkColor4f colors[], const SkScalar pos[],
int colorCount, sk_sp<SkColorSpace> colorSpace,
SkTileMode mode) {
switch(mode) {
case SkTileMode::kDecal:
// normally this would reject the area outside of the interpolation region, so since
// inside region is empty when the radii are equal, the entire draw region is empty
return SkShaders::Empty();
case SkTileMode::kRepeat:
case SkTileMode::kMirror:
// repeat and mirror are treated the same: the border colors are never visible,
// but approximate the final color as infinite repetitions of the colors, so
// it can be represented as the average color of the gradient.
return SkShaders::Color(
average_gradient_color(colors, pos, colorCount), std::move(colorSpace));
case SkTileMode::kClamp:
// Depending on how the gradient shape degenerates, there may be a more specialized
// fallback representation for the factories to use, but this is a reasonable default.
return SkShaders::Color(colors[colorCount - 1], std::move(colorSpace));
}
SkDEBUGFAIL("Should not be reached");
return nullptr;
}
// assumes colors is SkColor4f* and pos is SkScalar*
#define EXPAND_1_COLOR(count) \
SkColor4f tmp[2]; \
do { \
if (1 == count) { \
tmp[0] = tmp[1] = colors[0]; \
colors = tmp; \
pos = nullptr; \
count = 2; \
} \
} while (0)
struct ColorStopOptimizer {
ColorStopOptimizer(const SkColor4f* colors, const SkScalar* pos, int count, SkTileMode mode)
: fColors(colors)
, fPos(pos)
, fCount(count) {
if (!pos || count != 3) {
return;
}
if (SkScalarNearlyEqual(pos[0], 0.0f) &&
SkScalarNearlyEqual(pos[1], 0.0f) &&
SkScalarNearlyEqual(pos[2], 1.0f)) {
if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode ||
colors[0] == colors[1]) {
// Ignore the leftmost color/pos.
fColors += 1;
fPos += 1;
fCount = 2;
}
} else if (SkScalarNearlyEqual(pos[0], 0.0f) &&
SkScalarNearlyEqual(pos[1], 1.0f) &&
SkScalarNearlyEqual(pos[2], 1.0f)) {
if (SkTileMode::kRepeat == mode || SkTileMode::kMirror == mode ||
colors[1] == colors[2]) {
// Ignore the rightmost color/pos.
fCount = 2;
}
}
}
const SkColor4f* fColors;
const SkScalar* fPos;
int fCount;
};
struct ColorConverter {
ColorConverter(const SkColor* colors, int count) {
const float ONE_OVER_255 = 1.f / 255;
for (int i = 0; i < count; ++i) {
fColors4f.push_back({
SkColorGetR(colors[i]) * ONE_OVER_255,
SkColorGetG(colors[i]) * ONE_OVER_255,
SkColorGetB(colors[i]) * ONE_OVER_255,
SkColorGetA(colors[i]) * ONE_OVER_255 });
}
}
SkSTArray<2, SkColor4f, true> fColors4f;
};
sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
const SkColor colors[],
const SkScalar pos[], int colorCount,
SkTileMode mode,
uint32_t flags,
const SkMatrix* localMatrix) {
ColorConverter converter(colors, colorCount);
return MakeLinear(pts, converter.fColors4f.begin(), nullptr, pos, colorCount, mode, flags,
localMatrix);
}
sk_sp<SkShader> SkGradientShader::MakeLinear(const SkPoint pts[2],
const SkColor4f colors[],
sk_sp<SkColorSpace> colorSpace,
const SkScalar pos[], int colorCount,
SkTileMode mode,
uint32_t flags,
const SkMatrix* localMatrix) {
if (!pts || !SkScalarIsFinite((pts[1] - pts[0]).length())) {
return nullptr;
}
if (!valid_grad(colors, pos, colorCount, mode)) {
return nullptr;
}
if (1 == colorCount) {
return SkShaders::Color(colors[0], std::move(colorSpace));
}
if (localMatrix && !localMatrix->invert(nullptr)) {
return nullptr;
}
if (SkScalarNearlyZero((pts[1] - pts[0]).length(), kDegenerateThreshold)) {
// Degenerate gradient, the only tricky complication is when in clamp mode, the limit of
// the gradient approaches two half planes of solid color (first and last). However, they
// are divided by the line perpendicular to the start and end point, which becomes undefined
// once start and end are exactly the same, so just use the end color for a stable solution.
return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
}
ColorStopOptimizer opt(colors, pos, colorCount, mode);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
localMatrix);
return sk_make_sp<SkLinearGradient>(pts, desc);
}
sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
const SkColor colors[],
const SkScalar pos[], int colorCount,
SkTileMode mode,
uint32_t flags,
const SkMatrix* localMatrix) {
ColorConverter converter(colors, colorCount);
return MakeRadial(center, radius, converter.fColors4f.begin(), nullptr, pos, colorCount, mode,
flags, localMatrix);
}
sk_sp<SkShader> SkGradientShader::MakeRadial(const SkPoint& center, SkScalar radius,
const SkColor4f colors[],
sk_sp<SkColorSpace> colorSpace,
const SkScalar pos[], int colorCount,
SkTileMode mode,
uint32_t flags,
const SkMatrix* localMatrix) {
if (radius < 0) {
return nullptr;
}
if (!valid_grad(colors, pos, colorCount, mode)) {
return nullptr;
}
if (1 == colorCount) {
return SkShaders::Color(colors[0], std::move(colorSpace));
}
if (localMatrix && !localMatrix->invert(nullptr)) {
return nullptr;
}
if (SkScalarNearlyZero(radius, kDegenerateThreshold)) {
// Degenerate gradient optimization, and no special logic needed for clamped radial gradient
return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
}
ColorStopOptimizer opt(colors, pos, colorCount, mode);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
localMatrix);
return sk_make_sp<SkRadialGradient>(center, radius, desc);
}
sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
SkScalar startRadius,
const SkPoint& end,
SkScalar endRadius,
const SkColor colors[],
const SkScalar pos[],
int colorCount,
SkTileMode mode,
uint32_t flags,
const SkMatrix* localMatrix) {
ColorConverter converter(colors, colorCount);
return MakeTwoPointConical(start, startRadius, end, endRadius, converter.fColors4f.begin(),
nullptr, pos, colorCount, mode, flags, localMatrix);
}
sk_sp<SkShader> SkGradientShader::MakeTwoPointConical(const SkPoint& start,
SkScalar startRadius,
const SkPoint& end,
SkScalar endRadius,
const SkColor4f colors[],
sk_sp<SkColorSpace> colorSpace,
const SkScalar pos[],
int colorCount,
SkTileMode mode,
uint32_t flags,
const SkMatrix* localMatrix) {
if (startRadius < 0 || endRadius < 0) {
return nullptr;
}
if (!valid_grad(colors, pos, colorCount, mode)) {
return nullptr;
}
if (SkScalarNearlyZero((start - end).length(), kDegenerateThreshold)) {
// If the center positions are the same, then the gradient is the radial variant of a 2 pt
// conical gradient, an actual radial gradient (startRadius == 0), or it is fully degenerate
// (startRadius == endRadius).
if (SkScalarNearlyEqual(startRadius, endRadius, kDegenerateThreshold)) {
// Degenerate case, where the interpolation region area approaches zero. The proper
// behavior depends on the tile mode, which is consistent with the default degenerate
// gradient behavior, except when mode = clamp and the radii > 0.
if (mode == SkTileMode::kClamp && endRadius > kDegenerateThreshold) {
// The interpolation region becomes an infinitely thin ring at the radius, so the
// final gradient will be the first color repeated from p=0 to 1, and then a hard
// stop switching to the last color at p=1.
static constexpr SkScalar circlePos[3] = {0, 1, 1};
SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]};
return MakeRadial(start, endRadius, reColors, std::move(colorSpace),
circlePos, 3, mode, flags, localMatrix);
} else {
// Otherwise use the default degenerate case
return make_degenerate_gradient(
colors, pos, colorCount, std::move(colorSpace), mode);
}
} else if (SkScalarNearlyZero(startRadius, kDegenerateThreshold)) {
// We can treat this gradient as radial, which is faster. If we got here, we know
// that endRadius is not equal to 0, so this produces a meaningful gradient
return MakeRadial(start, endRadius, colors, std::move(colorSpace), pos, colorCount,
mode, flags, localMatrix);
}
// Else it's the 2pt conical radial variant with no degenerate radii, so fall through to the
// regular 2pt constructor.
}
if (localMatrix && !localMatrix->invert(nullptr)) {
return nullptr;
}
EXPAND_1_COLOR(colorCount);
ColorStopOptimizer opt(colors, pos, colorCount, mode);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
localMatrix);
return SkTwoPointConicalGradient::Create(start, startRadius, end, endRadius, desc);
}
sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
const SkColor colors[],
const SkScalar pos[],
int colorCount,
SkTileMode mode,
SkScalar startAngle,
SkScalar endAngle,
uint32_t flags,
const SkMatrix* localMatrix) {
ColorConverter converter(colors, colorCount);
return MakeSweep(cx, cy, converter.fColors4f.begin(), nullptr, pos, colorCount,
mode, startAngle, endAngle, flags, localMatrix);
}
sk_sp<SkShader> SkGradientShader::MakeSweep(SkScalar cx, SkScalar cy,
const SkColor4f colors[],
sk_sp<SkColorSpace> colorSpace,
const SkScalar pos[],
int colorCount,
SkTileMode mode,
SkScalar startAngle,
SkScalar endAngle,
uint32_t flags,
const SkMatrix* localMatrix) {
if (!valid_grad(colors, pos, colorCount, mode)) {
return nullptr;
}
if (1 == colorCount) {
return SkShaders::Color(colors[0], std::move(colorSpace));
}
if (!SkScalarIsFinite(startAngle) || !SkScalarIsFinite(endAngle) || startAngle > endAngle) {
return nullptr;
}
if (localMatrix && !localMatrix->invert(nullptr)) {
return nullptr;
}
if (SkScalarNearlyEqual(startAngle, endAngle, kDegenerateThreshold)) {
// Degenerate gradient, which should follow default degenerate behavior unless it is
// clamped and the angle is greater than 0.
if (mode == SkTileMode::kClamp && endAngle > kDegenerateThreshold) {
// In this case, the first color is repeated from 0 to the angle, then a hardstop
// switches to the last color (all other colors are compressed to the infinitely thin
// interpolation region).
static constexpr SkScalar clampPos[3] = {0, 1, 1};
SkColor4f reColors[3] = {colors[0], colors[0], colors[colorCount - 1]};
return MakeSweep(cx, cy, reColors, std::move(colorSpace), clampPos, 3, mode, 0,
endAngle, flags, localMatrix);
} else {
return make_degenerate_gradient(colors, pos, colorCount, std::move(colorSpace), mode);
}
}
if (startAngle <= 0 && endAngle >= 360) {
// If the t-range includes [0,1], then we can always use clamping (presumably faster).
mode = SkTileMode::kClamp;
}
ColorStopOptimizer opt(colors, pos, colorCount, mode);
SkGradientShaderBase::Descriptor desc;
desc_init(&desc, opt.fColors, std::move(colorSpace), opt.fPos, opt.fCount, mode, flags,
localMatrix);
const SkScalar t0 = startAngle / 360,
t1 = endAngle / 360;
return sk_make_sp<SkSweepGradient>(SkPoint::Make(cx, cy), t0, t1, desc);
}
void SkGradientShader::RegisterFlattenables() {
SK_REGISTER_FLATTENABLE(SkLinearGradient);
SK_REGISTER_FLATTENABLE(SkRadialGradient);
SK_REGISTER_FLATTENABLE(SkSweepGradient);
SK_REGISTER_FLATTENABLE(SkTwoPointConicalGradient);
}