| /* |
| * Copyright 2017 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #include "tests/Test.h" |
| |
| #include <array> |
| #include <memory> |
| #include <vector> |
| #include "include/core/SkBitmap.h" |
| #include "include/gpu/GrDirectContext.h" |
| #include "src/gpu/GrCaps.h" |
| #include "src/gpu/GrDirectContextPriv.h" |
| #include "src/gpu/GrGeometryProcessor.h" |
| #include "src/gpu/GrImageInfo.h" |
| #include "src/gpu/GrMemoryPool.h" |
| #include "src/gpu/GrOpFlushState.h" |
| #include "src/gpu/GrOpsRenderPass.h" |
| #include "src/gpu/GrProgramInfo.h" |
| #include "src/gpu/GrResourceProvider.h" |
| #include "src/gpu/KeyBuilder.h" |
| #include "src/gpu/ResourceKey.h" |
| #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" |
| #include "src/gpu/glsl/GrGLSLVarying.h" |
| #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
| #include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h" |
| #include "src/gpu/v1/SurfaceDrawContext_v1.h" |
| |
| #if 0 |
| #include "tools/ToolUtils.h" |
| #define WRITE_PNG_CONTEXT_TYPE kANGLE_D3D11_ES3_ContextType |
| #endif |
| |
| SKGPU_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
| |
| static constexpr int kBoxSize = 2; |
| static constexpr int kBoxCountY = 8; |
| static constexpr int kBoxCountX = 8; |
| static constexpr int kBoxCount = kBoxCountY * kBoxCountX; |
| |
| static constexpr int kImageWidth = kBoxCountY * kBoxSize; |
| static constexpr int kImageHeight = kBoxCountX * kBoxSize; |
| |
| static constexpr int kIndexPatternRepeatCount = 3; |
| constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3}; |
| |
| |
| class DrawMeshHelper { |
| public: |
| DrawMeshHelper(GrOpFlushState* state) : fState(state) {} |
| |
| sk_sp<const GrBuffer> getIndexBuffer(); |
| |
| sk_sp<const GrBuffer> makeIndexBuffer(const uint16_t[], int count); |
| |
| template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) { |
| return this->makeVertexBuffer(data.begin(), data.count()); |
| } |
| template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) { |
| return this->makeVertexBuffer(data.data(), data.size()); |
| } |
| template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count); |
| |
| GrMeshDrawTarget* target() { return fState; } |
| |
| sk_sp<const GrBuffer> fIndexBuffer; |
| sk_sp<const GrBuffer> fIndexBuffer2; |
| sk_sp<const GrBuffer> fInstBuffer; |
| sk_sp<const GrBuffer> fVertBuffer; |
| sk_sp<const GrBuffer> fVertBuffer2; |
| sk_sp<const GrBuffer> fDrawIndirectBuffer; |
| size_t fDrawIndirectBufferOffset; |
| |
| GrOpsRenderPass* bindPipeline(GrPrimitiveType, bool isInstanced, bool hasVertexBuffer); |
| |
| private: |
| GrOpFlushState* fState; |
| }; |
| |
| struct Box { |
| float fX, fY; |
| GrColor fColor; |
| }; |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * This is a GPU-backend specific test. It tries to test all possible usecases of |
| * GrOpsRenderPass::draw*. The test works by drawing checkerboards of colored boxes, reading back |
| * the pixels, and comparing with expected results. The boxes are drawn on integer boundaries and |
| * the (opaque) colors are chosen from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to |
| * produce exact matches. |
| */ |
| |
| static void run_test(GrDirectContext*, const char* testName, skiatest::Reporter*, |
| const std::unique_ptr<skgpu::v1::SurfaceDrawContext>&, const SkBitmap& gold, |
| std::function<void(DrawMeshHelper*)> prepareFn, |
| std::function<void(DrawMeshHelper*)> executeFn); |
| |
| #ifdef WRITE_PNG_CONTEXT_TYPE |
| static bool IsContextTypeForOutputPNGs(skiatest::GrContextFactoryContextType type) { |
| return type == skiatest::GrContextFactoryContextType::WRITE_PNG_CONTEXT_TYPE; |
| } |
| DEF_GPUTEST_FOR_CONTEXTS(GrMeshTest, IsContextTypeForOutputPNGs, reporter, ctxInfo, nullptr) { |
| #else |
| DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) { |
| #endif |
| auto dContext = ctxInfo.directContext(); |
| |
| auto sdc = skgpu::v1::SurfaceDrawContext::Make( |
| dContext, GrColorType::kRGBA_8888, nullptr, SkBackingFit::kExact, |
| {kImageWidth, kImageHeight}, SkSurfaceProps()); |
| if (!sdc) { |
| ERRORF(reporter, "could not create render target context."); |
| return; |
| } |
| |
| SkTArray<Box> boxes; |
| SkTArray<std::array<Box, 4>> vertexData; |
| SkBitmap gold; |
| |
| // ---- setup ---------- |
| |
| SkPaint paint; |
| paint.setBlendMode(SkBlendMode::kSrc); |
| gold.allocN32Pixels(kImageWidth, kImageHeight); |
| |
| SkCanvas goldCanvas(gold); |
| |
| for (int y = 0; y < kBoxCountY; ++y) { |
| for (int x = 0; x < kBoxCountX; ++x) { |
| int c = y + x; |
| int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff}; |
| |
| const Box box = boxes.push_back() = { |
| float(x * kBoxSize), |
| float(y * kBoxSize), |
| GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255) |
| }; |
| |
| std::array<Box, 4>& boxVertices = vertexData.push_back(); |
| for (int i = 0; i < 4; ++i) { |
| boxVertices[i] = { |
| box.fX + (i / 2) * kBoxSize, |
| box.fY + (i % 2) * kBoxSize, |
| box.fColor |
| }; |
| } |
| |
| paint.setARGB(255, rgb[0], rgb[1], rgb[2]); |
| goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint); |
| } |
| } |
| |
| // ---- tests ---------- |
| |
| #define VALIDATE(buff) \ |
| do { \ |
| if (!buff) { \ |
| ERRORF(reporter, #buff " is null."); \ |
| return; \ |
| } \ |
| } while (0) |
| |
| run_test(dContext, "draw", reporter, sdc, gold, |
| [&](DrawMeshHelper* helper) { |
| SkTArray<Box> expandedVertexData; |
| for (int i = 0; i < kBoxCount; ++i) { |
| for (int j = 0; j < 6; ++j) { |
| expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]); |
| } |
| } |
| |
| // Draw boxes one line at a time to exercise base vertex. |
| helper->fVertBuffer = helper->makeVertexBuffer(expandedVertexData); |
| VALIDATE(helper->fVertBuffer); |
| }, |
| [&](DrawMeshHelper* helper) { |
| for (int y = 0; y < kBoxCountY; ++y) { |
| auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true); |
| pass->bindBuffers(nullptr, nullptr, helper->fVertBuffer); |
| pass->draw(kBoxCountX * 6, y * kBoxCountX * 6); |
| } |
| }); |
| |
| run_test(dContext, "drawIndexed", reporter, sdc, gold, |
| [&](DrawMeshHelper* helper) { |
| helper->fIndexBuffer = helper->getIndexBuffer(); |
| VALIDATE(helper->fIndexBuffer); |
| helper->fVertBuffer = helper->makeVertexBuffer(vertexData); |
| VALIDATE(helper->fVertBuffer); |
| }, |
| [&](DrawMeshHelper* helper) { |
| int baseRepetition = 0; |
| int i = 0; |
| // Start at various repetitions within the patterned index buffer to exercise base |
| // index. |
| while (i < kBoxCount) { |
| static_assert(kIndexPatternRepeatCount >= 3); |
| int repetitionCount = std::min(3 - baseRepetition, kBoxCount - i); |
| |
| auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true); |
| pass->bindBuffers(helper->fIndexBuffer, nullptr, helper->fVertBuffer); |
| pass->drawIndexed(repetitionCount * 6, baseRepetition * 6, baseRepetition * 4, |
| (baseRepetition + repetitionCount) * 4 - 1, |
| (i - baseRepetition) * 4); |
| |
| baseRepetition = (baseRepetition + 1) % 3; |
| i += repetitionCount; |
| } |
| }); |
| |
| run_test(dContext, "drawIndexPattern", reporter, sdc, gold, |
| [&](DrawMeshHelper* helper) { |
| helper->fIndexBuffer = helper->getIndexBuffer(); |
| VALIDATE(helper->fIndexBuffer); |
| helper->fVertBuffer = helper->makeVertexBuffer(vertexData); |
| VALIDATE(helper->fVertBuffer); |
| }, |
| [&](DrawMeshHelper* helper) { |
| // Draw boxes one line at a time to exercise base vertex. drawIndexPattern does |
| // not support a base index. |
| for (int y = 0; y < kBoxCountY; ++y) { |
| auto pass = helper->bindPipeline(GrPrimitiveType::kTriangles, false, true); |
| pass->bindBuffers(helper->fIndexBuffer, nullptr, helper->fVertBuffer); |
| pass->drawIndexPattern(6, kBoxCountX, kIndexPatternRepeatCount, 4, |
| y * kBoxCountX * 4); |
| |
| } |
| }); |
| |
| for (bool indexed : {false, true}) { |
| if (!dContext->priv().caps()->drawInstancedSupport()) { |
| break; |
| } |
| |
| run_test(dContext, indexed ? "drawIndexedInstanced" : "drawInstanced", |
| reporter, sdc, gold, |
| [&](DrawMeshHelper* helper) { |
| helper->fIndexBuffer = indexed ? helper->getIndexBuffer() : nullptr; |
| SkTArray<uint16_t> baseIndexData; |
| baseIndexData.push_back(kBoxCountX/2 * 6); // for testing base index. |
| for (int i = 0; i < 6; ++i) { |
| baseIndexData.push_back(kIndexPattern[i]); |
| } |
| helper->fIndexBuffer2 = helper->makeIndexBuffer(baseIndexData.begin(), |
| baseIndexData.count()); |
| helper->fInstBuffer = helper->makeVertexBuffer(boxes); |
| VALIDATE(helper->fInstBuffer); |
| helper->fVertBuffer = |
| helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1}); |
| VALIDATE(helper->fVertBuffer); |
| helper->fVertBuffer2 = helper->makeVertexBuffer( // for testing base vertex. |
| std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1}); |
| VALIDATE(helper->fVertBuffer2); |
| }, |
| [&](DrawMeshHelper* helper) { |
| // Draw boxes one line at a time to exercise base instance, base vertex, and |
| // null vertex buffer. |
| for (int y = 0; y < kBoxCountY; ++y) { |
| sk_sp<const GrBuffer> vertexBuffer; |
| int baseVertex = 0; |
| switch (y % 3) { |
| case 0: |
| if (dContext->priv().caps()->shaderCaps()->vertexIDSupport()) { |
| break; |
| } |
| [[fallthrough]]; |
| case 1: |
| vertexBuffer = helper->fVertBuffer; |
| break; |
| case 2: |
| vertexBuffer = helper->fVertBuffer2; |
| baseVertex = 2; |
| break; |
| } |
| |
| GrPrimitiveType primitiveType = indexed ? GrPrimitiveType::kTriangles |
| : GrPrimitiveType::kTriangleStrip; |
| auto pass = helper->bindPipeline(primitiveType, true, |
| SkToBool(vertexBuffer)); |
| if (indexed) { |
| sk_sp<const GrBuffer> indexBuffer = (y % 2) ? |
| helper->fIndexBuffer2 : helper->fIndexBuffer; |
| VALIDATE(indexBuffer); |
| int baseIndex = (y % 2); |
| pass->bindBuffers(std::move(indexBuffer), helper->fInstBuffer, |
| std::move(vertexBuffer)); |
| pass->drawIndexedInstanced(6, baseIndex, kBoxCountX, y * kBoxCountX, |
| baseVertex); |
| } else { |
| pass->bindBuffers(nullptr, helper->fInstBuffer, |
| std::move(vertexBuffer)); |
| pass->drawInstanced(kBoxCountX, y * kBoxCountY, 4, baseVertex); |
| } |
| } |
| }); |
| } |
| |
| for (bool indexed : {false, true}) { |
| if (!dContext->priv().caps()->drawInstancedSupport()) { |
| break; |
| } |
| |
| run_test(dContext, (indexed) ? "drawIndexedIndirect" : "drawIndirect", |
| reporter, sdc, gold, |
| [&](DrawMeshHelper* helper) { |
| SkTArray<uint16_t> baseIndexData; |
| baseIndexData.push_back(kBoxCountX/2 * 6); // for testing base index. |
| for (int j = 0; j < kBoxCountY; ++j) { |
| for (int i = 0; i < 6; ++i) { |
| baseIndexData.push_back(kIndexPattern[i]); |
| } |
| } |
| helper->fIndexBuffer2 = helper->makeIndexBuffer(baseIndexData.begin(), |
| baseIndexData.count()); |
| VALIDATE(helper->fIndexBuffer2); |
| helper->fInstBuffer = helper->makeVertexBuffer(boxes); |
| VALIDATE(helper->fInstBuffer); |
| helper->fVertBuffer = helper->makeVertexBuffer(std::vector<float>{ |
| -1,-1, 0,0, 0,1, 1,0, 1,1, -1,-1, 0,0, 1,0, 0,1, 1,1}); |
| VALIDATE(helper->fVertBuffer); |
| |
| GrDrawIndirectWriter indirectWriter; |
| GrDrawIndexedIndirectWriter indexedIndirectWriter; |
| if (indexed) { |
| // Make helper->fDrawIndirectBufferOffset nonzero. |
| sk_sp<const GrBuffer> ignoredBuff; |
| size_t ignoredOffset; |
| // Make a superfluous call to makeDrawIndirectSpace in order to test |
| // "offsetInBytes!=0" for the actual call to makeDrawIndexedIndirectSpace. |
| helper->target()->makeDrawIndirectSpace(29, &ignoredBuff, &ignoredOffset); |
| indexedIndirectWriter = helper->target()->makeDrawIndexedIndirectSpace( |
| kBoxCountY, &helper->fDrawIndirectBuffer, |
| &helper->fDrawIndirectBufferOffset); |
| } else { |
| // Make helper->fDrawIndirectBufferOffset nonzero. |
| sk_sp<const GrBuffer> ignoredBuff; |
| size_t ignoredOffset; |
| // Make a superfluous call to makeDrawIndexedIndirectSpace in order to test |
| // "offsetInBytes!=0" for the actual call to makeDrawIndirectSpace. |
| helper->target()->makeDrawIndexedIndirectSpace(7, &ignoredBuff, |
| &ignoredOffset); |
| indirectWriter = helper->target()->makeDrawIndirectSpace( |
| kBoxCountY, &helper->fDrawIndirectBuffer, |
| &helper->fDrawIndirectBufferOffset); |
| } |
| |
| // Draw boxes one line at a time to exercise multiple draws. |
| for (int y = 0; y < kBoxCountY; ++y) { |
| int baseVertex = (y % 2) ? 1 : 6; |
| if (indexed) { |
| int baseIndex = 1 + y * 6; |
| indexedIndirectWriter.writeIndexed(6, baseIndex, kBoxCountX, |
| y * kBoxCountX, baseVertex); |
| } else { |
| indirectWriter.write(kBoxCountX, y * kBoxCountX, 4, baseVertex); |
| } |
| } |
| }, |
| [&](DrawMeshHelper* helper) { |
| GrOpsRenderPass* pass; |
| if (indexed) { |
| pass = helper->bindPipeline(GrPrimitiveType::kTriangles, true, true); |
| pass->bindBuffers(helper->fIndexBuffer2, helper->fInstBuffer, |
| helper->fVertBuffer); |
| for (int i = 0; i < 3; ++i) { |
| int start = kBoxCountY * i / 3; |
| int end = kBoxCountY * (i + 1) / 3; |
| size_t offset = helper->fDrawIndirectBufferOffset + start * |
| sizeof(GrDrawIndexedIndirectCommand); |
| pass->drawIndexedIndirect(helper->fDrawIndirectBuffer.get(), offset, |
| end - start); |
| } |
| } else { |
| pass = helper->bindPipeline(GrPrimitiveType::kTriangleStrip, true, true); |
| pass->bindBuffers(nullptr, helper->fInstBuffer, helper->fVertBuffer); |
| for (int i = 0; i < 2; ++i) { |
| int start = kBoxCountY * i / 2; |
| int end = kBoxCountY * (i + 1) / 2; |
| size_t offset = helper->fDrawIndirectBufferOffset + start * |
| sizeof(GrDrawIndirectCommand); |
| pass->drawIndirect(helper->fDrawIndirectBuffer.get(), offset, |
| end - start); |
| } |
| } |
| }); |
| } |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| namespace { |
| class MeshTestOp : public GrDrawOp { |
| public: |
| DEFINE_OP_CLASS_ID |
| |
| static GrOp::Owner Make(GrRecordingContext* rContext, |
| std::function<void(DrawMeshHelper*)> prepareFn, |
| std::function<void(DrawMeshHelper*)> executeFn) { |
| return GrOp::Make<MeshTestOp>(rContext, prepareFn, executeFn); |
| } |
| |
| private: |
| friend class GrOp; // for ctor |
| |
| MeshTestOp(std::function<void(DrawMeshHelper*)> prepareFn, |
| std::function<void(DrawMeshHelper*)> executeFn) |
| : INHERITED(ClassID()), fPrepareFn(prepareFn), fExecuteFn(executeFn) { |
| this->setBounds( |
| SkRect::MakeIWH(kImageWidth, kImageHeight), HasAABloat::kNo, IsHairline::kNo); |
| } |
| |
| const char* name() const override { return "GrMeshTestOp"; } |
| FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } |
| GrProcessorSet::Analysis finalize(const GrCaps&, const GrAppliedClip*, GrClampType) override { |
| return GrProcessorSet::EmptySetAnalysis(); |
| } |
| |
| void onPrePrepare(GrRecordingContext*, |
| const GrSurfaceProxyView& writeView, |
| GrAppliedClip*, |
| const GrDstProxyView&, |
| GrXferBarrierFlags renderPassXferBarriers, |
| GrLoadOp colorLoadOp) override {} |
| void onPrepare(GrOpFlushState* state) override { |
| fHelper = std::make_unique<DrawMeshHelper>(state); |
| fPrepareFn(fHelper.get()); |
| } |
| void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override { |
| fExecuteFn(fHelper.get()); |
| } |
| |
| std::unique_ptr<DrawMeshHelper> fHelper; |
| std::function<void(DrawMeshHelper*)> fPrepareFn; |
| std::function<void(DrawMeshHelper*)> fExecuteFn; |
| |
| using INHERITED = GrDrawOp; |
| }; |
| |
| class MeshTestProcessor : public GrGeometryProcessor { |
| public: |
| static GrGeometryProcessor* Make(SkArenaAlloc* arena, bool instanced, bool hasVertexBuffer) { |
| return arena->make([&](void* ptr) { |
| return new (ptr) MeshTestProcessor(instanced, hasVertexBuffer); |
| }); |
| } |
| |
| const char* name() const override { return "GrMeshTestProcessor"; } |
| |
| void addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const final { |
| b->add32(fInstanceLocation.isInitialized()); |
| b->add32(fVertexPosition.isInitialized()); |
| } |
| |
| std::unique_ptr<ProgramImpl> makeProgramImpl(const GrShaderCaps&) const final; |
| |
| private: |
| class Impl; |
| |
| const Attribute& inColor() const { |
| return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor; |
| } |
| |
| MeshTestProcessor(bool instanced, bool hasVertexBuffer) |
| : INHERITED(kGrMeshTestProcessor_ClassID) { |
| if (instanced) { |
| fInstanceLocation = {"location", kFloat2_GrVertexAttribType, SkSLType::kHalf2}; |
| fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, SkSLType::kHalf4}; |
| this->setInstanceAttributesWithImplicitOffsets(&fInstanceLocation, 2); |
| if (hasVertexBuffer) { |
| fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, SkSLType::kHalf2}; |
| this->setVertexAttributesWithImplicitOffsets(&fVertexPosition, 1); |
| } |
| } else { |
| fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, SkSLType::kHalf2}; |
| fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, SkSLType::kHalf4}; |
| this->setVertexAttributesWithImplicitOffsets(&fVertexPosition, 2); |
| } |
| } |
| |
| Attribute fVertexPosition; |
| Attribute fVertexColor; |
| |
| Attribute fInstanceLocation; |
| Attribute fInstanceColor; |
| |
| using INHERITED = GrGeometryProcessor; |
| }; |
| } // anonymous namespace |
| |
| std::unique_ptr<GrGeometryProcessor::ProgramImpl> MeshTestProcessor::makeProgramImpl( |
| const GrShaderCaps&) const { |
| class Impl : public ProgramImpl { |
| public: |
| void setData(const GrGLSLProgramDataManager&, |
| const GrShaderCaps&, |
| const GrGeometryProcessor&) final {} |
| |
| private: |
| void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final { |
| const MeshTestProcessor& mp = args.fGeomProc.cast<MeshTestProcessor>(); |
| GrGLSLVertexBuilder* v = args.fVertBuilder; |
| GrGLSLFPFragmentBuilder* f = args.fFragBuilder; |
| |
| GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; |
| varyingHandler->emitAttributes(mp); |
| f->codeAppendf("half4 %s;", args.fOutputColor); |
| varyingHandler->addPassThroughAttribute(mp.inColor().asShaderVar(), args.fOutputColor); |
| |
| if (!mp.fInstanceLocation.isInitialized()) { |
| v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name()); |
| } else { |
| if (mp.fVertexPosition.isInitialized()) { |
| v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name()); |
| } else { |
| v->codeAppend("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);"); |
| } |
| v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(), |
| kBoxSize); |
| } |
| gpArgs->fPositionVar.set(SkSLType::kFloat2, "vertex"); |
| |
| f->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage); |
| } |
| }; |
| |
| return std::make_unique<Impl>(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| sk_sp<const GrBuffer> DrawMeshHelper::makeIndexBuffer(const uint16_t indices[], int count) { |
| return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer( |
| count * sizeof(uint16_t), GrGpuBufferType::kIndex, kDynamic_GrAccessPattern, indices)); |
| } |
| |
| template<typename T> |
| sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) { |
| return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer( |
| count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data)); |
| } |
| |
| sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() { |
| SKGPU_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); |
| return fState->resourceProvider()->findOrCreatePatternedIndexBuffer( |
| kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey); |
| } |
| |
| GrOpsRenderPass* DrawMeshHelper::bindPipeline(GrPrimitiveType primitiveType, bool isInstanced, |
| bool hasVertexBuffer) { |
| GrProcessorSet processorSet(SkBlendMode::kSrc); |
| |
| // TODO: add a GrProcessorSet testing helper to make this easier |
| SkPMColor4f overrideColor; |
| processorSet.finalize(GrProcessorAnalysisColor(), |
| GrProcessorAnalysisCoverage::kNone, |
| fState->appliedClip(), |
| nullptr, |
| fState->caps(), |
| GrClampType::kAuto, |
| &overrideColor); |
| |
| auto pipeline = GrSimpleMeshDrawOpHelper::CreatePipeline(fState, |
| std::move(processorSet), |
| GrPipeline::InputFlags::kNone); |
| |
| GrGeometryProcessor* mtp = MeshTestProcessor::Make(fState->allocator(), isInstanced, |
| hasVertexBuffer); |
| |
| GrProgramInfo programInfo(fState->caps(), fState->writeView(), fState->usesMSAASurface(), |
| pipeline, &GrUserStencilSettings::kUnused, mtp, primitiveType, 0, |
| fState->renderPassBarriers(), fState->colorLoadOp()); |
| |
| fState->opsRenderPass()->bindPipeline(programInfo, SkRect::MakeIWH(kImageWidth, kImageHeight)); |
| return fState->opsRenderPass(); |
| } |
| |
| static void run_test(GrDirectContext* dContext, |
| const char* testName, |
| skiatest::Reporter* reporter, |
| const std::unique_ptr<skgpu::v1::SurfaceDrawContext>& sdc, |
| const SkBitmap& gold, |
| std::function<void(DrawMeshHelper*)> prepareFn, |
| std::function<void(DrawMeshHelper*)> executeFn) { |
| const int w = gold.width(), h = gold.height(); |
| const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels()); |
| if (h != sdc->height() || w != sdc->width()) { |
| ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName); |
| return; |
| } |
| if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) { |
| ERRORF(reporter, "[%s] unexpected row bytes in gold image", testName); |
| return; |
| } |
| |
| GrPixmap resultPM = GrPixmap::Allocate(gold.info()); |
| sdc->clear(SkPMColor4f::FromBytes_RGBA(0xbaaaaaad)); |
| sdc->addDrawOp(MeshTestOp::Make(dContext, prepareFn, executeFn)); |
| |
| sdc->readPixels(dContext, resultPM, {0, 0}); |
| |
| #ifdef WRITE_PNG_CONTEXT_TYPE |
| #define STRINGIFY(X) #X |
| #define TOSTRING(X) STRINGIFY(X) |
| SkString filename; |
| filename.printf("GrMeshTest_%s_%s.png", TOSTRING(WRITE_PNG_CONTEXT_TYPE), testName); |
| SkDebugf("writing %s...\n", filename.c_str()); |
| ToolUtils::EncodeImageToFile(filename.c_str(), resultPM, SkEncodedImageFormat::kPNG, 100); |
| #endif |
| |
| for (int y = 0; y < h; ++y) { |
| for (int x = 0; x < w; ++x) { |
| uint32_t expected = goldPx[y * kImageWidth + x]; |
| uint32_t actual = static_cast<uint32_t*>(resultPM.addr())[y * kImageWidth + x]; |
| if (expected != actual) { |
| ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x", |
| testName, x, y, actual, expected); |
| return; |
| } |
| } |
| } |
| } |