| // Copyright 2012 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "ui/gfx/geometry/rect.h" |
| |
| #include <algorithm> |
| |
| #include "base/check.h" |
| #include "base/numerics/clamped_math.h" |
| #include "base/strings/stringprintf.h" |
| #include "build/build_config.h" |
| #include "ui/gfx/geometry/insets.h" |
| #include "ui/gfx/geometry/outsets.h" |
| |
| #if BUILDFLAG(IS_WIN) |
| #include <windows.h> |
| #elif BUILDFLAG(IS_IOS) |
| #include <CoreGraphics/CoreGraphics.h> |
| #elif BUILDFLAG(IS_MAC) |
| #include <ApplicationServices/ApplicationServices.h> |
| #endif |
| |
| namespace { |
| |
| void AdjustAlongAxis(int dst_origin, int dst_size, int* origin, int* size) { |
| *size = std::min(dst_size, *size); |
| if (*origin < dst_origin) |
| *origin = dst_origin; |
| else |
| *origin = std::min(dst_origin + dst_size, *origin + *size) - *size; |
| } |
| |
| // This is the per-axis heuristic for picking the most useful origin and |
| // width/height to represent the input range. |
| void SaturatedClampRange(int min, int max, int* origin, int* span) { |
| if (max < min) { |
| *span = 0; |
| *origin = min; |
| return; |
| } |
| |
| int effective_span = base::ClampSub(max, min); |
| int span_loss = base::ClampSub(max, min + effective_span); |
| |
| // If the desired width is within the limits of ints, we can just |
| // use the simple computations to represent the range precisely. |
| if (span_loss == 0) { |
| *span = effective_span; |
| *origin = min; |
| return; |
| } |
| |
| // Now we have to approximate. If one of min or max is close enough |
| // to zero we choose to represent that one precisely. The other side is |
| // probably practically "infinite", so we move it. |
| constexpr unsigned kMaxDimension = std::numeric_limits<int>::max() / 2; |
| if (base::SafeUnsignedAbs(max) < kMaxDimension) { |
| // Maintain origin + span == max. |
| *span = effective_span; |
| *origin = max - effective_span; |
| } else if (base::SafeUnsignedAbs(min) < kMaxDimension) { |
| // Maintain origin == min. |
| *span = effective_span; |
| *origin = min; |
| } else { |
| // Both are big, so keep the center. |
| *span = effective_span; |
| *origin = min + span_loss / 2; |
| } |
| } |
| |
| } // namespace |
| |
| namespace gfx { |
| |
| #if BUILDFLAG(IS_WIN) |
| |
| Rect::Rect(const RECT& r) |
| : origin_(r.left, r.top), |
| size_(std::abs(r.right - r.left), std::abs(r.bottom - r.top)) {} |
| |
| RECT Rect::ToRECT() const { |
| RECT r; |
| r.left = x(); |
| r.right = right(); |
| r.top = y(); |
| r.bottom = bottom(); |
| return r; |
| } |
| |
| #elif BUILDFLAG(IS_APPLE) |
| |
| Rect::Rect(const CGRect& r) |
| : origin_(r.origin.x, r.origin.y), size_(r.size.width, r.size.height) {} |
| |
| CGRect Rect::ToCGRect() const { |
| return CGRectMake(x(), y(), width(), height()); |
| } |
| |
| #endif |
| |
| void Rect::AdjustForSaturatedRight(int right) { |
| int new_x, width; |
| SaturatedClampRange(x(), right, &new_x, &width); |
| set_x(new_x); |
| size_.set_width(width); |
| } |
| |
| void Rect::AdjustForSaturatedBottom(int bottom) { |
| int new_y, height; |
| SaturatedClampRange(y(), bottom, &new_y, &height); |
| set_y(new_y); |
| size_.set_height(height); |
| } |
| |
| void Rect::Inset(const Insets& insets) { |
| origin_ += Vector2d(insets.left(), insets.top()); |
| set_width(base::ClampSub(width(), insets.width())); |
| set_height(base::ClampSub(height(), insets.height())); |
| } |
| |
| void Rect::Offset(const Vector2d& distance) { |
| origin_ += distance; |
| // Ensure that width and height remain valid. |
| set_width(width()); |
| set_height(height()); |
| } |
| |
| Insets Rect::InsetsFrom(const Rect& inner) const { |
| return Insets::TLBR(inner.y() - y(), inner.x() - x(), |
| bottom() - inner.bottom(), right() - inner.right()); |
| } |
| |
| bool Rect::operator<(const Rect& other) const { |
| if (origin_ == other.origin_) { |
| if (width() == other.width()) { |
| return height() < other.height(); |
| } else { |
| return width() < other.width(); |
| } |
| } else { |
| return origin_ < other.origin_; |
| } |
| } |
| |
| bool Rect::Contains(int point_x, int point_y) const { |
| return (point_x >= x()) && (point_x < right()) && (point_y >= y()) && |
| (point_y < bottom()); |
| } |
| |
| bool Rect::Contains(const Rect& rect) const { |
| return (rect.x() >= x() && rect.right() <= right() && rect.y() >= y() && |
| rect.bottom() <= bottom()); |
| } |
| |
| bool Rect::Intersects(const Rect& rect) const { |
| return !(IsEmpty() || rect.IsEmpty() || rect.x() >= right() || |
| rect.right() <= x() || rect.y() >= bottom() || rect.bottom() <= y()); |
| } |
| |
| void Rect::Intersect(const Rect& rect) { |
| if (IsEmpty() || rect.IsEmpty()) { |
| SetRect(0, 0, 0, 0); // Throws away empty position. |
| return; |
| } |
| |
| int left = std::max(x(), rect.x()); |
| int top = std::max(y(), rect.y()); |
| int new_right = std::min(right(), rect.right()); |
| int new_bottom = std::min(bottom(), rect.bottom()); |
| |
| if (left >= new_right || top >= new_bottom) { |
| SetRect(0, 0, 0, 0); // Throws away empty position. |
| return; |
| } |
| |
| SetByBounds(left, top, new_right, new_bottom); |
| } |
| |
| bool Rect::InclusiveIntersect(const Rect& rect) { |
| int left = std::max(x(), rect.x()); |
| int top = std::max(y(), rect.y()); |
| int new_right = std::min(right(), rect.right()); |
| int new_bottom = std::min(bottom(), rect.bottom()); |
| |
| // Return a clean empty rectangle for non-intersecting cases. |
| if (left > new_right || top > new_bottom) { |
| SetRect(0, 0, 0, 0); |
| return false; |
| } |
| |
| SetByBounds(left, top, new_right, new_bottom); |
| return true; |
| } |
| |
| void Rect::Union(const Rect& rect) { |
| if (IsEmpty()) { |
| *this = rect; |
| return; |
| } |
| if (rect.IsEmpty()) |
| return; |
| |
| UnionEvenIfEmpty(rect); |
| } |
| |
| void Rect::UnionEvenIfEmpty(const Rect& rect) { |
| SetByBounds(std::min(x(), rect.x()), std::min(y(), rect.y()), |
| std::max(right(), rect.right()), |
| std::max(bottom(), rect.bottom())); |
| } |
| |
| void Rect::Subtract(const Rect& rect) { |
| if (!Intersects(rect)) |
| return; |
| if (rect.Contains(*this)) { |
| SetRect(0, 0, 0, 0); |
| return; |
| } |
| |
| int rx = x(); |
| int ry = y(); |
| int rr = right(); |
| int rb = bottom(); |
| |
| if (rect.y() <= y() && rect.bottom() >= bottom()) { |
| // complete intersection in the y-direction |
| if (rect.x() <= x()) { |
| rx = rect.right(); |
| } else if (rect.right() >= right()) { |
| rr = rect.x(); |
| } |
| } else if (rect.x() <= x() && rect.right() >= right()) { |
| // complete intersection in the x-direction |
| if (rect.y() <= y()) { |
| ry = rect.bottom(); |
| } else if (rect.bottom() >= bottom()) { |
| rb = rect.y(); |
| } |
| } |
| SetByBounds(rx, ry, rr, rb); |
| } |
| |
| void Rect::AdjustToFit(const Rect& rect) { |
| int new_x = x(); |
| int new_y = y(); |
| int new_width = width(); |
| int new_height = height(); |
| AdjustAlongAxis(rect.x(), rect.width(), &new_x, &new_width); |
| AdjustAlongAxis(rect.y(), rect.height(), &new_y, &new_height); |
| SetRect(new_x, new_y, new_width, new_height); |
| } |
| |
| Point Rect::CenterPoint() const { |
| return Point(x() + width() / 2, y() + height() / 2); |
| } |
| |
| void Rect::ClampToCenteredSize(const Size& size) { |
| int new_width = std::min(width(), size.width()); |
| int new_height = std::min(height(), size.height()); |
| int new_x = x() + (width() - new_width) / 2; |
| int new_y = y() + (height() - new_height) / 2; |
| SetRect(new_x, new_y, new_width, new_height); |
| } |
| |
| void Rect::Transpose() { |
| SetRect(y(), x(), height(), width()); |
| } |
| |
| void Rect::SplitVertically(Rect* left_half, Rect* right_half) const { |
| DCHECK(left_half); |
| DCHECK(right_half); |
| |
| left_half->SetRect(x(), y(), width() / 2, height()); |
| right_half->SetRect( |
| left_half->right(), y(), width() - left_half->width(), height()); |
| } |
| |
| bool Rect::SharesEdgeWith(const Rect& rect) const { |
| return (y() == rect.y() && height() == rect.height() && |
| (x() == rect.right() || right() == rect.x())) || |
| (x() == rect.x() && width() == rect.width() && |
| (y() == rect.bottom() || bottom() == rect.y())); |
| } |
| |
| int Rect::ManhattanDistanceToPoint(const Point& point) const { |
| int x_distance = |
| std::max<int>(0, std::max(x() - point.x(), point.x() - right())); |
| int y_distance = |
| std::max<int>(0, std::max(y() - point.y(), point.y() - bottom())); |
| |
| return x_distance + y_distance; |
| } |
| |
| int Rect::ManhattanInternalDistance(const Rect& rect) const { |
| Rect c(*this); |
| c.Union(rect); |
| |
| int x = std::max(0, c.width() - width() - rect.width() + 1); |
| int y = std::max(0, c.height() - height() - rect.height() + 1); |
| return x + y; |
| } |
| |
| std::string Rect::ToString() const { |
| return base::StringPrintf("%s %s", |
| origin().ToString().c_str(), |
| size().ToString().c_str()); |
| } |
| |
| bool Rect::ApproximatelyEqual(const Rect& rect, int tolerance) const { |
| return std::abs(x() - rect.x()) <= tolerance && |
| std::abs(y() - rect.y()) <= tolerance && |
| std::abs(right() - rect.right()) <= tolerance && |
| std::abs(bottom() - rect.bottom()) <= tolerance; |
| } |
| |
| Rect operator+(const Rect& lhs, const Vector2d& rhs) { |
| Rect result(lhs); |
| result += rhs; |
| return result; |
| } |
| |
| Rect operator-(const Rect& lhs, const Vector2d& rhs) { |
| Rect result(lhs); |
| result -= rhs; |
| return result; |
| } |
| |
| Rect IntersectRects(const Rect& a, const Rect& b) { |
| Rect result = a; |
| result.Intersect(b); |
| return result; |
| } |
| |
| Rect UnionRects(const Rect& a, const Rect& b) { |
| Rect result = a; |
| result.Union(b); |
| return result; |
| } |
| |
| Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b) { |
| Rect result = a; |
| result.UnionEvenIfEmpty(b); |
| return result; |
| } |
| |
| Rect SubtractRects(const Rect& a, const Rect& b) { |
| Rect result = a; |
| result.Subtract(b); |
| return result; |
| } |
| |
| Rect BoundingRect(const Point& p1, const Point& p2) { |
| Rect result; |
| result.SetByBounds(std::min(p1.x(), p2.x()), std::min(p1.y(), p2.y()), |
| std::max(p1.x(), p2.x()), std::max(p1.y(), p2.y())); |
| return result; |
| } |
| |
| Rect MaximumCoveredRect(const Rect& a, const Rect& b) { |
| // Check a or b by itself. |
| Rect maximum = a; |
| uint64_t maximum_area = a.size().Area64(); |
| if (b.size().Area64() > maximum_area) { |
| maximum = b; |
| maximum_area = b.size().Area64(); |
| } |
| // Check the regions that include the intersection of a and b. This can be |
| // done by taking the intersection and expanding it vertically and |
| // horizontally. These expanded intersections will both still be covered by |
| // a or b. |
| Rect intersection = a; |
| intersection.InclusiveIntersect(b); |
| if (!intersection.size().IsZero()) { |
| Rect vert_expanded_intersection = intersection; |
| vert_expanded_intersection.SetVerticalBounds( |
| std::min(a.y(), b.y()), std::max(a.bottom(), b.bottom())); |
| if (vert_expanded_intersection.size().Area64() > maximum_area) { |
| maximum = vert_expanded_intersection; |
| maximum_area = vert_expanded_intersection.size().Area64(); |
| } |
| Rect horiz_expanded_intersection = intersection; |
| horiz_expanded_intersection.SetHorizontalBounds( |
| std::min(a.x(), b.x()), std::max(a.right(), b.right())); |
| if (horiz_expanded_intersection.size().Area64() > maximum_area) { |
| maximum = horiz_expanded_intersection; |
| maximum_area = horiz_expanded_intersection.size().Area64(); |
| } |
| } |
| return maximum; |
| } |
| |
| } // namespace gfx |