blob: 91154734f94f8652b99cd63b6252210550278abe [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/rect.h"
#include <algorithm>
#include "base/check.h"
#include "base/numerics/clamped_math.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/outsets.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#elif BUILDFLAG(IS_IOS)
#include <CoreGraphics/CoreGraphics.h>
#elif BUILDFLAG(IS_MAC)
#include <ApplicationServices/ApplicationServices.h>
#endif
namespace {
void AdjustAlongAxis(int dst_origin, int dst_size, int* origin, int* size) {
*size = std::min(dst_size, *size);
if (*origin < dst_origin)
*origin = dst_origin;
else
*origin = std::min(dst_origin + dst_size, *origin + *size) - *size;
}
// This is the per-axis heuristic for picking the most useful origin and
// width/height to represent the input range.
void SaturatedClampRange(int min, int max, int* origin, int* span) {
if (max < min) {
*span = 0;
*origin = min;
return;
}
int effective_span = base::ClampSub(max, min);
int span_loss = base::ClampSub(max, min + effective_span);
// If the desired width is within the limits of ints, we can just
// use the simple computations to represent the range precisely.
if (span_loss == 0) {
*span = effective_span;
*origin = min;
return;
}
// Now we have to approximate. If one of min or max is close enough
// to zero we choose to represent that one precisely. The other side is
// probably practically "infinite", so we move it.
constexpr unsigned kMaxDimension = std::numeric_limits<int>::max() / 2;
if (base::SafeUnsignedAbs(max) < kMaxDimension) {
// Maintain origin + span == max.
*span = effective_span;
*origin = max - effective_span;
} else if (base::SafeUnsignedAbs(min) < kMaxDimension) {
// Maintain origin == min.
*span = effective_span;
*origin = min;
} else {
// Both are big, so keep the center.
*span = effective_span;
*origin = min + span_loss / 2;
}
}
} // namespace
namespace gfx {
#if BUILDFLAG(IS_WIN)
Rect::Rect(const RECT& r)
: origin_(r.left, r.top),
size_(std::abs(r.right - r.left), std::abs(r.bottom - r.top)) {}
RECT Rect::ToRECT() const {
RECT r;
r.left = x();
r.right = right();
r.top = y();
r.bottom = bottom();
return r;
}
#elif BUILDFLAG(IS_APPLE)
Rect::Rect(const CGRect& r)
: origin_(r.origin.x, r.origin.y), size_(r.size.width, r.size.height) {}
CGRect Rect::ToCGRect() const {
return CGRectMake(x(), y(), width(), height());
}
#endif
void Rect::AdjustForSaturatedRight(int right) {
int new_x, width;
SaturatedClampRange(x(), right, &new_x, &width);
set_x(new_x);
size_.set_width(width);
}
void Rect::AdjustForSaturatedBottom(int bottom) {
int new_y, height;
SaturatedClampRange(y(), bottom, &new_y, &height);
set_y(new_y);
size_.set_height(height);
}
void Rect::Inset(const Insets& insets) {
origin_ += Vector2d(insets.left(), insets.top());
set_width(base::ClampSub(width(), insets.width()));
set_height(base::ClampSub(height(), insets.height()));
}
void Rect::Offset(const Vector2d& distance) {
origin_ += distance;
// Ensure that width and height remain valid.
set_width(width());
set_height(height());
}
Insets Rect::InsetsFrom(const Rect& inner) const {
return Insets::TLBR(inner.y() - y(), inner.x() - x(),
bottom() - inner.bottom(), right() - inner.right());
}
bool Rect::operator<(const Rect& other) const {
if (origin_ == other.origin_) {
if (width() == other.width()) {
return height() < other.height();
} else {
return width() < other.width();
}
} else {
return origin_ < other.origin_;
}
}
bool Rect::Contains(int point_x, int point_y) const {
return (point_x >= x()) && (point_x < right()) && (point_y >= y()) &&
(point_y < bottom());
}
bool Rect::Contains(const Rect& rect) const {
return (rect.x() >= x() && rect.right() <= right() && rect.y() >= y() &&
rect.bottom() <= bottom());
}
bool Rect::Intersects(const Rect& rect) const {
return !(IsEmpty() || rect.IsEmpty() || rect.x() >= right() ||
rect.right() <= x() || rect.y() >= bottom() || rect.bottom() <= y());
}
void Rect::Intersect(const Rect& rect) {
if (IsEmpty() || rect.IsEmpty()) {
SetRect(0, 0, 0, 0); // Throws away empty position.
return;
}
int left = std::max(x(), rect.x());
int top = std::max(y(), rect.y());
int new_right = std::min(right(), rect.right());
int new_bottom = std::min(bottom(), rect.bottom());
if (left >= new_right || top >= new_bottom) {
SetRect(0, 0, 0, 0); // Throws away empty position.
return;
}
SetByBounds(left, top, new_right, new_bottom);
}
bool Rect::InclusiveIntersect(const Rect& rect) {
int left = std::max(x(), rect.x());
int top = std::max(y(), rect.y());
int new_right = std::min(right(), rect.right());
int new_bottom = std::min(bottom(), rect.bottom());
// Return a clean empty rectangle for non-intersecting cases.
if (left > new_right || top > new_bottom) {
SetRect(0, 0, 0, 0);
return false;
}
SetByBounds(left, top, new_right, new_bottom);
return true;
}
void Rect::Union(const Rect& rect) {
if (IsEmpty()) {
*this = rect;
return;
}
if (rect.IsEmpty())
return;
UnionEvenIfEmpty(rect);
}
void Rect::UnionEvenIfEmpty(const Rect& rect) {
SetByBounds(std::min(x(), rect.x()), std::min(y(), rect.y()),
std::max(right(), rect.right()),
std::max(bottom(), rect.bottom()));
}
void Rect::Subtract(const Rect& rect) {
if (!Intersects(rect))
return;
if (rect.Contains(*this)) {
SetRect(0, 0, 0, 0);
return;
}
int rx = x();
int ry = y();
int rr = right();
int rb = bottom();
if (rect.y() <= y() && rect.bottom() >= bottom()) {
// complete intersection in the y-direction
if (rect.x() <= x()) {
rx = rect.right();
} else if (rect.right() >= right()) {
rr = rect.x();
}
} else if (rect.x() <= x() && rect.right() >= right()) {
// complete intersection in the x-direction
if (rect.y() <= y()) {
ry = rect.bottom();
} else if (rect.bottom() >= bottom()) {
rb = rect.y();
}
}
SetByBounds(rx, ry, rr, rb);
}
void Rect::AdjustToFit(const Rect& rect) {
int new_x = x();
int new_y = y();
int new_width = width();
int new_height = height();
AdjustAlongAxis(rect.x(), rect.width(), &new_x, &new_width);
AdjustAlongAxis(rect.y(), rect.height(), &new_y, &new_height);
SetRect(new_x, new_y, new_width, new_height);
}
Point Rect::CenterPoint() const {
return Point(x() + width() / 2, y() + height() / 2);
}
void Rect::ClampToCenteredSize(const Size& size) {
int new_width = std::min(width(), size.width());
int new_height = std::min(height(), size.height());
int new_x = x() + (width() - new_width) / 2;
int new_y = y() + (height() - new_height) / 2;
SetRect(new_x, new_y, new_width, new_height);
}
void Rect::Transpose() {
SetRect(y(), x(), height(), width());
}
void Rect::SplitVertically(Rect* left_half, Rect* right_half) const {
DCHECK(left_half);
DCHECK(right_half);
left_half->SetRect(x(), y(), width() / 2, height());
right_half->SetRect(
left_half->right(), y(), width() - left_half->width(), height());
}
bool Rect::SharesEdgeWith(const Rect& rect) const {
return (y() == rect.y() && height() == rect.height() &&
(x() == rect.right() || right() == rect.x())) ||
(x() == rect.x() && width() == rect.width() &&
(y() == rect.bottom() || bottom() == rect.y()));
}
int Rect::ManhattanDistanceToPoint(const Point& point) const {
int x_distance =
std::max<int>(0, std::max(x() - point.x(), point.x() - right()));
int y_distance =
std::max<int>(0, std::max(y() - point.y(), point.y() - bottom()));
return x_distance + y_distance;
}
int Rect::ManhattanInternalDistance(const Rect& rect) const {
Rect c(*this);
c.Union(rect);
int x = std::max(0, c.width() - width() - rect.width() + 1);
int y = std::max(0, c.height() - height() - rect.height() + 1);
return x + y;
}
std::string Rect::ToString() const {
return base::StringPrintf("%s %s",
origin().ToString().c_str(),
size().ToString().c_str());
}
bool Rect::ApproximatelyEqual(const Rect& rect, int tolerance) const {
return std::abs(x() - rect.x()) <= tolerance &&
std::abs(y() - rect.y()) <= tolerance &&
std::abs(right() - rect.right()) <= tolerance &&
std::abs(bottom() - rect.bottom()) <= tolerance;
}
Rect operator+(const Rect& lhs, const Vector2d& rhs) {
Rect result(lhs);
result += rhs;
return result;
}
Rect operator-(const Rect& lhs, const Vector2d& rhs) {
Rect result(lhs);
result -= rhs;
return result;
}
Rect IntersectRects(const Rect& a, const Rect& b) {
Rect result = a;
result.Intersect(b);
return result;
}
Rect UnionRects(const Rect& a, const Rect& b) {
Rect result = a;
result.Union(b);
return result;
}
Rect UnionRectsEvenIfEmpty(const Rect& a, const Rect& b) {
Rect result = a;
result.UnionEvenIfEmpty(b);
return result;
}
Rect SubtractRects(const Rect& a, const Rect& b) {
Rect result = a;
result.Subtract(b);
return result;
}
Rect BoundingRect(const Point& p1, const Point& p2) {
Rect result;
result.SetByBounds(std::min(p1.x(), p2.x()), std::min(p1.y(), p2.y()),
std::max(p1.x(), p2.x()), std::max(p1.y(), p2.y()));
return result;
}
Rect MaximumCoveredRect(const Rect& a, const Rect& b) {
// Check a or b by itself.
Rect maximum = a;
uint64_t maximum_area = a.size().Area64();
if (b.size().Area64() > maximum_area) {
maximum = b;
maximum_area = b.size().Area64();
}
// Check the regions that include the intersection of a and b. This can be
// done by taking the intersection and expanding it vertically and
// horizontally. These expanded intersections will both still be covered by
// a or b.
Rect intersection = a;
intersection.InclusiveIntersect(b);
if (!intersection.size().IsZero()) {
Rect vert_expanded_intersection = intersection;
vert_expanded_intersection.SetVerticalBounds(
std::min(a.y(), b.y()), std::max(a.bottom(), b.bottom()));
if (vert_expanded_intersection.size().Area64() > maximum_area) {
maximum = vert_expanded_intersection;
maximum_area = vert_expanded_intersection.size().Area64();
}
Rect horiz_expanded_intersection = intersection;
horiz_expanded_intersection.SetHorizontalBounds(
std::min(a.x(), b.x()), std::max(a.right(), b.right()));
if (horiz_expanded_intersection.size().Area64() > maximum_area) {
maximum = horiz_expanded_intersection;
maximum_area = horiz_expanded_intersection.size().Area64();
}
}
return maximum;
}
} // namespace gfx