blob: aa838f57505cb2ffd9a12655f58ff756ba095b85 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/rect_f.h"
#include <algorithm>
#include <limits>
#include "base/check.h"
#include "base/check_op.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "ui/gfx/geometry/insets_f.h"
#include "ui/gfx/geometry/outsets_f.h"
#if BUILDFLAG(IS_IOS)
#include <CoreGraphics/CoreGraphics.h>
#elif BUILDFLAG(IS_MAC)
#include <ApplicationServices/ApplicationServices.h>
#endif
namespace gfx {
static void AdjustAlongAxis(float dst_origin,
float dst_size,
float* origin,
float* size) {
*size = std::min(dst_size, *size);
if (*origin < dst_origin)
*origin = dst_origin;
else
*origin = std::min(dst_origin + dst_size, *origin + *size) - *size;
}
#if BUILDFLAG(IS_APPLE)
RectF::RectF(const CGRect& r)
: origin_(r.origin.x, r.origin.y), size_(r.size.width, r.size.height) {
}
CGRect RectF::ToCGRect() const {
return CGRectMake(x(), y(), width(), height());
}
#endif
void RectF::Inset(const InsetsF& insets) {
origin_ += Vector2dF(insets.left(), insets.top());
set_width(width() - insets.width());
set_height(height() - insets.height());
}
void RectF::Offset(float horizontal, float vertical) {
origin_ += Vector2dF(horizontal, vertical);
}
void RectF::operator+=(const Vector2dF& offset) {
origin_ += offset;
}
void RectF::operator-=(const Vector2dF& offset) {
origin_ -= offset;
}
InsetsF RectF::InsetsFrom(const RectF& inner) const {
return InsetsF::TLBR(inner.y() - y(), inner.x() - x(),
bottom() - inner.bottom(), right() - inner.right());
}
bool RectF::operator<(const RectF& other) const {
if (origin_ != other.origin_)
return origin_ < other.origin_;
if (width() == other.width())
return height() < other.height();
return width() < other.width();
}
bool RectF::Contains(float point_x, float point_y) const {
return point_x >= x() && point_x < right() && point_y >= y() &&
point_y < bottom();
}
bool RectF::InclusiveContains(float point_x, float point_y) const {
return point_x >= x() && point_x <= right() && point_y >= y() &&
point_y <= bottom();
}
bool RectF::Contains(const RectF& rect) const {
return rect.x() >= x() && rect.right() <= right() && rect.y() >= y() &&
rect.bottom() <= bottom();
}
bool RectF::Intersects(const RectF& rect) const {
return !IsEmpty() && !rect.IsEmpty() && rect.x() < right() &&
rect.right() > x() && rect.y() < bottom() && rect.bottom() > y();
}
void RectF::Intersect(const RectF& rect) {
if (IsEmpty() || rect.IsEmpty()) {
SetRect(0, 0, 0, 0);
return;
}
float rx = std::max(x(), rect.x());
float ry = std::max(y(), rect.y());
float rr = std::min(right(), rect.right());
float rb = std::min(bottom(), rect.bottom());
if (rx >= rr || ry >= rb) {
SetRect(0, 0, 0, 0);
return;
}
SetRect(rx, ry, rr - rx, rb - ry);
}
bool RectF::InclusiveIntersect(const RectF& rect) {
float rx = std::max(x(), rect.x());
float ry = std::max(y(), rect.y());
float rr = std::min(right(), rect.right());
float rb = std::min(bottom(), rect.bottom());
// Return a clean empty rectangle for non-intersecting cases.
if (rx > rr || ry > rb) {
SetRect(0, 0, 0, 0);
return false;
}
SetRect(rx, ry, rr - rx, rb - ry);
return true;
}
void RectF::Union(const RectF& rect) {
if (IsEmpty()) {
*this = rect;
return;
}
if (rect.IsEmpty())
return;
UnionEvenIfEmpty(rect);
}
void RectF::UnionEvenIfEmpty(const RectF& rect) {
float rx = std::min(x(), rect.x());
float ry = std::min(y(), rect.y());
float rr = std::max(right(), rect.right());
float rb = std::max(bottom(), rect.bottom());
SetRect(rx, ry, rr - rx, rb - ry);
// Due to floating errors and SizeF::clamp(), the new rect may not fully
// contain the original rects at the right/bottom side. Expand the rect in
// the case.
constexpr auto kFloatMax = std::numeric_limits<float>::max();
if (UNLIKELY(right() < rr && width() < kFloatMax)) {
size_.SetToNextWidth();
DCHECK_GE(right(), rr);
}
if (UNLIKELY(bottom() < rb && height() < kFloatMax)) {
size_.SetToNextHeight();
DCHECK_GE(bottom(), rb);
}
}
void RectF::Subtract(const RectF& rect) {
if (!Intersects(rect))
return;
if (rect.Contains(*this)) {
SetRect(0, 0, 0, 0);
return;
}
float rx = x();
float ry = y();
float rr = right();
float rb = bottom();
if (rect.y() <= y() && rect.bottom() >= bottom()) {
// complete intersection in the y-direction
if (rect.x() <= x()) {
rx = rect.right();
} else if (rect.right() >= right()) {
rr = rect.x();
}
} else if (rect.x() <= x() && rect.right() >= right()) {
// complete intersection in the x-direction
if (rect.y() <= y()) {
ry = rect.bottom();
} else if (rect.bottom() >= bottom()) {
rb = rect.y();
}
}
SetRect(rx, ry, rr - rx, rb - ry);
}
void RectF::AdjustToFit(const RectF& rect) {
float new_x = x();
float new_y = y();
float new_width = width();
float new_height = height();
AdjustAlongAxis(rect.x(), rect.width(), &new_x, &new_width);
AdjustAlongAxis(rect.y(), rect.height(), &new_y, &new_height);
SetRect(new_x, new_y, new_width, new_height);
}
PointF RectF::CenterPoint() const {
return PointF(x() + width() / 2, y() + height() / 2);
}
void RectF::ClampToCenteredSize(const SizeF& size) {
float new_width = std::min(width(), size.width());
float new_height = std::min(height(), size.height());
float new_x = x() + (width() - new_width) / 2;
float new_y = y() + (height() - new_height) / 2;
SetRect(new_x, new_y, new_width, new_height);
}
void RectF::Transpose() {
SetRect(y(), x(), height(), width());
}
void RectF::SplitVertically(RectF* left_half, RectF* right_half) const {
DCHECK(left_half);
DCHECK(right_half);
left_half->SetRect(x(), y(), width() / 2, height());
right_half->SetRect(
left_half->right(), y(), width() - left_half->width(), height());
}
bool RectF::SharesEdgeWith(const RectF& rect) const {
return (y() == rect.y() && height() == rect.height() &&
(x() == rect.right() || right() == rect.x())) ||
(x() == rect.x() && width() == rect.width() &&
(y() == rect.bottom() || bottom() == rect.y()));
}
float RectF::ManhattanDistanceToPoint(const PointF& point) const {
float x_distance =
std::max<float>(0, std::max(x() - point.x(), point.x() - right()));
float y_distance =
std::max<float>(0, std::max(y() - point.y(), point.y() - bottom()));
return x_distance + y_distance;
}
float RectF::ManhattanInternalDistance(const RectF& rect) const {
RectF c(*this);
c.Union(rect);
static constexpr float kEpsilon = std::numeric_limits<float>::epsilon();
float x = std::max(0.f, c.width() - width() - rect.width() + kEpsilon);
float y = std::max(0.f, c.height() - height() - rect.height() + kEpsilon);
return x + y;
}
PointF RectF::ClosestPoint(const PointF& point) const {
return PointF(std::min(std::max(point.x(), x()), right()),
std::min(std::max(point.y(), y()), bottom()));
}
bool RectF::IsExpressibleAsRect() const {
return base::IsValueInRangeForNumericType<int>(x()) &&
base::IsValueInRangeForNumericType<int>(y()) &&
base::IsValueInRangeForNumericType<int>(width()) &&
base::IsValueInRangeForNumericType<int>(height()) &&
base::IsValueInRangeForNumericType<int>(right()) &&
base::IsValueInRangeForNumericType<int>(bottom());
}
RectF IntersectRects(const RectF& a, const RectF& b) {
RectF result = a;
result.Intersect(b);
return result;
}
RectF UnionRects(const RectF& a, const RectF& b) {
RectF result = a;
result.Union(b);
return result;
}
RectF UnionRectsEvenIfEmpty(const RectF& a, const RectF& b) {
RectF result = a;
result.UnionEvenIfEmpty(b);
return result;
}
RectF SubtractRects(const RectF& a, const RectF& b) {
RectF result = a;
result.Subtract(b);
return result;
}
RectF BoundingRect(const PointF& p1, const PointF& p2) {
float rx = std::min(p1.x(), p2.x());
float ry = std::min(p1.y(), p2.y());
float rr = std::max(p1.x(), p2.x());
float rb = std::max(p1.y(), p2.y());
return RectF(rx, ry, rr - rx, rb - ry);
}
RectF MaximumCoveredRect(const RectF& a, const RectF& b) {
// Check a or b by itself.
RectF maximum = a;
float maximum_area = a.size().GetArea();
if (b.size().GetArea() > maximum_area) {
maximum = b;
maximum_area = b.size().GetArea();
}
// Check the regions that include the intersection of a and b. This can be
// done by taking the intersection and expanding it vertically and
// horizontally. These expanded intersections will both still be covered by
// a or b.
RectF intersection = a;
intersection.InclusiveIntersect(b);
if (!intersection.size().IsZero()) {
RectF vert_expanded_intersection = intersection;
vert_expanded_intersection.set_y(std::min(a.y(), b.y()));
vert_expanded_intersection.set_height(std::max(a.bottom(), b.bottom()) -
vert_expanded_intersection.y());
if (vert_expanded_intersection.size().GetArea() > maximum_area) {
maximum = vert_expanded_intersection;
maximum_area = vert_expanded_intersection.size().GetArea();
}
RectF horiz_expanded_intersection(intersection);
horiz_expanded_intersection.set_x(std::min(a.x(), b.x()));
horiz_expanded_intersection.set_width(std::max(a.right(), b.right()) -
horiz_expanded_intersection.x());
if (horiz_expanded_intersection.size().GetArea() > maximum_area) {
maximum = horiz_expanded_intersection;
maximum_area = horiz_expanded_intersection.size().GetArea();
}
}
return maximum;
}
RectF MapRect(const RectF& r, const RectF& src_rect, const RectF& dest_rect) {
if (src_rect.IsEmpty())
return RectF();
float width_scale = dest_rect.width() / src_rect.width();
float height_scale = dest_rect.height() / src_rect.height();
return RectF(dest_rect.x() + (r.x() - src_rect.x()) * width_scale,
dest_rect.y() + (r.y() - src_rect.y()) * height_scale,
r.width() * width_scale, r.height() * height_scale);
}
std::string RectF::ToString() const {
return base::StringPrintf("%s %s", origin().ToString().c_str(),
size().ToString().c_str());
}
bool RectF::ApproximatelyEqual(const RectF& rect,
float tolerance_x,
float tolerance_y) const {
return std::abs(x() - rect.x()) <= tolerance_x &&
std::abs(y() - rect.y()) <= tolerance_y &&
std::abs(right() - rect.right()) <= tolerance_x &&
std::abs(bottom() - rect.bottom()) <= tolerance_y;
}
} // namespace gfx