blob: 832b5d123d85c7729642a97354cf5fcb75a39f31 [file] [log] [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/geometry/rect.h"
#include <stddef.h>
#include <limits>
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/insets.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/test/geometry_util.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#endif
namespace gfx {
constexpr int kMaxInt = std::numeric_limits<int>::max();
constexpr int kMinInt = std::numeric_limits<int>::min();
TEST(RectTest, Contains) {
static const struct ContainsCase {
int rect_x;
int rect_y;
int rect_width;
int rect_height;
int point_x;
int point_y;
bool contained;
} contains_cases[] = {
{0, 0, 10, 10, 0, 0, true},
{0, 0, 10, 10, 5, 5, true},
{0, 0, 10, 10, 9, 9, true},
{0, 0, 10, 10, 5, 10, false},
{0, 0, 10, 10, 10, 5, false},
{0, 0, 10, 10, -1, -1, false},
{0, 0, 10, 10, 50, 50, false},
#if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
{0, 0, -10, -10, 0, 0, false},
#endif
};
for (size_t i = 0; i < std::size(contains_cases); ++i) {
const ContainsCase& value = contains_cases[i];
Rect rect(value.rect_x, value.rect_y, value.rect_width, value.rect_height);
EXPECT_EQ(value.contained, rect.Contains(value.point_x, value.point_y));
}
}
TEST(RectTest, Intersects) {
static const struct {
int x1; // rect 1
int y1;
int w1;
int h1;
int x2; // rect 2
int y2;
int w2;
int h2;
bool intersects;
} tests[] = {
{ 0, 0, 0, 0, 0, 0, 0, 0, false },
{ 0, 0, 0, 0, -10, -10, 20, 20, false },
{ -10, 0, 0, 20, 0, -10, 20, 0, false },
{ 0, 0, 10, 10, 0, 0, 10, 10, true },
{ 0, 0, 10, 10, 10, 10, 10, 10, false },
{ 10, 10, 10, 10, 0, 0, 10, 10, false },
{ 10, 10, 10, 10, 5, 5, 10, 10, true },
{ 10, 10, 10, 10, 15, 15, 10, 10, true },
{ 10, 10, 10, 10, 20, 15, 10, 10, false },
{ 10, 10, 10, 10, 21, 15, 10, 10, false }
};
for (size_t i = 0; i < std::size(tests); ++i) {
Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
EXPECT_EQ(tests[i].intersects, r1.Intersects(r2));
EXPECT_EQ(tests[i].intersects, r2.Intersects(r1));
}
}
TEST(RectTest, Intersect) {
static const struct {
int x1; // rect 1
int y1;
int w1;
int h1;
int x2; // rect 2
int y2;
int w2;
int h2;
int x3; // rect 3: the union of rects 1 and 2
int y3;
int w3;
int h3;
} tests[] = {
{ 0, 0, 0, 0, // zeros
0, 0, 0, 0,
0, 0, 0, 0 },
{ 0, 0, 4, 4, // equal
0, 0, 4, 4,
0, 0, 4, 4 },
{ 0, 0, 4, 4, // neighboring
4, 4, 4, 4,
0, 0, 0, 0 },
{ 0, 0, 4, 4, // overlapping corners
2, 2, 4, 4,
2, 2, 2, 2 },
{ 0, 0, 4, 4, // T junction
3, 1, 4, 2,
3, 1, 1, 2 },
{ 3, 0, 2, 2, // gap
0, 0, 2, 2,
0, 0, 0, 0 }
};
for (size_t i = 0; i < std::size(tests); ++i) {
Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
EXPECT_EQ(r3, IntersectRects(r1, r2));
}
}
TEST(RectTest, InclusiveIntersect) {
Rect rect(11, 12, 0, 0);
EXPECT_TRUE(rect.InclusiveIntersect(Rect(11, 12, 13, 14)));
EXPECT_EQ(Rect(11, 12, 0, 0), rect);
rect = Rect(11, 12, 13, 14);
EXPECT_TRUE(rect.InclusiveIntersect(Rect(24, 8, 0, 7)));
EXPECT_EQ(Rect(24, 12, 0, 3), rect);
rect = Rect(11, 12, 13, 14);
EXPECT_TRUE(rect.InclusiveIntersect(Rect(9, 15, 4, 0)));
EXPECT_EQ(Rect(11, 15, 2, 0), rect);
rect = Rect(11, 12, 0, 14);
EXPECT_FALSE(rect.InclusiveIntersect(Rect(12, 13, 15, 16)));
EXPECT_EQ(Rect(), rect);
}
TEST(RectTest, Union) {
EXPECT_EQ(Rect(), UnionRects(Rect(), Rect()));
EXPECT_EQ(Rect(1, 2, 3, 4), UnionRects(Rect(1, 2, 3, 4), Rect(1, 2, 3, 4)));
EXPECT_EQ(Rect(0, 0, 8, 10), UnionRects(Rect(0, 0, 3, 4), Rect(3, 4, 5, 6)));
EXPECT_EQ(Rect(0, 0, 8, 10), UnionRects(Rect(3, 4, 5, 6), Rect(0, 0, 3, 4)));
EXPECT_EQ(Rect(0, 1, 3, 8), UnionRects(Rect(0, 1, 3, 4), Rect(0, 5, 3, 4)));
EXPECT_EQ(Rect(0, 1, 10, 11), UnionRects(Rect(0, 1, 3, 4), Rect(4, 5, 6, 7)));
EXPECT_EQ(Rect(0, 1, 10, 11), UnionRects(Rect(4, 5, 6, 7), Rect(0, 1, 3, 4)));
EXPECT_EQ(Rect(2, 3, 4, 5), UnionRects(Rect(8, 9, 0, 2), Rect(2, 3, 4, 5)));
EXPECT_EQ(Rect(2, 3, 4, 5), UnionRects(Rect(2, 3, 4, 5), Rect(8, 9, 2, 0)));
}
TEST(RectTest, UnionEvenIfEmpty) {
EXPECT_EQ(Rect(), UnionRectsEvenIfEmpty(Rect(), Rect()));
EXPECT_EQ(Rect(0, 0, 3, 4), UnionRectsEvenIfEmpty(Rect(), Rect(3, 4, 0, 0)));
EXPECT_EQ(Rect(0, 0, 8, 10),
UnionRectsEvenIfEmpty(Rect(0, 0, 3, 4), Rect(3, 4, 5, 6)));
EXPECT_EQ(Rect(0, 0, 8, 10),
UnionRectsEvenIfEmpty(Rect(3, 4, 5, 6), Rect(0, 0, 3, 4)));
EXPECT_EQ(Rect(2, 3, 6, 8),
UnionRectsEvenIfEmpty(Rect(8, 9, 0, 2), Rect(2, 3, 4, 5)));
EXPECT_EQ(Rect(2, 3, 8, 6),
UnionRectsEvenIfEmpty(Rect(2, 3, 4, 5), Rect(8, 9, 2, 0)));
}
TEST(RectTest, Equals) {
ASSERT_TRUE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 0));
ASSERT_TRUE(Rect(1, 2, 3, 4) == Rect(1, 2, 3, 4));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 0, 1));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 0, 1, 0));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(0, 1, 0, 0));
ASSERT_FALSE(Rect(0, 0, 0, 0) == Rect(1, 0, 0, 0));
}
TEST(RectTest, AdjustToFit) {
static const struct Test {
int x1; // source
int y1;
int w1;
int h1;
int x2; // target
int y2;
int w2;
int h2;
int x3; // rect 3: results of invoking AdjustToFit
int y3;
int w3;
int h3;
} tests[] = {
{ 0, 0, 2, 2,
0, 0, 2, 2,
0, 0, 2, 2 },
{ 2, 2, 3, 3,
0, 0, 4, 4,
1, 1, 3, 3 },
{ -1, -1, 5, 5,
0, 0, 4, 4,
0, 0, 4, 4 },
{ 2, 2, 4, 4,
0, 0, 3, 3,
0, 0, 3, 3 },
{ 2, 2, 1, 1,
0, 0, 3, 3,
2, 2, 1, 1 }
};
for (size_t i = 0; i < std::size(tests); ++i) {
Rect r1(tests[i].x1, tests[i].y1, tests[i].w1, tests[i].h1);
Rect r2(tests[i].x2, tests[i].y2, tests[i].w2, tests[i].h2);
Rect r3(tests[i].x3, tests[i].y3, tests[i].w3, tests[i].h3);
Rect u = r1;
u.AdjustToFit(r2);
EXPECT_EQ(r3, u);
}
}
TEST(RectTest, Subtract) {
Rect result;
// Matching
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(10, 10, 20, 20));
EXPECT_EQ(Rect(0, 0, 0, 0), result);
// Contains
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 5, 30, 30));
EXPECT_EQ(Rect(0, 0, 0, 0), result);
// No intersection
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(30, 30, 30, 30));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
// Not a complete intersection in either direction
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(15, 15, 20, 20));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
// Complete intersection in the x-direction, top edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(10, 15, 20, 20));
EXPECT_EQ(Rect(10, 10, 20, 5), result);
// Complete intersection in the x-direction, top edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 15, 30, 20));
EXPECT_EQ(Rect(10, 10, 20, 5), result);
// Complete intersection in the x-direction, bottom edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 5, 30, 20));
EXPECT_EQ(Rect(10, 25, 20, 5), result);
// Complete intersection in the x-direction, none of the edges is fully
// covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 15, 30, 1));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
// Complete intersection in the y-direction, left edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(10, 10, 10, 30));
EXPECT_EQ(Rect(20, 10, 10, 20), result);
// Complete intersection in the y-direction, left edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(5, 5, 20, 30));
EXPECT_EQ(Rect(25, 10, 5, 20), result);
// Complete intersection in the y-direction, right edge is fully covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(20, 5, 20, 30));
EXPECT_EQ(Rect(10, 10, 10, 20), result);
// Complete intersection in the y-direction, none of the edges is fully
// covered.
result = Rect(10, 10, 20, 20);
result.Subtract(Rect(15, 5, 1, 30));
EXPECT_EQ(Rect(10, 10, 20, 20), result);
}
TEST(RectTest, IsEmpty) {
EXPECT_TRUE(Rect(0, 0, 0, 0).IsEmpty());
EXPECT_TRUE(Rect(0, 0, 0, 0).size().IsEmpty());
EXPECT_TRUE(Rect(0, 0, 10, 0).IsEmpty());
EXPECT_TRUE(Rect(0, 0, 10, 0).size().IsEmpty());
EXPECT_TRUE(Rect(0, 0, 0, 10).IsEmpty());
EXPECT_TRUE(Rect(0, 0, 0, 10).size().IsEmpty());
EXPECT_FALSE(Rect(0, 0, 10, 10).IsEmpty());
EXPECT_FALSE(Rect(0, 0, 10, 10).size().IsEmpty());
}
TEST(RectTest, SplitVertically) {
Rect left_half, right_half;
// Splitting when origin is (0, 0).
Rect(0, 0, 20, 20).SplitVertically(&left_half, &right_half);
EXPECT_TRUE(left_half == Rect(0, 0, 10, 20));
EXPECT_TRUE(right_half == Rect(10, 0, 10, 20));
// Splitting when origin is arbitrary.
Rect(10, 10, 20, 10).SplitVertically(&left_half, &right_half);
EXPECT_TRUE(left_half == Rect(10, 10, 10, 10));
EXPECT_TRUE(right_half == Rect(20, 10, 10, 10));
// Splitting a rectangle of zero width.
Rect(10, 10, 0, 10).SplitVertically(&left_half, &right_half);
EXPECT_TRUE(left_half == Rect(10, 10, 0, 10));
EXPECT_TRUE(right_half == Rect(10, 10, 0, 10));
// Splitting a rectangle of odd width.
Rect(10, 10, 5, 10).SplitVertically(&left_half, &right_half);
EXPECT_TRUE(left_half == Rect(10, 10, 2, 10));
EXPECT_TRUE(right_half == Rect(12, 10, 3, 10));
}
TEST(RectTest, CenterPoint) {
Point center;
// When origin is (0, 0).
center = Rect(0, 0, 20, 20).CenterPoint();
EXPECT_TRUE(center == Point(10, 10));
// When origin is even.
center = Rect(10, 10, 20, 20).CenterPoint();
EXPECT_TRUE(center == Point(20, 20));
// When origin is odd.
center = Rect(11, 11, 20, 20).CenterPoint();
EXPECT_TRUE(center == Point(21, 21));
// When 0 width or height.
center = Rect(10, 10, 0, 20).CenterPoint();
EXPECT_TRUE(center == Point(10, 20));
center = Rect(10, 10, 20, 0).CenterPoint();
EXPECT_TRUE(center == Point(20, 10));
// When an odd size.
center = Rect(10, 10, 21, 21).CenterPoint();
EXPECT_TRUE(center == Point(20, 20));
// When an odd size and position.
center = Rect(11, 11, 21, 21).CenterPoint();
EXPECT_TRUE(center == Point(21, 21));
}
TEST(RectTest, SharesEdgeWith) {
Rect r(2, 3, 4, 5);
// Must be non-overlapping
EXPECT_FALSE(r.SharesEdgeWith(r));
Rect just_above(2, 1, 4, 2);
Rect just_below(2, 8, 4, 2);
Rect just_left(0, 3, 2, 5);
Rect just_right(6, 3, 2, 5);
EXPECT_TRUE(r.SharesEdgeWith(just_above));
EXPECT_TRUE(r.SharesEdgeWith(just_below));
EXPECT_TRUE(r.SharesEdgeWith(just_left));
EXPECT_TRUE(r.SharesEdgeWith(just_right));
// Wrong placement
Rect same_height_no_edge(0, 0, 1, 5);
Rect same_width_no_edge(0, 0, 4, 1);
EXPECT_FALSE(r.SharesEdgeWith(same_height_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(same_width_no_edge));
Rect just_above_no_edge(2, 1, 5, 2); // too wide
Rect just_below_no_edge(2, 8, 3, 2); // too narrow
Rect just_left_no_edge(0, 3, 2, 6); // too tall
Rect just_right_no_edge(6, 3, 2, 4); // too short
EXPECT_FALSE(r.SharesEdgeWith(just_above_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(just_below_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(just_left_no_edge));
EXPECT_FALSE(r.SharesEdgeWith(just_right_no_edge));
}
static void TestScaleRectOverflowClamp(Rect (*function)(const Rect&,
float,
float)) {
// The whole rect is scaled out of kMinInt.
Rect xy_underflow1(-100000, -123456, 10, 20);
EXPECT_EQ(Rect(kMinInt, kMinInt, 0, 0),
function(xy_underflow1, 100000, 100000));
// This rect's right/bottom is 0. The origin overflows, and is clamped to
// -kMaxInt (instead of kMinInt) to keep width/height not overflowing.
Rect xy_underflow2(-100000, -123456, 100000, 123456);
EXPECT_EQ(Rect(-kMaxInt, -kMaxInt, kMaxInt, kMaxInt),
function(xy_underflow2, 100000, 100000));
// A location overflow means that width/right and bottom/top also
// overflow so need to be clamped.
Rect xy_overflow(100000, 123456, 10, 20);
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
function(xy_overflow, 100000, 100000));
// In practice all rects are clamped to 0 width / 0 height so
// negative sizes don't matter, but try this for the sake of testing.
Rect size_underflow(-1, -2, 100000, 100000);
EXPECT_EQ(Rect(100000, 200000, 0, 0),
function(size_underflow, -100000, -100000));
Rect size_overflow(-1, -2, 123456, 234567);
EXPECT_EQ(Rect(-100000, -200000, kMaxInt, kMaxInt),
function(size_overflow, 100000, 100000));
// Verify width/right gets clamped properly too if x/y positive.
Rect size_overflow2(1, 2, 123456, 234567);
EXPECT_EQ(Rect(100000, 200000, kMaxInt - 100000, kMaxInt - 200000),
function(size_overflow2, 100000, 100000));
constexpr float kMaxIntAsFloat = static_cast<float>(kMaxInt);
Rect max_origin_rect(kMaxInt, kMaxInt, kMaxInt, kMaxInt);
// width/height of max_origin_rect has already been clamped to 0.
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0), max_origin_rect);
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
function(max_origin_rect, kMaxIntAsFloat, kMaxIntAsFloat));
Rect max_size_rect1(0, 0, kMaxInt, kMaxInt);
// Max sized rect can't be scaled up any further in any dimension.
EXPECT_EQ(max_size_rect1, function(max_size_rect1, 2, 3.5));
EXPECT_EQ(max_size_rect1,
function(max_size_rect1, kMaxIntAsFloat, kMaxIntAsFloat));
// Max sized ret scaled by negative scale is an empty rect.
EXPECT_EQ(Rect(), function(max_size_rect1, kMinInt, kMinInt));
Rect max_size_rect2(-kMaxInt, -kMaxInt, kMaxInt, kMaxInt);
EXPECT_EQ(max_size_rect2, function(max_size_rect2, 2, 3.5));
EXPECT_EQ(max_size_rect2,
function(max_size_rect2, kMaxIntAsFloat, kMaxIntAsFloat));
EXPECT_EQ(Rect(kMaxInt, kMaxInt, 0, 0),
function(max_size_rect2, kMinInt, kMinInt));
}
TEST(RectTest, ScaleToEnclosedRect) {
EXPECT_EQ(Rect(), ScaleToEnclosedRect(Rect(), 5.f));
EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToEnclosedRect(Rect(1, 1, 1, 1), 5.f));
EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToEnclosedRect(Rect(-1, -1, 0, 0), 5.f));
EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToEnclosedRect(Rect(1, -1, 0, 1), 5.f));
EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToEnclosedRect(Rect(-1, 1, 1, 0), 5.f));
EXPECT_EQ(Rect(2, 3, 4, 6), ScaleToEnclosedRect(Rect(1, 2, 3, 4), 1.5f));
EXPECT_EQ(Rect(-1, -3, 0, 0), ScaleToEnclosedRect(Rect(-1, -2, 0, 0), 1.5f));
EXPECT_EQ(Rect(1, 2, 2, 1), ScaleToEnclosedRect(Rect(2, 4, 9, 8), 0.3f));
TestScaleRectOverflowClamp(ScaleToEnclosedRect);
}
TEST(RectTest, ScaleToEnclosingRect) {
EXPECT_EQ(Rect(), ScaleToEnclosingRect(Rect(), 5.f));
EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToEnclosingRect(Rect(1, 1, 1, 1), 5.f));
EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToEnclosingRect(Rect(-1, -1, 0, 0), 5.f));
EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToEnclosingRect(Rect(1, -1, 0, 1), 5.f));
EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToEnclosingRect(Rect(-1, 1, 1, 0), 5.f));
EXPECT_EQ(Rect(1, 3, 5, 6), ScaleToEnclosingRect(Rect(1, 2, 3, 4), 1.5f));
EXPECT_EQ(Rect(-2, -3, 0, 0), ScaleToEnclosingRect(Rect(-1, -2, 0, 0), 1.5f));
EXPECT_EQ(Rect(0, 1, 4, 3), ScaleToEnclosingRect(Rect(2, 4, 9, 8), 0.3f));
TestScaleRectOverflowClamp(ScaleToEnclosingRect);
}
TEST(RectTest, ScaleToRoundedRect) {
EXPECT_EQ(Rect(), ScaleToRoundedRect(Rect(), 5.f));
EXPECT_EQ(Rect(5, 5, 5, 5), ScaleToRoundedRect(Rect(1, 1, 1, 1), 5.f));
EXPECT_EQ(Rect(-5, -5, 0, 0), ScaleToRoundedRect(Rect(-1, -1, 0, 0), 5.f));
EXPECT_EQ(Rect(5, -5, 0, 5), ScaleToRoundedRect(Rect(1, -1, 0, 1), 5.f));
EXPECT_EQ(Rect(-5, 5, 5, 0), ScaleToRoundedRect(Rect(-1, 1, 1, 0), 5.f));
EXPECT_EQ(Rect(2, 3, 4, 6), ScaleToRoundedRect(Rect(1, 2, 3, 4), 1.5f));
EXPECT_EQ(Rect(-2, -3, 0, 0), ScaleToRoundedRect(Rect(-1, -2, 0, 0), 1.5f));
EXPECT_EQ(Rect(1, 1, 2, 3), ScaleToRoundedRect(Rect(2, 4, 9, 8), 0.3f));
TestScaleRectOverflowClamp(ScaleToRoundedRect);
}
#if BUILDFLAG(IS_WIN)
TEST(RectTest, ConstructAndAssign) {
const RECT rect_1 = { 0, 0, 10, 10 };
const RECT rect_2 = { 0, 0, -10, -10 };
Rect test1(rect_1);
Rect test2(rect_2);
}
#endif
TEST(RectTest, BoundingRect) {
struct {
Point a;
Point b;
Rect expected;
} int_tests[] = {
// If point B dominates A, then A should be the origin.
{ Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) },
{ Point(4, 6), Point(8, 6), Rect(4, 6, 4, 0) },
{ Point(4, 6), Point(4, 9), Rect(4, 6, 0, 3) },
{ Point(4, 6), Point(8, 9), Rect(4, 6, 4, 3) },
// If point A dominates B, then B should be the origin.
{ Point(4, 6), Point(4, 6), Rect(4, 6, 0, 0) },
{ Point(8, 6), Point(4, 6), Rect(4, 6, 4, 0) },
{ Point(4, 9), Point(4, 6), Rect(4, 6, 0, 3) },
{ Point(8, 9), Point(4, 6), Rect(4, 6, 4, 3) },
// If neither point dominates, then the origin is a combination of the two.
{ Point(4, 6), Point(6, 4), Rect(4, 4, 2, 2) },
{ Point(-4, -6), Point(-6, -4), Rect(-6, -6, 2, 2) },
{ Point(-4, 6), Point(6, -4), Rect(-4, -4, 10, 10) },
};
for (size_t i = 0; i < std::size(int_tests); ++i) {
Rect actual = BoundingRect(int_tests[i].a, int_tests[i].b);
EXPECT_EQ(int_tests[i].expected, actual);
}
}
TEST(RectTest, Offset) {
Rect i(1, 2, 3, 4);
EXPECT_EQ(Rect(2, 1, 3, 4), (i + Vector2d(1, -1)));
EXPECT_EQ(Rect(2, 1, 3, 4), (Vector2d(1, -1) + i));
i += Vector2d(1, -1);
EXPECT_EQ(Rect(2, 1, 3, 4), i);
EXPECT_EQ(Rect(1, 2, 3, 4), (i - Vector2d(1, -1)));
i -= Vector2d(1, -1);
EXPECT_EQ(Rect(1, 2, 3, 4), i);
i.Offset(2, -2);
EXPECT_EQ(Rect(3, 0, 3, 4), i);
EXPECT_EQ(Rect(kMaxInt - 2, kMaxInt - 2, 2, 2),
(Rect(0, 0, kMaxInt - 2, kMaxInt - 2) +
Vector2d(kMaxInt - 2, kMaxInt - 2)));
EXPECT_EQ(Rect(kMaxInt - 2, kMaxInt - 2, 2, 2),
(Rect(0, 0, kMaxInt - 2, kMaxInt - 2) -
Vector2d(2 - kMaxInt, 2 - kMaxInt)));
}
TEST(RectTest, Corners) {
Rect i(1, 2, 3, 4);
EXPECT_EQ(Point(1, 2), i.origin());
EXPECT_EQ(Point(4, 2), i.top_right());
EXPECT_EQ(Point(1, 6), i.bottom_left());
EXPECT_EQ(Point(4, 6), i.bottom_right());
}
TEST(RectTest, Centers) {
Rect i(10, 20, 30, 40);
EXPECT_EQ(Point(10, 40), i.left_center());
EXPECT_EQ(Point(25, 20), i.top_center());
EXPECT_EQ(Point(40, 40), i.right_center());
EXPECT_EQ(Point(25, 60), i.bottom_center());
}
TEST(RectTest, Transpose) {
Rect i(10, 20, 30, 40);
i.Transpose();
EXPECT_EQ(Rect(20, 10, 40, 30), i);
}
TEST(RectTest, ManhattanDistanceToPoint) {
Rect i(1, 2, 3, 4);
EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(1, 2)));
EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(4, 6)));
EXPECT_EQ(0, i.ManhattanDistanceToPoint(Point(2, 4)));
EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(0, 0)));
EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(2, 0)));
EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 0)));
EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(5, 4)));
EXPECT_EQ(3, i.ManhattanDistanceToPoint(Point(5, 8)));
EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(3, 8)));
EXPECT_EQ(2, i.ManhattanDistanceToPoint(Point(0, 7)));
EXPECT_EQ(1, i.ManhattanDistanceToPoint(Point(0, 3)));
}
TEST(RectTest, ManhattanInternalDistance) {
Rect i(0, 0, 400, 400);
EXPECT_EQ(0, i.ManhattanInternalDistance(Rect(-1, 0, 2, 1)));
EXPECT_EQ(1, i.ManhattanInternalDistance(Rect(400, 0, 1, 400)));
EXPECT_EQ(2, i.ManhattanInternalDistance(Rect(-100, -100, 100, 100)));
EXPECT_EQ(2, i.ManhattanInternalDistance(Rect(-101, 100, 100, 100)));
EXPECT_EQ(4, i.ManhattanInternalDistance(Rect(-101, -101, 100, 100)));
EXPECT_EQ(435, i.ManhattanInternalDistance(Rect(630, 603, 100, 100)));
}
TEST(RectTest, IntegerOverflow) {
int limit = std::numeric_limits<int>::max();
int min_limit = std::numeric_limits<int>::min();
int expected_thickness = 10;
int large_number = limit - expected_thickness;
Rect height_overflow(0, large_number, 100, 100);
EXPECT_EQ(large_number, height_overflow.y());
EXPECT_EQ(expected_thickness, height_overflow.height());
Rect width_overflow(large_number, 0, 100, 100);
EXPECT_EQ(large_number, width_overflow.x());
EXPECT_EQ(expected_thickness, width_overflow.width());
Rect size_height_overflow(Point(0, large_number), Size(100, 100));
EXPECT_EQ(large_number, size_height_overflow.y());
EXPECT_EQ(expected_thickness, size_height_overflow.height());
Rect size_width_overflow(Point(large_number, 0), Size(100, 100));
EXPECT_EQ(large_number, size_width_overflow.x());
EXPECT_EQ(expected_thickness, size_width_overflow.width());
Rect set_height_overflow(0, large_number, 100, 5);
EXPECT_EQ(5, set_height_overflow.height());
set_height_overflow.set_height(100);
EXPECT_EQ(expected_thickness, set_height_overflow.height());
Rect set_y_overflow(100, 100, 100, 100);
EXPECT_EQ(100, set_y_overflow.height());
set_y_overflow.set_y(large_number);
EXPECT_EQ(expected_thickness, set_y_overflow.height());
Rect set_width_overflow(large_number, 0, 5, 100);
EXPECT_EQ(5, set_width_overflow.width());
set_width_overflow.set_width(100);
EXPECT_EQ(expected_thickness, set_width_overflow.width());
Rect set_x_overflow(100, 100, 100, 100);
EXPECT_EQ(100, set_x_overflow.width());
set_x_overflow.set_x(large_number);
EXPECT_EQ(expected_thickness, set_x_overflow.width());
Point large_offset(large_number, large_number);
Size size(100, 100);
Size expected_size(10, 10);
Rect set_origin_overflow(100, 100, 100, 100);
EXPECT_EQ(size, set_origin_overflow.size());
set_origin_overflow.set_origin(large_offset);
EXPECT_EQ(large_offset, set_origin_overflow.origin());
EXPECT_EQ(expected_size, set_origin_overflow.size());
Rect set_size_overflow(large_number, large_number, 5, 5);
EXPECT_EQ(Size(5, 5), set_size_overflow.size());
set_size_overflow.set_size(size);
EXPECT_EQ(large_offset, set_size_overflow.origin());
EXPECT_EQ(expected_size, set_size_overflow.size());
Rect set_rect_overflow;
set_rect_overflow.SetRect(large_number, large_number, 100, 100);
EXPECT_EQ(large_offset, set_rect_overflow.origin());
EXPECT_EQ(expected_size, set_rect_overflow.size());
// Insetting an empty rect, but the total inset (left + right) could overflow.
Rect inset_overflow;
inset_overflow.Inset(Insets::TLBR(large_number, large_number, 100, 100));
EXPECT_EQ(large_offset, inset_overflow.origin());
EXPECT_EQ(Size(), inset_overflow.size());
// Insetting where the total inset (width - left - right) could overflow.
// Also, this insetting by the min limit in all directions cannot
// represent width() without overflow, so that will also clamp.
Rect inset_overflow2;
inset_overflow2.Inset(min_limit);
EXPECT_EQ(inset_overflow2, Rect(min_limit, min_limit, limit, limit));
// Insetting where the width shouldn't change, but if the insets operations
// clamped in the wrong order, e.g. ((width - left) - right) vs (width - (left
// + right)) then this will not work properly. This is the proper order,
// as if left + right overflows, the width cannot be decreased by more than
// max int anyway. Additionally, if left + right underflows, it cannot be
// increased by more then max int.
Rect inset_overflow3(0, 0, limit, limit);
inset_overflow3.Inset(Insets::TLBR(-100, -100, 100, 100));
EXPECT_EQ(inset_overflow3, Rect(-100, -100, limit, limit));
Rect inset_overflow4(-1000, -1000, limit, limit);
inset_overflow4.Inset(Insets::TLBR(100, 100, -100, -100));
EXPECT_EQ(inset_overflow4, Rect(-900, -900, limit, limit));
Rect offset_overflow(0, 0, 100, 100);
offset_overflow.Offset(large_number, large_number);
EXPECT_EQ(large_offset, offset_overflow.origin());
EXPECT_EQ(expected_size, offset_overflow.size());
Rect operator_overflow(0, 0, 100, 100);
operator_overflow += Vector2d(large_number, large_number);
EXPECT_EQ(large_offset, operator_overflow.origin());
EXPECT_EQ(expected_size, operator_overflow.size());
Rect origin_maxint(limit, limit, limit, limit);
EXPECT_EQ(origin_maxint, Rect(Point(limit, limit), Size()));
// Expect a rect at the origin and a rect whose right/bottom is maxint
// create a rect that extends from 0..maxint in both extents.
{
Rect origin_small(0, 0, 100, 100);
Rect big_clamped(50, 50, limit, limit);
EXPECT_EQ(big_clamped.right(), limit);
Rect unioned = UnionRects(origin_small, big_clamped);
Rect rect_limit(0, 0, limit, limit);
EXPECT_EQ(unioned, rect_limit);
}
// Expect a rect that would overflow width (but not right) to be clamped
// and to have maxint extents after unioning.
{
Rect small(-500, -400, 100, 100);
Rect big(-400, -500, limit, limit);
// Technically, this should be limit + 100 width, but will clamp to maxint.
EXPECT_EQ(UnionRects(small, big), Rect(-500, -500, limit, limit));
}
// Expect a rect that would overflow right *and* width to be clamped.
{
Rect clamped(500, 500, limit, limit);
Rect positive_origin(100, 100, 500, 500);
// Ideally, this should be (100, 100, limit + 400, limit + 400).
// However, width overflows and would be clamped to limit, but right
// overflows too and so will be clamped to limit - 100.
Rect expected_rect(100, 100, limit - 100, limit - 100);
EXPECT_EQ(UnionRects(clamped, positive_origin), expected_rect);
}
// Unioning a left=minint rect with a right=maxint rect.
// We can't represent both ends of the spectrum in the same rect.
// Make sure we keep the most useful area.
{
int part_limit = min_limit / 3;
Rect left_minint(min_limit, min_limit, 1, 1);
Rect right_maxint(limit - 1, limit - 1, limit, limit);
Rect expected_rect(part_limit, part_limit, 2 * part_limit, 2 * part_limit);
Rect result = UnionRects(left_minint, right_maxint);
// The result should be maximally big.
EXPECT_EQ(limit, result.height());
EXPECT_EQ(limit, result.width());
// The result should include the area near the origin.
EXPECT_GT(-part_limit, result.x());
EXPECT_LT(part_limit, result.right());
EXPECT_GT(-part_limit, result.y());
EXPECT_LT(part_limit, result.bottom());
// More succinctly, but harder to read in the results.
EXPECT_TRUE(UnionRects(left_minint, right_maxint).Contains(expected_rect));
}
}
TEST(RectTest, Inset) {
Rect r(10, 20, 30, 40);
r.Inset(0);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Inset(1);
EXPECT_EQ(Rect(11, 21, 28, 38), r);
r.Inset(-1);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Inset(Insets::VH(2, 1));
EXPECT_EQ(Rect(11, 22, 28, 36), r);
r.Inset(Insets::VH(-2, -1));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
// The parameters are left, top, right, bottom.
r.Inset(Insets::TLBR(2, 1, 4, 3));
EXPECT_EQ(Rect(11, 22, 26, 34), r);
r.Inset(Insets::TLBR(-2, -1, -4, -3));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Inset(Insets::TLBR(1, 2, 3, 4));
EXPECT_EQ(Rect(12, 21, 24, 36), r);
r.Inset(Insets::TLBR(-1, -2, -3, -4));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
}
TEST(RectTest, Outset) {
Rect r(10, 20, 30, 40);
r.Outset(0);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Outset(1);
EXPECT_EQ(Rect(9, 19, 32, 42), r);
r.Outset(-1);
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Outset(Outsets::VH(2, 1));
EXPECT_EQ(Rect(9, 18, 32, 44), r);
r.Outset(Outsets::VH(-2, -1));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
r.Outset(Outsets::TLBR(2, 1, 4, 3));
EXPECT_EQ(Rect(9, 18, 34, 46), r);
r.Outset(Outsets::TLBR(-2, -1, -4, -3));
EXPECT_EQ(Rect(10, 20, 30, 40), r);
}
TEST(RectTest, InsetOutsetClamped) {
Rect r(10, 20, 30, 40);
r.Inset(18);
EXPECT_EQ(Rect(28, 38, 0, 4), r);
r.Inset(-18);
EXPECT_EQ(Rect(10, 20, 36, 40), r);
r.Inset(Insets::VH(30, 15));
EXPECT_EQ(Rect(25, 50, 6, 0), r);
r.Inset(Insets::VH(-30, -15));
EXPECT_EQ(Rect(10, 20, 36, 60), r);
r.Inset(Insets::TLBR(30, 20, 50, 40));
EXPECT_EQ(Rect(30, 50, 0, 0), r);
r.Inset(Insets::TLBR(-30, -20, -50, -40));
EXPECT_EQ(Rect(10, 20, 60, 80), r);
r.Outset(kMaxInt);
EXPECT_EQ(Rect(10 - kMaxInt, 20 - kMaxInt, kMaxInt, kMaxInt), r);
r.Outset(Outsets().set_top_bottom(kMaxInt, kMaxInt));
EXPECT_EQ(Rect(10 - kMaxInt, kMinInt, kMaxInt, kMaxInt), r);
r.Outset(Outsets().set_right(kMaxInt).set_top(kMaxInt));
EXPECT_EQ(Rect(10 - kMaxInt, kMinInt, kMaxInt, kMaxInt), r);
r.Outset(Outsets().set_left_right(kMaxInt, kMaxInt));
EXPECT_EQ(Rect(kMinInt, kMinInt, kMaxInt, kMaxInt), r);
}
TEST(RectTest, SetByBounds) {
Rect r;
r.SetByBounds(1, 2, 30, 40);
EXPECT_EQ(Rect(1, 2, 29, 38), r);
r.SetByBounds(30, 40, 1, 2);
EXPECT_EQ(Rect(30, 40, 0, 0), r);
r.SetByBounds(0, 0, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(0, 0, kMaxInt, kMaxInt), r);
r.SetByBounds(-1, -1, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(-1, -1, kMaxInt, kMaxInt), r);
r.SetByBounds(1, 1, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(1, 1, kMaxInt - 1, kMaxInt - 1), r);
r.SetByBounds(kMinInt, kMinInt, 0, 0);
EXPECT_EQ(Rect(kMinInt + 1, kMinInt + 1, kMaxInt, kMaxInt), r);
r.SetByBounds(kMinInt, kMinInt, 1, 1);
EXPECT_EQ(Rect(kMinInt + 2, kMinInt + 2, kMaxInt, kMaxInt), r);
r.SetByBounds(kMinInt, kMinInt, -1, -1);
EXPECT_EQ(Rect(kMinInt, kMinInt, kMaxInt, kMaxInt), r);
r.SetByBounds(kMinInt, kMinInt, kMaxInt, kMaxInt);
EXPECT_EQ(Rect(kMinInt / 2 - 1, kMinInt / 2 - 1, kMaxInt, kMaxInt), r);
}
TEST(RectTest, MaximumCoveredRect) {
// X aligned and intersect: unite.
EXPECT_EQ(Rect(10, 20, 30, 60),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 30, 30, 50)));
// X aligned and adjacent: unite.
EXPECT_EQ(Rect(10, 20, 30, 90),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 60, 30, 50)));
// X aligned and separate: choose the bigger one.
EXPECT_EQ(Rect(10, 61, 30, 50),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(10, 61, 30, 50)));
// Y aligned and intersect: unite.
EXPECT_EQ(Rect(10, 20, 60, 40),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(30, 20, 40, 40)));
// Y aligned and adjacent: unite.
EXPECT_EQ(Rect(10, 20, 70, 40),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(40, 20, 40, 40)));
// Y aligned and separate: choose the bigger one.
EXPECT_EQ(Rect(41, 20, 40, 40),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(41, 20, 40, 40)));
// Get the biggest expanded intersection.
EXPECT_EQ(Rect(0, 0, 9, 19),
MaximumCoveredRect(Rect(0, 0, 10, 10), Rect(0, 9, 9, 10)));
EXPECT_EQ(Rect(0, 0, 19, 9),
MaximumCoveredRect(Rect(0, 0, 10, 10), Rect(9, 0, 10, 9)));
// Otherwise choose the bigger one.
EXPECT_EQ(Rect(20, 30, 40, 50),
MaximumCoveredRect(Rect(10, 20, 30, 40), Rect(20, 30, 40, 50)));
EXPECT_EQ(Rect(10, 20, 40, 50),
MaximumCoveredRect(Rect(10, 20, 40, 50), Rect(20, 30, 30, 40)));
EXPECT_EQ(Rect(10, 20, 40, 50),
MaximumCoveredRect(Rect(10, 20, 40, 50), Rect(20, 30, 40, 50)));
}
} // namespace gfx