| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <assert.h> // For assert |
| #include <limits.h> // For LONG_MIN, LONG_MAX. |
| |
| #if V8_TARGET_ARCH_S390 |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/codegen/callable.h" |
| #include "src/codegen/code-factory.h" |
| #include "src/codegen/external-reference-table.h" |
| #include "src/codegen/macro-assembler.h" |
| #include "src/codegen/register-configuration.h" |
| #include "src/debug/debug.h" |
| #include "src/execution/frames-inl.h" |
| #include "src/heap/memory-chunk.h" |
| #include "src/init/bootstrapper.h" |
| #include "src/logging/counters.h" |
| #include "src/objects/smi.h" |
| #include "src/runtime/runtime.h" |
| #include "src/snapshot/embedded/embedded-data.h" |
| #include "src/snapshot/snapshot.h" |
| #include "src/wasm/wasm-code-manager.h" |
| |
| // Satisfy cpplint check, but don't include platform-specific header. It is |
| // included recursively via macro-assembler.h. |
| #if 0 |
| #include "src/codegen/s390/macro-assembler-s390.h" |
| #endif |
| |
| namespace v8 { |
| namespace internal { |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| bytes += NumRegs(list) * kSystemPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| bytes += NumRegs(kCallerSavedDoubles) * kDoubleSize; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| MultiPush(list); |
| bytes += NumRegs(list) * kSystemPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| MultiPushDoubles(kCallerSavedDoubles); |
| bytes += NumRegs(kCallerSavedDoubles) * kDoubleSize; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| MultiPopDoubles(kCallerSavedDoubles); |
| bytes += NumRegs(kCallerSavedDoubles) * kDoubleSize; |
| } |
| |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| MultiPop(list); |
| bytes += NumRegs(list) * kSystemPointerSize; |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::LoadFromConstantsTable(Register destination, |
| int constant_index) { |
| DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); |
| |
| const uint32_t offset = FixedArray::kHeaderSize + |
| constant_index * kSystemPointerSize - kHeapObjectTag; |
| |
| CHECK(is_uint19(offset)); |
| DCHECK_NE(destination, r0); |
| LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); |
| LoadTaggedPointerField( |
| destination, |
| FieldMemOperand(destination, |
| FixedArray::OffsetOfElementAt(constant_index)), |
| r1); |
| } |
| |
| void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { |
| LoadP(destination, MemOperand(kRootRegister, offset)); |
| } |
| |
| void TurboAssembler::LoadRootRegisterOffset(Register destination, |
| intptr_t offset) { |
| if (offset == 0) { |
| LoadRR(destination, kRootRegister); |
| } else if (is_uint12(offset)) { |
| la(destination, MemOperand(kRootRegister, offset)); |
| } else { |
| DCHECK(is_int20(offset)); |
| lay(destination, MemOperand(kRootRegister, offset)); |
| } |
| } |
| |
| void TurboAssembler::Jump(Register target, Condition cond) { b(cond, target); } |
| |
| void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond) { |
| Label skip; |
| |
| if (cond != al) b(NegateCondition(cond), &skip); |
| |
| DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY); |
| |
| mov(ip, Operand(target, rmode)); |
| b(ip); |
| |
| bind(&skip); |
| } |
| |
| void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(static_cast<intptr_t>(target), rmode, cond); |
| } |
| |
| void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code)); |
| |
| int builtin_index = Builtins::kNoBuiltinId; |
| bool target_is_builtin = |
| isolate()->builtins()->IsBuiltinHandle(code, &builtin_index); |
| |
| if (options().inline_offheap_trampolines && target_is_builtin) { |
| // Inline the trampoline. |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| CHECK_NE(builtin_index, Builtins::kNoBuiltinId); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| b(cond, ip); |
| return; |
| } |
| jump(code, RelocInfo::RELATIVE_CODE_TARGET, cond); |
| } |
| |
| void TurboAssembler::Jump(const ExternalReference& reference) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| Move(scratch, reference); |
| Jump(scratch); |
| } |
| |
| void TurboAssembler::Call(Register target) { |
| // Branch to target via indirect branch |
| basr(r14, target); |
| } |
| |
| void MacroAssembler::CallJSEntry(Register target) { |
| DCHECK(target == r4); |
| Call(target); |
| } |
| |
| int MacroAssembler::CallSizeNotPredictableCodeSize(Address target, |
| RelocInfo::Mode rmode, |
| Condition cond) { |
| // S390 Assembler::move sequence is IILF / IIHF |
| int size; |
| #if V8_TARGET_ARCH_S390X |
| size = 14; // IILF + IIHF + BASR |
| #else |
| size = 8; // IILF + BASR |
| #endif |
| return size; |
| } |
| |
| void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(cond == al); |
| |
| mov(ip, Operand(target, rmode)); |
| basr(r14, ip); |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode) && cond == al); |
| |
| DCHECK_IMPLIES(options().isolate_independent_code, |
| Builtins::IsIsolateIndependentBuiltin(*code)); |
| int builtin_index = Builtins::kNoBuiltinId; |
| bool target_is_builtin = |
| isolate()->builtins()->IsBuiltinHandle(code, &builtin_index); |
| |
| if (target_is_builtin && options().inline_offheap_trampolines) { |
| // Inline the trampoline. |
| RecordCommentForOffHeapTrampoline(builtin_index); |
| CHECK_NE(builtin_index, Builtins::kNoBuiltinId); |
| EmbeddedData d = EmbeddedData::FromBlob(); |
| Address entry = d.InstructionStartOfBuiltin(builtin_index); |
| mov(ip, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| Call(ip); |
| return; |
| } |
| DCHECK(code->IsExecutable()); |
| call(code, rmode); |
| } |
| |
| void TurboAssembler::Drop(int count) { |
| if (count > 0) { |
| int total = count * kSystemPointerSize; |
| if (is_uint12(total)) { |
| la(sp, MemOperand(sp, total)); |
| } else if (is_int20(total)) { |
| lay(sp, MemOperand(sp, total)); |
| } else { |
| AddP(sp, Operand(total)); |
| } |
| } |
| } |
| |
| void TurboAssembler::Drop(Register count, Register scratch) { |
| ShiftLeftP(scratch, count, Operand(kSystemPointerSizeLog2)); |
| AddP(sp, sp, scratch); |
| } |
| |
| void TurboAssembler::Call(Label* target) { b(r14, target); } |
| |
| void TurboAssembler::Push(Handle<HeapObject> handle) { |
| mov(r0, Operand(handle)); |
| push(r0); |
| } |
| |
| void TurboAssembler::Push(Smi smi) { |
| mov(r0, Operand(smi)); |
| push(r0); |
| } |
| |
| void TurboAssembler::Move(Register dst, Handle<HeapObject> value, |
| RelocInfo::Mode rmode) { |
| // TODO(jgruber,v8:8887): Also consider a root-relative load when generating |
| // non-isolate-independent code. In many cases it might be cheaper than |
| // embedding the relocatable value. |
| if (root_array_available_ && options().isolate_independent_code) { |
| IndirectLoadConstant(dst, value); |
| return; |
| } else if (RelocInfo::IsCompressedEmbeddedObject(rmode)) { |
| EmbeddedObjectIndex index = AddEmbeddedObject(value); |
| DCHECK(is_uint32(index)); |
| mov(dst, Operand(static_cast<int>(index), rmode)); |
| } else { |
| DCHECK(RelocInfo::IsFullEmbeddedObject(rmode)); |
| mov(dst, Operand(value.address(), rmode)); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, ExternalReference reference) { |
| // TODO(jgruber,v8:8887): Also consider a root-relative load when generating |
| // non-isolate-independent code. In many cases it might be cheaper than |
| // embedding the relocatable value. |
| if (root_array_available_ && options().isolate_independent_code) { |
| IndirectLoadExternalReference(dst, reference); |
| return; |
| } |
| mov(dst, Operand(reference)); |
| } |
| |
| void TurboAssembler::Move(Register dst, Register src, Condition cond) { |
| if (dst != src) { |
| if (cond == al) { |
| LoadRR(dst, src); |
| } else { |
| LoadOnConditionP(cond, dst, src); |
| } |
| } |
| } |
| |
| void TurboAssembler::Move(DoubleRegister dst, DoubleRegister src) { |
| if (dst != src) { |
| ldr(dst, src); |
| } |
| } |
| |
| // Wrapper around Assembler::mvc (SS-a format) |
| void TurboAssembler::MoveChar(const MemOperand& opnd1, const MemOperand& opnd2, |
| const Operand& length) { |
| mvc(opnd1, opnd2, Operand(static_cast<intptr_t>(length.immediate() - 1))); |
| } |
| |
| // Wrapper around Assembler::clc (SS-a format) |
| void TurboAssembler::CompareLogicalChar(const MemOperand& opnd1, |
| const MemOperand& opnd2, |
| const Operand& length) { |
| clc(opnd1, opnd2, Operand(static_cast<intptr_t>(length.immediate() - 1))); |
| } |
| |
| // Wrapper around Assembler::xc (SS-a format) |
| void TurboAssembler::ExclusiveOrChar(const MemOperand& opnd1, |
| const MemOperand& opnd2, |
| const Operand& length) { |
| xc(opnd1, opnd2, Operand(static_cast<intptr_t>(length.immediate() - 1))); |
| } |
| |
| // Wrapper around Assembler::risbg(n) (RIE-f) |
| void TurboAssembler::RotateInsertSelectBits(Register dst, Register src, |
| const Operand& startBit, |
| const Operand& endBit, |
| const Operand& shiftAmt, |
| bool zeroBits) { |
| if (zeroBits) |
| // High tag the top bit of I4/EndBit to zero out any unselected bits |
| risbg(dst, src, startBit, |
| Operand(static_cast<intptr_t>(endBit.immediate() | 0x80)), shiftAmt); |
| else |
| risbg(dst, src, startBit, endBit, shiftAmt); |
| } |
| |
| void TurboAssembler::BranchRelativeOnIdxHighP(Register dst, Register inc, |
| Label* L) { |
| #if V8_TARGET_ARCH_S390X |
| brxhg(dst, inc, L); |
| #else |
| brxh(dst, inc, L); |
| #endif // V8_TARGET_ARCH_S390X |
| } |
| |
| void TurboAssembler::PushArray(Register array, Register size, Register scratch, |
| Register scratch2, PushArrayOrder order) { |
| Label loop, done; |
| |
| if (order == kNormal) { |
| ShiftLeftP(scratch, size, Operand(kSystemPointerSizeLog2)); |
| lay(scratch, MemOperand(array, scratch)); |
| bind(&loop); |
| CmpP(array, scratch); |
| bge(&done); |
| lay(scratch, MemOperand(scratch, -kSystemPointerSize)); |
| lay(sp, MemOperand(sp, -kSystemPointerSize)); |
| MoveChar(MemOperand(sp), MemOperand(scratch), Operand(kSystemPointerSize)); |
| b(&loop); |
| bind(&done); |
| } else { |
| DCHECK_NE(scratch2, r0); |
| ShiftLeftP(scratch, size, Operand(kSystemPointerSizeLog2)); |
| lay(scratch, MemOperand(array, scratch)); |
| LoadRR(scratch2, array); |
| bind(&loop); |
| CmpP(scratch2, scratch); |
| bge(&done); |
| lay(sp, MemOperand(sp, -kSystemPointerSize)); |
| MoveChar(MemOperand(sp), MemOperand(scratch2), Operand(kSystemPointerSize)); |
| lay(scratch2, MemOperand(scratch2, kSystemPointerSize)); |
| b(&loop); |
| bind(&done); |
| } |
| } |
| |
| void TurboAssembler::MultiPush(RegList regs, Register location) { |
| int16_t num_to_push = base::bits::CountPopulation(regs); |
| int16_t stack_offset = num_to_push * kSystemPointerSize; |
| |
| SubP(location, location, Operand(stack_offset)); |
| for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kSystemPointerSize; |
| StoreP(ToRegister(i), MemOperand(location, stack_offset)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MultiPop(RegList regs, Register location) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < Register::kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| LoadP(ToRegister(i), MemOperand(location, stack_offset)); |
| stack_offset += kSystemPointerSize; |
| } |
| } |
| AddP(location, location, Operand(stack_offset)); |
| } |
| |
| void TurboAssembler::MultiPushDoubles(RegList dregs, Register location) { |
| int16_t num_to_push = base::bits::CountPopulation(dregs); |
| int16_t stack_offset = num_to_push * kDoubleSize; |
| |
| SubP(location, location, Operand(stack_offset)); |
| for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) { |
| if ((dregs & (1 << i)) != 0) { |
| DoubleRegister dreg = DoubleRegister::from_code(i); |
| stack_offset -= kDoubleSize; |
| StoreDouble(dreg, MemOperand(location, stack_offset)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MultiPopDoubles(RegList dregs, Register location) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) { |
| if ((dregs & (1 << i)) != 0) { |
| DoubleRegister dreg = DoubleRegister::from_code(i); |
| LoadDouble(dreg, MemOperand(location, stack_offset)); |
| stack_offset += kDoubleSize; |
| } |
| } |
| AddP(location, location, Operand(stack_offset)); |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, RootIndex index, |
| Condition) { |
| LoadP(destination, |
| MemOperand(kRootRegister, RootRegisterOffsetForRootIndex(index)), r0); |
| } |
| |
| void TurboAssembler::LoadTaggedPointerField(const Register& destination, |
| const MemOperand& field_operand, |
| const Register& scratch) { |
| if (COMPRESS_POINTERS_BOOL) { |
| DecompressTaggedPointer(destination, field_operand); |
| } else { |
| LoadP(destination, field_operand, scratch); |
| } |
| } |
| |
| void TurboAssembler::LoadAnyTaggedField(const Register& destination, |
| const MemOperand& field_operand, |
| const Register& scratch) { |
| if (COMPRESS_POINTERS_BOOL) { |
| DecompressAnyTagged(destination, field_operand); |
| } else { |
| LoadP(destination, field_operand, scratch); |
| } |
| } |
| |
| void TurboAssembler::SmiUntag(Register dst, const MemOperand& src) { |
| if (SmiValuesAre31Bits()) { |
| LoadW(dst, src); |
| } else { |
| LoadP(dst, src); |
| } |
| SmiUntag(dst); |
| } |
| |
| void TurboAssembler::SmiUntagField(Register dst, const MemOperand& src) { |
| SmiUntag(dst, src); |
| } |
| |
| void TurboAssembler::StoreTaggedField(const Register& value, |
| const MemOperand& dst_field_operand, |
| const Register& scratch) { |
| if (COMPRESS_POINTERS_BOOL) { |
| RecordComment("[ StoreTagged"); |
| StoreW(value, dst_field_operand); |
| RecordComment("]"); |
| } else { |
| StoreP(value, dst_field_operand, scratch); |
| } |
| } |
| |
| void TurboAssembler::DecompressTaggedSigned(Register destination, |
| Register src) { |
| RecordComment("[ DecompressTaggedSigned"); |
| llgfr(destination, src); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressTaggedSigned(Register destination, |
| MemOperand field_operand) { |
| RecordComment("[ DecompressTaggedSigned"); |
| llgf(destination, field_operand); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressTaggedPointer(Register destination, |
| Register source) { |
| RecordComment("[ DecompressTaggedPointer"); |
| llgfr(destination, source); |
| agr(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressTaggedPointer(Register destination, |
| MemOperand field_operand) { |
| RecordComment("[ DecompressTaggedPointer"); |
| llgf(destination, field_operand); |
| agr(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressAnyTagged(Register destination, |
| MemOperand field_operand) { |
| RecordComment("[ DecompressAnyTagged"); |
| llgf(destination, field_operand); |
| agr(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| |
| void TurboAssembler::DecompressAnyTagged(Register destination, |
| Register source) { |
| RecordComment("[ DecompressAnyTagged"); |
| llgfr(destination, source); |
| agr(destination, kRootRegister); |
| RecordComment("]"); |
| } |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| LinkRegisterStatus lr_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kSystemPointerSize. |
| DCHECK(IsAligned(offset, kTaggedSize)); |
| |
| lay(dst, MemOperand(object, offset - kHeapObjectTag)); |
| if (emit_debug_code()) { |
| Label ok; |
| AndP(r0, dst, Operand(kTaggedSize - 1)); |
| beq(&ok, Label::kNear); |
| stop(); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4))); |
| mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8))); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| MultiPush(regs); |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| MultiPop(regs); |
| } |
| |
| void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address, |
| SaveFPRegsMode fp_mode) { |
| EphemeronKeyBarrierDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); |
| Register slot_parameter(descriptor.GetRegisterParameter( |
| EphemeronKeyBarrierDescriptor::kSlotAddress)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); |
| |
| Push(object); |
| Push(address); |
| |
| Pop(slot_parameter); |
| Pop(object_parameter); |
| |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), |
| RelocInfo::CODE_TARGET); |
| RestoreRegisters(registers); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| CallRecordWriteStub( |
| object, address, remembered_set_action, fp_mode, |
| isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), |
| kNullAddress); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| Address wasm_target) { |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode, |
| Handle<Code>::null(), wasm_target); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, |
| Handle<Code> code_target, Address wasm_target) { |
| DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); |
| // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, |
| // i.e. always emit remember set and save FP registers in RecordWriteStub. If |
| // large performance regression is observed, we should use these values to |
| // avoid unnecessary work. |
| |
| RecordWriteDescriptor descriptor; |
| RegList registers = descriptor.allocatable_registers(); |
| |
| SaveRegisters(registers); |
| Register object_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register remembered_set_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter( |
| descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); |
| |
| Push(object); |
| Push(address); |
| |
| Pop(slot_parameter); |
| Pop(object_parameter); |
| |
| Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| if (code_target.is_null()) { |
| Call(wasm_target, RelocInfo::WASM_STUB_CALL); |
| } else { |
| Call(code_target, RelocInfo::CODE_TARGET); |
| } |
| |
| RestoreRegisters(registers); |
| } |
| |
| // Will clobber 4 registers: object, address, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, LinkRegisterStatus lr_status, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| if (emit_debug_code()) { |
| LoadTaggedPointerField(r0, MemOperand(address)); |
| CmpP(value, r0); |
| Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); |
| } |
| |
| if ((remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) || |
| FLAG_disable_write_barriers) { |
| return; |
| } |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); |
| |
| // Record the actual write. |
| if (lr_status == kLRHasNotBeenSaved) { |
| push(r14); |
| } |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| if (lr_status == kLRHasNotBeenSaved) { |
| pop(r14); |
| } |
| |
| bind(&done); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12))); |
| mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16))); |
| } |
| } |
| |
| void TurboAssembler::PushCommonFrame(Register marker_reg) { |
| int fp_delta = 0; |
| CleanseP(r14); |
| if (marker_reg.is_valid()) { |
| Push(r14, fp, marker_reg); |
| fp_delta = 1; |
| } else { |
| Push(r14, fp); |
| fp_delta = 0; |
| } |
| la(fp, MemOperand(sp, fp_delta * kSystemPointerSize)); |
| } |
| |
| void TurboAssembler::PopCommonFrame(Register marker_reg) { |
| if (marker_reg.is_valid()) { |
| Pop(r14, fp, marker_reg); |
| } else { |
| Pop(r14, fp); |
| } |
| } |
| |
| void TurboAssembler::PushStandardFrame(Register function_reg) { |
| int fp_delta = 0; |
| CleanseP(r14); |
| if (function_reg.is_valid()) { |
| Push(r14, fp, cp, function_reg); |
| fp_delta = 2; |
| } else { |
| Push(r14, fp, cp); |
| fp_delta = 1; |
| } |
| la(fp, MemOperand(sp, fp_delta * kSystemPointerSize)); |
| Push(kJavaScriptCallArgCountRegister); |
| } |
| |
| void TurboAssembler::RestoreFrameStateForTailCall() { |
| // if (FLAG_enable_embedded_constant_pool) { |
| // LoadP(kConstantPoolRegister, |
| // MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); |
| // set_constant_pool_available(false); |
| // } |
| DCHECK(!FLAG_enable_embedded_constant_pool); |
| LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| } |
| |
| void TurboAssembler::CanonicalizeNaN(const DoubleRegister dst, |
| const DoubleRegister src) { |
| // Turn potential sNaN into qNaN |
| if (dst != src) ldr(dst, src); |
| lzdr(kDoubleRegZero); |
| sdbr(dst, kDoubleRegZero); |
| } |
| |
| void TurboAssembler::ConvertIntToDouble(DoubleRegister dst, Register src) { |
| cdfbr(dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedIntToDouble(DoubleRegister dst, |
| Register src) { |
| if (CpuFeatures::IsSupported(FLOATING_POINT_EXT)) { |
| cdlfbr(Condition(5), Condition(0), dst, src); |
| } else { |
| // zero-extend src |
| llgfr(src, src); |
| // convert to double |
| cdgbr(dst, src); |
| } |
| } |
| |
| void TurboAssembler::ConvertIntToFloat(DoubleRegister dst, Register src) { |
| cefbra(Condition(4), dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedIntToFloat(DoubleRegister dst, |
| Register src) { |
| celfbr(Condition(4), Condition(0), dst, src); |
| } |
| |
| void TurboAssembler::ConvertInt64ToFloat(DoubleRegister double_dst, |
| Register src) { |
| cegbr(double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertInt64ToDouble(DoubleRegister double_dst, |
| Register src) { |
| cdgbr(double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedInt64ToFloat(DoubleRegister double_dst, |
| Register src) { |
| celgbr(Condition(0), Condition(0), double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertUnsignedInt64ToDouble(DoubleRegister double_dst, |
| Register src) { |
| cdlgbr(Condition(0), Condition(0), double_dst, src); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToInt64(const Register dst, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| cgebr(m, dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToInt64(const Register dst, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| cgdbr(m, dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToInt32(const Register dst, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| m = Condition(4); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| #ifdef V8_TARGET_ARCH_S390X |
| lghi(dst, Operand::Zero()); |
| #endif |
| cfdbr(m, dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToInt32(const Register result, |
| const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| m = Condition(4); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| #ifdef V8_TARGET_ARCH_S390X |
| lghi(result, Operand::Zero()); |
| #endif |
| cfebr(m, result, double_input); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToUnsignedInt32( |
| const Register result, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| #ifdef V8_TARGET_ARCH_S390X |
| lghi(result, Operand::Zero()); |
| #endif |
| clfebr(m, Condition(0), result, double_input); |
| } |
| |
| void TurboAssembler::ConvertFloat32ToUnsignedInt64( |
| const Register result, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| clgebr(m, Condition(0), result, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToUnsignedInt64( |
| const Register dst, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| clgdbr(m, Condition(0), dst, double_input); |
| } |
| |
| void TurboAssembler::ConvertDoubleToUnsignedInt32( |
| const Register dst, const DoubleRegister double_input, |
| FPRoundingMode rounding_mode) { |
| Condition m = Condition(0); |
| switch (rounding_mode) { |
| case kRoundToZero: |
| m = Condition(5); |
| break; |
| case kRoundToNearest: |
| UNIMPLEMENTED(); |
| break; |
| case kRoundToPlusInf: |
| m = Condition(6); |
| break; |
| case kRoundToMinusInf: |
| m = Condition(7); |
| break; |
| default: |
| UNIMPLEMENTED(); |
| break; |
| } |
| #ifdef V8_TARGET_ARCH_S390X |
| lghi(dst, Operand::Zero()); |
| #endif |
| clfdbr(m, Condition(0), dst, double_input); |
| } |
| |
| #if !V8_TARGET_ARCH_S390X |
| void TurboAssembler::ShiftLeftPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| sldl(r0, shift, Operand::Zero()); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftLeftPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| sldl(r0, r0, Operand(shift)); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srdl(r0, shift, Operand::Zero()); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srdl(r0, Operand(shift)); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightArithPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srda(r0, shift, Operand::Zero()); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| |
| void TurboAssembler::ShiftRightArithPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| LoadRR(r0, src_high); |
| LoadRR(r1, src_low); |
| srda(r0, r0, Operand(shift)); |
| LoadRR(dst_high, r0); |
| LoadRR(dst_low, r1); |
| } |
| #endif |
| |
| void TurboAssembler::MovDoubleToInt64(Register dst, DoubleRegister src) { |
| lgdr(dst, src); |
| } |
| |
| void TurboAssembler::MovInt64ToDouble(DoubleRegister dst, Register src) { |
| ldgr(dst, src); |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type, Register base, |
| int prologue_offset) { |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| Load(r1, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(r1); |
| } |
| } |
| |
| void TurboAssembler::Prologue(Register base, int prologue_offset) { |
| DCHECK(base != no_reg); |
| PushStandardFrame(r3); |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type, |
| bool load_constant_pool_pointer_reg) { |
| // We create a stack frame with: |
| // Return Addr <-- old sp |
| // Old FP <-- new fp |
| // CP |
| // type |
| // CodeObject <-- new sp |
| |
| Load(ip, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(ip); |
| } |
| |
| int TurboAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) { |
| // Drop the execution stack down to the frame pointer and restore |
| // the caller frame pointer, return address and constant pool pointer. |
| LoadP(r14, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| if (is_int20(StandardFrameConstants::kCallerSPOffset + stack_adjustment)) { |
| lay(r1, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + |
| stack_adjustment)); |
| } else { |
| AddP(r1, fp, |
| Operand(StandardFrameConstants::kCallerSPOffset + stack_adjustment)); |
| } |
| LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| LoadRR(sp, r1); |
| int frame_ends = pc_offset(); |
| return frame_ends; |
| } |
| |
| // ExitFrame layout (probably wrongish.. needs updating) |
| // |
| // SP -> previousSP |
| // LK reserved |
| // sp_on_exit (for debug?) |
| // oldSP->prev SP |
| // LK |
| // <parameters on stack> |
| |
| // Prior to calling EnterExitFrame, we've got a bunch of parameters |
| // on the stack that we need to wrap a real frame around.. so first |
| // we reserve a slot for LK and push the previous SP which is captured |
| // in the fp register (r11) |
| // Then - we buy a new frame |
| |
| // r14 |
| // oldFP <- newFP |
| // SP |
| // Floats |
| // gaps |
| // Args |
| // ABIRes <- newSP |
| void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, |
| StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| // Set up the frame structure on the stack. |
| DCHECK_EQ(2 * kSystemPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(1 * kSystemPointerSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset); |
| DCHECK_GT(stack_space, 0); |
| |
| // This is an opportunity to build a frame to wrap |
| // all of the pushes that have happened inside of V8 |
| // since we were called from C code |
| CleanseP(r14); |
| Load(r1, Operand(StackFrame::TypeToMarker(frame_type))); |
| PushCommonFrame(r1); |
| // Reserve room for saved entry sp. |
| lay(sp, MemOperand(fp, -ExitFrameConstants::kFixedFrameSizeFromFp)); |
| |
| if (emit_debug_code()) { |
| StoreP(MemOperand(fp, ExitFrameConstants::kSPOffset), Operand::Zero(), r1); |
| } |
| |
| // Save the frame pointer and the context in top. |
| Move(r1, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| isolate())); |
| StoreP(fp, MemOperand(r1)); |
| Move(r1, |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); |
| StoreP(cp, MemOperand(r1)); |
| |
| // Optionally save all volatile double registers. |
| if (save_doubles) { |
| MultiPushDoubles(kCallerSavedDoubles); |
| // Note that d0 will be accessible at |
| // fp - ExitFrameConstants::kFrameSize - |
| // kNumCallerSavedDoubles * kDoubleSize, |
| // since the sp slot and code slot were pushed after the fp. |
| } |
| |
| lay(sp, MemOperand(sp, -stack_space * kSystemPointerSize)); |
| |
| // Allocate and align the frame preparing for calling the runtime |
| // function. |
| const int frame_alignment = TurboAssembler::ActivationFrameAlignment(); |
| if (frame_alignment > 0) { |
| DCHECK_EQ(frame_alignment, 8); |
| ClearRightImm(sp, sp, Operand(3)); // equivalent to &= -8 |
| } |
| |
| lay(sp, MemOperand(sp, -kNumRequiredStackFrameSlots * kSystemPointerSize)); |
| StoreP(MemOperand(sp), Operand::Zero(), r0); |
| // Set the exit frame sp value to point just before the return address |
| // location. |
| lay(r1, MemOperand(sp, kStackFrameSPSlot * kSystemPointerSize)); |
| StoreP(r1, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| int TurboAssembler::ActivationFrameAlignment() { |
| #if !defined(USE_SIMULATOR) |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one S390 |
| // platform for another S390 platform with a different alignment. |
| return base::OS::ActivationFrameAlignment(); |
| #else // Simulated |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so this is controlled from a |
| // flag. |
| return FLAG_sim_stack_alignment; |
| #endif |
| } |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, |
| bool argument_count_is_length) { |
| // Optionally restore all double registers. |
| if (save_doubles) { |
| // Calculate the stack location of the saved doubles and restore them. |
| const int kNumRegs = kNumCallerSavedDoubles; |
| lay(r5, MemOperand(fp, -(ExitFrameConstants::kFixedFrameSizeFromFp + |
| kNumRegs * kDoubleSize))); |
| MultiPopDoubles(kCallerSavedDoubles, r5); |
| } |
| |
| // Clear top frame. |
| Move(ip, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, |
| isolate())); |
| StoreP(MemOperand(ip), Operand(0, RelocInfo::NONE), r0); |
| |
| // Restore current context from top and clear it in debug mode. |
| Move(ip, |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); |
| LoadP(cp, MemOperand(ip)); |
| |
| #ifdef DEBUG |
| mov(r1, Operand(Context::kInvalidContext)); |
| Move(ip, |
| ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); |
| StoreP(r1, MemOperand(ip)); |
| #endif |
| |
| // Tear down the exit frame, pop the arguments, and return. |
| LeaveFrame(StackFrame::EXIT); |
| |
| if (argument_count.is_valid()) { |
| if (!argument_count_is_length) { |
| ShiftLeftP(argument_count, argument_count, |
| Operand(kSystemPointerSizeLog2)); |
| } |
| la(sp, MemOperand(sp, argument_count)); |
| } |
| } |
| |
| void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) { |
| Move(dst, d0); |
| } |
| |
| void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) { |
| Move(dst, d0); |
| } |
| |
| void TurboAssembler::PrepareForTailCall(Register callee_args_count, |
| Register caller_args_count, |
| Register scratch0, Register scratch1) { |
| DCHECK(!AreAliased(callee_args_count, caller_args_count, scratch0, scratch1)); |
| |
| // Calculate the end of destination area where we will put the arguments |
| // after we drop current frame. We AddP kSystemPointerSize to count the |
| // receiver argument which is not included into formal parameters count. |
| Register dst_reg = scratch0; |
| ShiftLeftP(dst_reg, caller_args_count, Operand(kSystemPointerSizeLog2)); |
| AddP(dst_reg, fp, dst_reg); |
| AddP(dst_reg, dst_reg, |
| Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize)); |
| |
| Register src_reg = caller_args_count; |
| // Calculate the end of source area. +kSystemPointerSize is for the receiver. |
| ShiftLeftP(src_reg, callee_args_count, Operand(kSystemPointerSizeLog2)); |
| AddP(src_reg, sp, src_reg); |
| AddP(src_reg, src_reg, Operand(kSystemPointerSize)); |
| |
| if (FLAG_debug_code) { |
| CmpLogicalP(src_reg, dst_reg); |
| Check(lt, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Restore caller's frame pointer and return address now as they will be |
| // overwritten by the copying loop. |
| RestoreFrameStateForTailCall(); |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| |
| // Both src_reg and dst_reg are pointing to the word after the one to copy, |
| // so they must be pre-decremented in the loop. |
| Register tmp_reg = scratch1; |
| Label loop; |
| AddP(tmp_reg, callee_args_count, Operand(1)); // +1 for receiver |
| LoadRR(r1, tmp_reg); |
| bind(&loop); |
| LoadP(tmp_reg, MemOperand(src_reg, -kSystemPointerSize)); |
| StoreP(tmp_reg, MemOperand(dst_reg, -kSystemPointerSize)); |
| lay(src_reg, MemOperand(src_reg, -kSystemPointerSize)); |
| lay(dst_reg, MemOperand(dst_reg, -kSystemPointerSize)); |
| BranchOnCount(r1, &loop); |
| |
| // Leave current frame. |
| LoadRR(sp, dst_reg); |
| } |
| |
| void MacroAssembler::InvokePrologue(Register expected_parameter_count, |
| Register actual_parameter_count, |
| Label* done, InvokeFlag flag) { |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // r2: actual arguments count |
| // r3: function (passed through to callee) |
| // r4: expected arguments count |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract. |
| // ARM has some checks as per below, considering add them for S390 |
| DCHECK_EQ(actual_parameter_count, r2); |
| DCHECK_EQ(expected_parameter_count, r4); |
| |
| CmpP(expected_parameter_count, actual_parameter_count); |
| beq(®ular_invoke); |
| |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor); |
| b(done); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| |
| void MacroAssembler::CheckDebugHook(Register fun, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count) { |
| Label skip_hook; |
| |
| ExternalReference debug_hook_active = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| Move(r6, debug_hook_active); |
| tm(MemOperand(r6), Operand(0xFF)); |
| beq(&skip_hook); |
| |
| { |
| // Load receiver to pass it later to DebugOnFunctionCall hook. |
| LoadReceiver(r6, actual_parameter_count); |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| |
| SmiTag(expected_parameter_count); |
| Push(expected_parameter_count); |
| |
| SmiTag(actual_parameter_count); |
| Push(actual_parameter_count); |
| |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun, fun, r6); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| |
| Pop(actual_parameter_count); |
| SmiUntag(actual_parameter_count); |
| |
| Pop(expected_parameter_count); |
| SmiUntag(expected_parameter_count); |
| } |
| bind(&skip_hook); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| Register expected_parameter_count, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); |
| DCHECK_EQ(function, r3); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == r5); |
| |
| // On function call, call into the debugger if necessary. |
| CheckDebugHook(function, new_target, expected_parameter_count, |
| actual_parameter_count); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| LoadRoot(r5, RootIndex::kUndefinedValue); |
| } |
| |
| Label done; |
| InvokePrologue(expected_parameter_count, actual_parameter_count, &done, flag); |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| Register code = kJavaScriptCallCodeStartRegister; |
| LoadTaggedPointerField(code, |
| FieldMemOperand(function, JSFunction::kCodeOffset)); |
| if (flag == CALL_FUNCTION) { |
| CallCodeObject(code); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| JumpCodeObject(code); |
| } |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| |
| void MacroAssembler::InvokeFunctionWithNewTarget( |
| Register fun, Register new_target, Register actual_parameter_count, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r3. |
| DCHECK_EQ(fun, r3); |
| |
| Register expected_reg = r4; |
| Register temp_reg = r6; |
| LoadTaggedPointerField(cp, FieldMemOperand(fun, JSFunction::kContextOffset)); |
| LoadTaggedPointerField( |
| temp_reg, FieldMemOperand(fun, JSFunction::kSharedFunctionInfoOffset)); |
| LoadLogicalHalfWordP( |
| expected_reg, |
| FieldMemOperand(temp_reg, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| InvokeFunctionCode(fun, new_target, expected_reg, actual_parameter_count, |
| flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| Register expected_parameter_count, |
| Register actual_parameter_count, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK_IMPLIES(flag == CALL_FUNCTION, has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r3. |
| DCHECK_EQ(function, r3); |
| |
| // Get the function and setup the context. |
| LoadTaggedPointerField(cp, |
| FieldMemOperand(function, JSFunction::kContextOffset)); |
| |
| InvokeFunctionCode(r3, no_reg, expected_parameter_count, |
| actual_parameter_count, flag); |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| Move(r3, restart_fp); |
| LoadP(r3, MemOperand(r3)); |
| CmpP(r3, Operand::Zero()); |
| Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, |
| ne); |
| } |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kSystemPointerSize); |
| |
| // Link the current handler as the next handler. |
| Move(r7, |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); |
| |
| // Buy the full stack frame for 5 slots. |
| lay(sp, MemOperand(sp, -StackHandlerConstants::kSize)); |
| |
| // Store padding. |
| lghi(r0, Operand::Zero()); |
| StoreP(r0, MemOperand(sp)); // Padding. |
| |
| // Copy the old handler into the next handler slot. |
| MoveChar(MemOperand(sp, StackHandlerConstants::kNextOffset), MemOperand(r7), |
| Operand(kSystemPointerSize)); |
| // Set this new handler as the current one. |
| StoreP(sp, MemOperand(r7)); |
| } |
| |
| void MacroAssembler::PopStackHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| // Pop the Next Handler into r3 and store it into Handler Address reference. |
| Pop(r3); |
| Move(ip, |
| ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); |
| StoreP(r3, MemOperand(ip)); |
| |
| Drop(1); // Drop padding. |
| } |
| |
| void MacroAssembler::CompareObjectType(Register object, Register map, |
| Register type_reg, InstanceType type) { |
| const Register temp = type_reg == no_reg ? r0 : type_reg; |
| |
| LoadMap(map, object); |
| CompareInstanceType(map, temp, type); |
| } |
| |
| void MacroAssembler::CompareInstanceType(Register map, Register type_reg, |
| InstanceType type) { |
| STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); |
| STATIC_ASSERT(LAST_TYPE <= 0xFFFF); |
| LoadHalfWordP(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| CmpP(type_reg, Operand(type)); |
| } |
| |
| void MacroAssembler::CompareRoot(Register obj, RootIndex index) { |
| int32_t offset = RootRegisterOffsetForRootIndex(index); |
| #ifdef V8_TARGET_BIG_ENDIAN |
| offset += (COMPRESS_POINTERS_BOOL ? kTaggedSize : 0); |
| #endif |
| CompareTagged(obj, MemOperand(kRootRegister, offset)); |
| } |
| |
| void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, |
| unsigned higher_limit, |
| Label* on_in_range) { |
| if (lower_limit != 0) { |
| Register scratch = r0; |
| LoadRR(scratch, value); |
| slgfi(scratch, Operand(lower_limit)); |
| CmpLogicalP(scratch, Operand(higher_limit - lower_limit)); |
| } else { |
| CmpLogicalP(value, Operand(higher_limit)); |
| } |
| ble(on_in_range); |
| } |
| |
| void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, |
| Register result, |
| DoubleRegister double_input, |
| StubCallMode stub_mode) { |
| Label done; |
| |
| TryInlineTruncateDoubleToI(result, double_input, &done); |
| |
| // If we fell through then inline version didn't succeed - call stub instead. |
| push(r14); |
| // Put input on stack. |
| lay(sp, MemOperand(sp, -kDoubleSize)); |
| StoreDouble(double_input, MemOperand(sp)); |
| |
| if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { |
| Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); |
| } else { |
| Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); |
| } |
| |
| LoadP(result, MemOperand(sp, 0)); |
| la(sp, MemOperand(sp, kDoubleSize)); |
| pop(r14); |
| |
| bind(&done); |
| } |
| |
| void TurboAssembler::TryInlineTruncateDoubleToI(Register result, |
| DoubleRegister double_input, |
| Label* done) { |
| ConvertDoubleToInt64(result, double_input); |
| |
| // Test for overflow |
| TestIfInt32(result); |
| beq(done); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // All parameters are on the stack. r2 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r2, Operand(num_arguments)); |
| Move(r3, ExternalReference::Create(f)); |
| #if V8_TARGET_ARCH_S390X |
| Handle<Code> code = |
| CodeFactory::CEntry(isolate(), f->result_size, save_doubles); |
| #else |
| Handle<Code> code = CodeFactory::CEntry(isolate(), 1, save_doubles); |
| #endif |
| |
| Call(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| mov(r2, Operand(function->nargs)); |
| } |
| JumpToExternalReference(ExternalReference::Create(fid)); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, |
| bool builtin_exit_frame) { |
| Move(r3, builtin); |
| Handle<Code> code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, |
| kArgvOnStack, builtin_exit_frame); |
| Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| void MacroAssembler::JumpToInstructionStream(Address entry) { |
| mov(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); |
| Jump(kOffHeapTrampolineRegister); |
| } |
| |
| void MacroAssembler::LoadWeakValue(Register out, Register in, |
| Label* target_if_cleared) { |
| Cmp32(in, Operand(kClearedWeakHeapObjectLower32)); |
| beq(target_if_cleared); |
| |
| AndP(out, in, Operand(~kWeakHeapObjectMask)); |
| } |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK(value > 0 && is_int8(value)); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Move(scratch2, ExternalReference::Create(counter)); |
| // @TODO(john.yan): can be optimized by asi() |
| LoadW(scratch1, MemOperand(scratch2)); |
| AddP(scratch1, Operand(value)); |
| StoreW(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK(value > 0 && is_int8(value)); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Move(scratch2, ExternalReference::Create(counter)); |
| // @TODO(john.yan): can be optimized by asi() |
| LoadW(scratch1, MemOperand(scratch2)); |
| AddP(scratch1, Operand(-value)); |
| StoreW(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cond, AbortReason reason, CRegister cr) { |
| if (emit_debug_code()) Check(cond, reason, cr); |
| } |
| |
| void TurboAssembler::Check(Condition cond, AbortReason reason, CRegister cr) { |
| Label L; |
| b(cond, &L); |
| Abort(reason); |
| // will not return here |
| bind(&L); |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| Label abort_start; |
| bind(&abort_start); |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| #endif |
| |
| // Avoid emitting call to builtin if requested. |
| if (trap_on_abort()) { |
| stop(); |
| return; |
| } |
| |
| if (should_abort_hard()) { |
| // We don't care if we constructed a frame. Just pretend we did. |
| FrameScope assume_frame(this, StackFrame::NONE); |
| lgfi(r2, Operand(static_cast<int>(reason))); |
| PrepareCallCFunction(1, 0, r3); |
| Move(r3, ExternalReference::abort_with_reason()); |
| // Use Call directly to avoid any unneeded overhead. The function won't |
| // return anyway. |
| Call(r3); |
| return; |
| } |
| |
| LoadSmiLiteral(r3, Smi::FromInt(static_cast<int>(reason))); |
| |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame_) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // will not return here |
| } |
| |
| void MacroAssembler::LoadMap(Register destination, Register object) { |
| LoadTaggedPointerField(destination, |
| FieldMemOperand(object, HeapObject::kMapOffset)); |
| } |
| |
| void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { |
| LoadMap(dst, cp); |
| LoadTaggedPointerField( |
| dst, FieldMemOperand( |
| dst, Map::kConstructorOrBackPointerOrNativeContextOffset)); |
| LoadTaggedPointerField(dst, MemOperand(dst, Context::SlotOffset(index))); |
| } |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmi, cr0); |
| } |
| } |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(eq, AbortReason::kOperandIsNotASmi, cr0); |
| } |
| } |
| |
| void MacroAssembler::AssertConstructor(Register object, Register scratch) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor); |
| LoadMap(scratch, object); |
| tm(FieldMemOperand(scratch, Map::kBitFieldOffset), |
| Operand(Map::Bits1::IsConstructorBit::kMask)); |
| Check(ne, AbortReason::kOperandIsNotAConstructor); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, cr0); |
| push(object); |
| CompareObjectType(object, object, object, JS_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, cr0); |
| push(object); |
| CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| TestIfSmi(object); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, cr0); |
| |
| // Load map |
| Register map = object; |
| push(object); |
| LoadMap(map, object); |
| |
| // Check if JSGeneratorObject |
| Label do_check; |
| Register instance_type = object; |
| CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); |
| beq(&do_check); |
| |
| // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType) |
| CmpP(instance_type, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE)); |
| beq(&do_check); |
| |
| // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) |
| CmpP(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); |
| |
| bind(&do_check); |
| // Restore generator object to register and perform assertion |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
| Register scratch) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| CompareRoot(object, RootIndex::kUndefinedValue); |
| beq(&done_checking, Label::kNear); |
| LoadMap(scratch, object); |
| CompareInstanceType(scratch, scratch, ALLOCATION_SITE_TYPE); |
| Assert(eq, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| static const int kRegisterPassedArguments = 5; |
| |
| int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments) { |
| int stack_passed_words = 0; |
| if (num_double_arguments > DoubleRegister::kNumRegisters) { |
| stack_passed_words += |
| 2 * (num_double_arguments - DoubleRegister::kNumRegisters); |
| } |
| // Up to five simple arguments are passed in registers r2..r6 |
| if (num_reg_arguments > kRegisterPassedArguments) { |
| stack_passed_words += num_reg_arguments - kRegisterPassedArguments; |
| } |
| return stack_passed_words; |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| int num_double_arguments, |
| Register scratch) { |
| int frame_alignment = ActivationFrameAlignment(); |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| int stack_space = kNumRequiredStackFrameSlots; |
| if (frame_alignment > kSystemPointerSize) { |
| // Make stack end at alignment and make room for stack arguments |
| // -- preserving original value of sp. |
| LoadRR(scratch, sp); |
| lay(sp, MemOperand(sp, -(stack_passed_arguments + 1) * kSystemPointerSize)); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| ClearRightImm(sp, sp, |
| Operand(base::bits::WhichPowerOfTwo(frame_alignment))); |
| StoreP(scratch, |
| MemOperand(sp, (stack_passed_arguments)*kSystemPointerSize)); |
| } else { |
| stack_space += stack_passed_arguments; |
| } |
| lay(sp, MemOperand(sp, (-stack_space) * kSystemPointerSize)); |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| Register scratch) { |
| PrepareCallCFunction(num_reg_arguments, 0, scratch); |
| } |
| |
| void TurboAssembler::MovToFloatParameter(DoubleRegister src) { Move(d0, src); } |
| |
| void TurboAssembler::MovToFloatResult(DoubleRegister src) { Move(d0, src); } |
| |
| void TurboAssembler::MovToFloatParameters(DoubleRegister src1, |
| DoubleRegister src2) { |
| if (src2 == d0) { |
| DCHECK(src1 != d2); |
| Move(d2, src2); |
| Move(d0, src1); |
| } else { |
| Move(d0, src1); |
| Move(d2, src2); |
| } |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| Move(ip, function); |
| CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments) { |
| CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunctionHelper(Register function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| |
| // Save the frame pointer and PC so that the stack layout remains iterable, |
| // even without an ExitFrame which normally exists between JS and C frames. |
| Register addr_scratch = r1; |
| // See x64 code for reasoning about how to address the isolate data fields. |
| if (root_array_available()) { |
| LoadPC(r0); |
| StoreP(r0, MemOperand(kRootRegister, |
| IsolateData::fast_c_call_caller_pc_offset())); |
| StoreP(fp, MemOperand(kRootRegister, |
| IsolateData::fast_c_call_caller_fp_offset())); |
| } else { |
| DCHECK_NOT_NULL(isolate()); |
| |
| Move(addr_scratch, |
| ExternalReference::fast_c_call_caller_pc_address(isolate())); |
| LoadPC(r0); |
| StoreP(r0, MemOperand(addr_scratch)); |
| Move(addr_scratch, |
| ExternalReference::fast_c_call_caller_fp_address(isolate())); |
| StoreP(fp, MemOperand(addr_scratch)); |
| } |
| |
| // Just call directly. The function called cannot cause a GC, or |
| // allow preemption, so the return address in the link register |
| // stays correct. |
| Register dest = function; |
| if (ABI_CALL_VIA_IP) { |
| Move(ip, function); |
| dest = ip; |
| } |
| |
| Call(dest); |
| |
| // We don't unset the PC; the FP is the source of truth. |
| Register zero_scratch = r0; |
| lghi(zero_scratch, Operand::Zero()); |
| |
| if (root_array_available()) { |
| StoreP( |
| zero_scratch, |
| MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); |
| } else { |
| DCHECK_NOT_NULL(isolate()); |
| Move(addr_scratch, |
| ExternalReference::fast_c_call_caller_fp_address(isolate())); |
| StoreP(zero_scratch, MemOperand(addr_scratch)); |
| } |
| |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; |
| if (ActivationFrameAlignment() > kSystemPointerSize) { |
| // Load the original stack pointer (pre-alignment) from the stack |
| LoadP(sp, MemOperand(sp, stack_space * kSystemPointerSize)); |
| } else { |
| la(sp, MemOperand(sp, stack_space * kSystemPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::CheckPageFlag( |
| Register object, |
| Register scratch, // scratch may be same register as object |
| int mask, Condition cc, Label* condition_met) { |
| DCHECK(cc == ne || cc == eq); |
| ClearRightImm(scratch, object, Operand(kPageSizeBits)); |
| |
| if (base::bits::IsPowerOfTwo(mask)) { |
| // If it's a power of two, we can use Test-Under-Mask Memory-Imm form |
| // which allows testing of a single byte in memory. |
| int32_t byte_offset = 4; |
| uint32_t shifted_mask = mask; |
| // Determine the byte offset to be tested |
| if (mask <= 0x80) { |
| byte_offset = kSystemPointerSize - 1; |
| } else if (mask < 0x8000) { |
| byte_offset = kSystemPointerSize - 2; |
| shifted_mask = mask >> 8; |
| } else if (mask < 0x800000) { |
| byte_offset = kSystemPointerSize - 3; |
| shifted_mask = mask >> 16; |
| } else { |
| byte_offset = kSystemPointerSize - 4; |
| shifted_mask = mask >> 24; |
| } |
| #if V8_TARGET_LITTLE_ENDIAN |
| // Reverse the byte_offset if emulating on little endian platform |
| byte_offset = kSystemPointerSize - byte_offset - 1; |
| #endif |
| tm(MemOperand(scratch, BasicMemoryChunk::kFlagsOffset + byte_offset), |
| Operand(shifted_mask)); |
| } else { |
| LoadP(scratch, MemOperand(scratch, BasicMemoryChunk::kFlagsOffset)); |
| AndP(r0, scratch, Operand(mask)); |
| } |
| // Should be okay to remove rc |
| |
| if (cc == ne) { |
| bne(condition_met); |
| } |
| if (cc == eq) { |
| beq(condition_met); |
| } |
| } |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, |
| Register reg4, Register reg5, |
| Register reg6) { |
| RegList regs = 0; |
| if (reg1.is_valid()) regs |= reg1.bit(); |
| if (reg2.is_valid()) regs |= reg2.bit(); |
| if (reg3.is_valid()) regs |= reg3.bit(); |
| if (reg4.is_valid()) regs |= reg4.bit(); |
| if (reg5.is_valid()) regs |= reg5.bit(); |
| if (reg6.is_valid()) regs |= reg6.bit(); |
| |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| Register candidate = Register::from_code(code); |
| if (regs & candidate.bit()) continue; |
| return candidate; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::mov(Register dst, const Operand& src) { |
| #if V8_TARGET_ARCH_S390X |
| int64_t value; |
| #else |
| int value; |
| #endif |
| if (src.is_heap_object_request()) { |
| RequestHeapObject(src.heap_object_request()); |
| value = 0; |
| } else { |
| value = src.immediate(); |
| } |
| |
| if (src.rmode() != RelocInfo::NONE) { |
| // some form of relocation needed |
| RecordRelocInfo(src.rmode(), value); |
| } |
| |
| #if V8_TARGET_ARCH_S390X |
| int32_t hi_32 = static_cast<int64_t>(value) >> 32; |
| int32_t lo_32 = static_cast<int32_t>(value); |
| |
| iihf(dst, Operand(hi_32)); |
| iilf(dst, Operand(lo_32)); |
| #else |
| iilf(dst, Operand(value)); |
| #endif |
| } |
| |
| void TurboAssembler::Mul32(Register dst, const MemOperand& src1) { |
| if (is_uint12(src1.offset())) { |
| ms(dst, src1); |
| } else if (is_int20(src1.offset())) { |
| msy(dst, src1); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void TurboAssembler::Mul32(Register dst, Register src1) { msr(dst, src1); } |
| |
| void TurboAssembler::Mul32(Register dst, const Operand& src1) { |
| msfi(dst, src1); |
| } |
| |
| #define Generate_MulHigh32(instr) \ |
| { \ |
| lgfr(dst, src1); \ |
| instr(dst, src2); \ |
| srlg(dst, dst, Operand(32)); \ |
| } |
| |
| void TurboAssembler::MulHigh32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_MulHigh32(msgf); |
| } |
| |
| void TurboAssembler::MulHigh32(Register dst, Register src1, Register src2) { |
| if (dst == src2) { |
| std::swap(src1, src2); |
| } |
| Generate_MulHigh32(msgfr); |
| } |
| |
| void TurboAssembler::MulHigh32(Register dst, Register src1, |
| const Operand& src2) { |
| Generate_MulHigh32(msgfi); |
| } |
| |
| #undef Generate_MulHigh32 |
| |
| #define Generate_MulHighU32(instr) \ |
| { \ |
| lr(r1, src1); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r0); \ |
| } |
| |
| void TurboAssembler::MulHighU32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_MulHighU32(ml); |
| } |
| |
| void TurboAssembler::MulHighU32(Register dst, Register src1, Register src2) { |
| Generate_MulHighU32(mlr); |
| } |
| |
| void TurboAssembler::MulHighU32(Register dst, Register src1, |
| const Operand& src2) { |
| USE(dst); |
| USE(src1); |
| USE(src2); |
| UNREACHABLE(); |
| } |
| |
| #undef Generate_MulHighU32 |
| |
| #define Generate_Mul32WithOverflowIfCCUnequal(instr) \ |
| { \ |
| lgfr(dst, src1); \ |
| instr(dst, src2); \ |
| cgfr(dst, dst); \ |
| } |
| |
| void TurboAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1, |
| const MemOperand& src2) { |
| Register result = dst; |
| if (src2.rx() == dst || src2.rb() == dst) dst = r0; |
| Generate_Mul32WithOverflowIfCCUnequal(msgf); |
| if (result != dst) llgfr(result, dst); |
| } |
| |
| void TurboAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1, |
| Register src2) { |
| if (dst == src2) { |
| std::swap(src1, src2); |
| } |
| Generate_Mul32WithOverflowIfCCUnequal(msgfr); |
| } |
| |
| void TurboAssembler::Mul32WithOverflowIfCCUnequal(Register dst, Register src1, |
| const Operand& src2) { |
| Generate_Mul32WithOverflowIfCCUnequal(msgfi); |
| } |
| |
| #undef Generate_Mul32WithOverflowIfCCUnequal |
| |
| void TurboAssembler::Mul64(Register dst, const MemOperand& src1) { |
| if (is_int20(src1.offset())) { |
| msg(dst, src1); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| void TurboAssembler::Mul64(Register dst, Register src1) { msgr(dst, src1); } |
| |
| void TurboAssembler::Mul64(Register dst, const Operand& src1) { |
| msgfi(dst, src1); |
| } |
| |
| void TurboAssembler::Mul(Register dst, Register src1, Register src2) { |
| if (CpuFeatures::IsSupported(MISC_INSTR_EXT2)) { |
| MulPWithCondition(dst, src1, src2); |
| } else { |
| if (dst == src2) { |
| MulP(dst, src1); |
| } else if (dst == src1) { |
| MulP(dst, src2); |
| } else { |
| Move(dst, src1); |
| MulP(dst, src2); |
| } |
| } |
| } |
| |
| void TurboAssembler::DivP(Register dividend, Register divider) { |
| // have to make sure the src and dst are reg pairs |
| DCHECK_EQ(dividend.code() % 2, 0); |
| #if V8_TARGET_ARCH_S390X |
| dsgr(dividend, divider); |
| #else |
| dr(dividend, divider); |
| #endif |
| } |
| |
| #define Generate_Div32(instr) \ |
| { \ |
| lgfr(r1, src1); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r1); \ |
| } |
| |
| void TurboAssembler::Div32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Div32(dsgf); |
| } |
| |
| void TurboAssembler::Div32(Register dst, Register src1, Register src2) { |
| Generate_Div32(dsgfr); |
| } |
| |
| #undef Generate_Div32 |
| |
| #define Generate_DivU32(instr) \ |
| { \ |
| lr(r0, src1); \ |
| srdl(r0, Operand(32)); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r1); \ |
| } |
| |
| void TurboAssembler::DivU32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_DivU32(dl); |
| } |
| |
| void TurboAssembler::DivU32(Register dst, Register src1, Register src2) { |
| Generate_DivU32(dlr); |
| } |
| |
| #undef Generate_DivU32 |
| |
| #define Generate_Div64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| instr(r0, src2); \ |
| lgr(dst, r1); \ |
| } |
| |
| void TurboAssembler::Div64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Div64(dsg); |
| } |
| |
| void TurboAssembler::Div64(Register dst, Register src1, Register src2) { |
| Generate_Div64(dsgr); |
| } |
| |
| #undef Generate_Div64 |
| |
| #define Generate_DivU64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| lghi(r0, Operand::Zero()); \ |
| instr(r0, src2); \ |
| lgr(dst, r1); \ |
| } |
| |
| void TurboAssembler::DivU64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_DivU64(dlg); |
| } |
| |
| void TurboAssembler::DivU64(Register dst, Register src1, Register src2) { |
| Generate_DivU64(dlgr); |
| } |
| |
| #undef Generate_DivU64 |
| |
| #define Generate_Mod32(instr) \ |
| { \ |
| lgfr(r1, src1); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r0); \ |
| } |
| |
| void TurboAssembler::Mod32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Mod32(dsgf); |
| } |
| |
| void TurboAssembler::Mod32(Register dst, Register src1, Register src2) { |
| Generate_Mod32(dsgfr); |
| } |
| |
| #undef Generate_Mod32 |
| |
| #define Generate_ModU32(instr) \ |
| { \ |
| lr(r0, src1); \ |
| srdl(r0, Operand(32)); \ |
| instr(r0, src2); \ |
| LoadlW(dst, r0); \ |
| } |
| |
| void TurboAssembler::ModU32(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_ModU32(dl); |
| } |
| |
| void TurboAssembler::ModU32(Register dst, Register src1, Register src2) { |
| Generate_ModU32(dlr); |
| } |
| |
| #undef Generate_ModU32 |
| |
| #define Generate_Mod64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| instr(r0, src2); \ |
| lgr(dst, r0); \ |
| } |
| |
| void TurboAssembler::Mod64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_Mod64(dsg); |
| } |
| |
| void TurboAssembler::Mod64(Register dst, Register src1, Register src2) { |
| Generate_Mod64(dsgr); |
| } |
| |
| #undef Generate_Mod64 |
| |
| #define Generate_ModU64(instr) \ |
| { \ |
| lgr(r1, src1); \ |
| lghi(r0, Operand::Zero()); \ |
| instr(r0, src2); \ |
| lgr(dst, r0); \ |
| } |
| |
| void TurboAssembler::ModU64(Register dst, Register src1, |
| const MemOperand& src2) { |
| Generate_ModU64(dlg); |
| } |
| |
| void TurboAssembler::ModU64(Register dst, Register src1, Register src2) { |
| Generate_ModU64(dlgr); |
| } |
| |
| #undef Generate_ModU64 |
| |
| void TurboAssembler::MulP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| msgfi(dst, opnd); |
| #else |
| msfi(dst, opnd); |
| #endif |
| } |
| |
| void TurboAssembler::MulP(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| msgr(dst, src); |
| #else |
| msr(dst, src); |
| #endif |
| } |
| |
| void TurboAssembler::MulPWithCondition(Register dst, Register src1, |
| Register src2) { |
| CHECK(CpuFeatures::IsSupported(MISC_INSTR_EXT2)); |
| #if V8_TARGET_ARCH_S390X |
| msgrkc(dst, src1, src2); |
| #else |
| msrkc(dst, src1, src2); |
| #endif |
| } |
| |
| void TurboAssembler::MulP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| if (is_uint16(opnd.offset())) { |
| ms(dst, opnd); |
| } else if (is_int20(opnd.offset())) { |
| msy(dst, opnd); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| #else |
| if (is_int20(opnd.offset())) { |
| msg(dst, opnd); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| #endif |
| } |
| |
| void TurboAssembler::Sqrt(DoubleRegister result, DoubleRegister input) { |
| sqdbr(result, input); |
| } |
| void TurboAssembler::Sqrt(DoubleRegister result, const MemOperand& input) { |
| if (is_uint12(input.offset())) { |
| sqdb(result, input); |
| } else { |
| ldy(result, input); |
| sqdbr(result, result); |
| } |
| } |
| //---------------------------------------------------------------------------- |
| // Add Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Add 32-bit (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::Add32(Register dst, const Operand& opnd) { |
| if (is_int16(opnd.immediate())) |
| ahi(dst, opnd); |
| else |
| afi(dst, opnd); |
| } |
| |
| // Add 32-bit (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::Add32_RI(Register dst, const Operand& opnd) { |
| // Just a wrapper for above |
| Add32(dst, opnd); |
| } |
| |
| // Add Pointer Size (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::AddP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| if (is_int16(opnd.immediate())) |
| aghi(dst, opnd); |
| else |
| agfi(dst, opnd); |
| #else |
| Add32(dst, opnd); |
| #endif |
| } |
| |
| // Add 32-bit (Register dst = Register src + Immediate opnd) |
| void TurboAssembler::Add32(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) { |
| if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) { |
| ahik(dst, src, opnd); |
| return; |
| } |
| lr(dst, src); |
| } |
| Add32(dst, opnd); |
| } |
| |
| // Add 32-bit (Register dst = Register src + Immediate opnd) |
| void TurboAssembler::Add32_RRI(Register dst, Register src, |
| const Operand& opnd) { |
| // Just a wrapper for above |
| Add32(dst, src, opnd); |
| } |
| |
| // Add Pointer Size (Register dst = Register src + Immediate opnd) |
| void TurboAssembler::AddP(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) { |
| if (CpuFeatures::IsSupported(DISTINCT_OPS) && is_int16(opnd.immediate())) { |
| AddPImm_RRI(dst, src, opnd); |
| return; |
| } |
| LoadRR(dst, src); |
| } |
| AddP(dst, opnd); |
| } |
| |
| // Add 32-bit (Register dst = Register dst + Register src) |
| void TurboAssembler::Add32(Register dst, Register src) { ar(dst, src); } |
| |
| // Add Pointer Size (Register dst = Register dst + Register src) |
| void TurboAssembler::AddP(Register dst, Register src) { AddRR(dst, src); } |
| |
| // Add Pointer Size with src extension |
| // (Register dst(ptr) = Register dst (ptr) + Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::AddP_ExtendSrc(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| agfr(dst, src); |
| #else |
| ar(dst, src); |
| #endif |
| } |
| |
| // Add 32-bit (Register dst = Register src1 + Register src2) |
| void TurboAssembler::Add32(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate AR/AGR, over the non clobbering ARK/AGRK |
| // as AR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| ark(dst, src1, src2); |
| return; |
| } else { |
| lr(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| ar(dst, src2); |
| } |
| |
| // Add Pointer Size (Register dst = Register src1 + Register src2) |
| void TurboAssembler::AddP(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate AR/AGR, over the non clobbering ARK/AGRK |
| // as AR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| AddP_RRR(dst, src1, src2); |
| return; |
| } else { |
| LoadRR(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| AddRR(dst, src2); |
| } |
| |
| // Add Pointer Size with src extension |
| // (Register dst (ptr) = Register dst (ptr) + Register src1 (ptr) + |
| // Register src2 (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::AddP_ExtendSrc(Register dst, Register src1, |
| Register src2) { |
| #if V8_TARGET_ARCH_S390X |
| if (dst == src2) { |
| // The source we need to sign extend is the same as result. |
| lgfr(dst, src2); |
| agr(dst, src1); |
| } else { |
| if (dst != src1) LoadRR(dst, src1); |
| agfr(dst, src2); |
| } |
| #else |
| AddP(dst, src1, src2); |
| #endif |
| } |
| |
| // Add 32-bit (Register-Memory) |
| void TurboAssembler::Add32(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| a(dst, opnd); |
| else |
| ay(dst, opnd); |
| } |
| |
| // Add Pointer Size (Register-Memory) |
| void TurboAssembler::AddP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| ag(dst, opnd); |
| #else |
| Add32(dst, opnd); |
| #endif |
| } |
| |
| // Add Pointer Size with src extension |
| // (Register dst (ptr) = Register dst (ptr) + Mem opnd (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::AddP_ExtendSrc(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| agf(dst, opnd); |
| #else |
| Add32(dst, opnd); |
| #endif |
| } |
| |
| // Add 32-bit (Memory - Immediate) |
| void TurboAssembler::Add32(const MemOperand& opnd, const Operand& imm) { |
| DCHECK(is_int8(imm.immediate())); |
| DCHECK(is_int20(opnd.offset())); |
| DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT)); |
| asi(opnd, imm); |
| } |
| |
| // Add Pointer-sized (Memory - Immediate) |
| void TurboAssembler::AddP(const MemOperand& opnd, const Operand& imm) { |
| DCHECK(is_int8(imm.immediate())); |
| DCHECK(is_int20(opnd.offset())); |
| DCHECK(CpuFeatures::IsSupported(GENERAL_INSTR_EXT)); |
| #if V8_TARGET_ARCH_S390X |
| agsi(opnd, imm); |
| #else |
| asi(opnd, imm); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Add Logical Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Add Logical With Carry 32-bit (Register dst = Register src1 + Register src2) |
| void TurboAssembler::AddLogicalWithCarry32(Register dst, Register src1, |
| Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| alcr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| alcr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| alcr(dst, src1); |
| } |
| } |
| |
| // Add Logical 32-bit (Register dst = Register src1 + Register src2) |
| void TurboAssembler::AddLogical32(Register dst, Register src1, Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| alr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| alr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| alr(dst, src1); |
| } |
| } |
| |
| // Add Logical 32-bit (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::AddLogical(Register dst, const Operand& imm) { |
| alfi(dst, imm); |
| } |
| |
| // Add Logical Pointer Size (Register dst = Register dst + Immediate opnd) |
| void TurboAssembler::AddLogicalP(Register dst, const Operand& imm) { |
| #ifdef V8_TARGET_ARCH_S390X |
| algfi(dst, imm); |
| #else |
| AddLogical(dst, imm); |
| #endif |
| } |
| |
| // Add Logical 32-bit (Register-Memory) |
| void TurboAssembler::AddLogical(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| al_z(dst, opnd); |
| else |
| aly(dst, opnd); |
| } |
| |
| // Add Logical Pointer Size (Register-Memory) |
| void TurboAssembler::AddLogicalP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| alg(dst, opnd); |
| #else |
| AddLogical(dst, opnd); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Subtract Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Subtract Logical With Carry 32-bit (Register dst = Register src1 - Register |
| // src2) |
| void TurboAssembler::SubLogicalWithBorrow32(Register dst, Register src1, |
| Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| slbr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| slbr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| lr(r0, dst); |
| SubLogicalWithBorrow32(dst, src1, r0); |
| } |
| } |
| |
| // Subtract Logical 32-bit (Register dst = Register src1 - Register src2) |
| void TurboAssembler::SubLogical32(Register dst, Register src1, Register src2) { |
| if (dst != src2 && dst != src1) { |
| lr(dst, src1); |
| slr(dst, src2); |
| } else if (dst != src2) { |
| // dst == src1 |
| DCHECK(dst == src1); |
| slr(dst, src2); |
| } else { |
| // dst == src2 |
| DCHECK(dst == src2); |
| lr(r0, dst); |
| SubLogical32(dst, src1, r0); |
| } |
| } |
| |
| // Subtract 32-bit (Register dst = Register dst - Immediate opnd) |
| void TurboAssembler::Sub32(Register dst, const Operand& imm) { |
| Add32(dst, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract Pointer Size (Register dst = Register dst - Immediate opnd) |
| void TurboAssembler::SubP(Register dst, const Operand& imm) { |
| AddP(dst, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract 32-bit (Register dst = Register src - Immediate opnd) |
| void TurboAssembler::Sub32(Register dst, Register src, const Operand& imm) { |
| Add32(dst, src, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract Pointer Sized (Register dst = Register src - Immediate opnd) |
| void TurboAssembler::SubP(Register dst, Register src, const Operand& imm) { |
| AddP(dst, src, Operand(-(imm.immediate()))); |
| } |
| |
| // Subtract 32-bit (Register dst = Register dst - Register src) |
| void TurboAssembler::Sub32(Register dst, Register src) { sr(dst, src); } |
| |
| // Subtract Pointer Size (Register dst = Register dst - Register src) |
| void TurboAssembler::SubP(Register dst, Register src) { SubRR(dst, src); } |
| |
| // Subtract Pointer Size with src extension |
| // (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::SubP_ExtendSrc(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| sgfr(dst, src); |
| #else |
| sr(dst, src); |
| #endif |
| } |
| |
| // Subtract 32-bit (Register = Register - Register) |
| void TurboAssembler::Sub32(Register dst, Register src1, Register src2) { |
| // Use non-clobbering version if possible |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| srk(dst, src1, src2); |
| return; |
| } |
| if (dst != src1 && dst != src2) lr(dst, src1); |
| // In scenario where we have dst = src - dst, we need to swap and negate |
| if (dst != src1 && dst == src2) { |
| Label done; |
| lcr(dst, dst); // dst = -dst |
| b(overflow, &done); |
| ar(dst, src1); // dst = dst + src |
| bind(&done); |
| } else { |
| sr(dst, src2); |
| } |
| } |
| |
| // Subtract Pointer Sized (Register = Register - Register) |
| void TurboAssembler::SubP(Register dst, Register src1, Register src2) { |
| // Use non-clobbering version if possible |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| SubP_RRR(dst, src1, src2); |
| return; |
| } |
| if (dst != src1 && dst != src2) LoadRR(dst, src1); |
| // In scenario where we have dst = src - dst, we need to swap and negate |
| if (dst != src1 && dst == src2) { |
| Label done; |
| LoadComplementRR(dst, dst); // dst = -dst |
| b(overflow, &done); |
| AddP(dst, src1); // dst = dst + src |
| bind(&done); |
| } else { |
| SubP(dst, src2); |
| } |
| } |
| |
| // Subtract Pointer Size with src extension |
| // (Register dst(ptr) = Register dst (ptr) - Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::SubP_ExtendSrc(Register dst, Register src1, |
| Register src2) { |
| #if V8_TARGET_ARCH_S390X |
| if (dst != src1 && dst != src2) LoadRR(dst, src1); |
| |
| // In scenario where we have dst = src - dst, we need to swap and negate |
| if (dst != src1 && dst == src2) { |
| lgfr(dst, dst); // Sign extend this operand first. |
| LoadComplementRR(dst, dst); // dst = -dst |
| AddP(dst, src1); // dst = -dst + src |
| } else { |
| sgfr(dst, src2); |
| } |
| #else |
| SubP(dst, src1, src2); |
| #endif |
| } |
| |
| // Subtract 32-bit (Register-Memory) |
| void TurboAssembler::Sub32(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| s(dst, opnd); |
| else |
| sy(dst, opnd); |
| } |
| |
| // Subtract Pointer Sized (Register - Memory) |
| void TurboAssembler::SubP(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| sg(dst, opnd); |
| #else |
| Sub32(dst, opnd); |
| #endif |
| } |
| |
| void TurboAssembler::MovIntToFloat(DoubleRegister dst, Register src) { |
| sllg(r0, src, Operand(32)); |
| ldgr(dst, r0); |
| } |
| |
| void TurboAssembler::MovFloatToInt(Register dst, DoubleRegister src) { |
| lgdr(dst, src); |
| srlg(dst, dst, Operand(32)); |
| } |
| |
| void TurboAssembler::SubP_ExtendSrc(Register dst, const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| sgf(dst, opnd); |
| #else |
| Sub32(dst, opnd); |
| #endif |
| } |
| |
| // Load And Subtract 32-bit (similar to laa/lan/lao/lax) |
| void TurboAssembler::LoadAndSub32(Register dst, Register src, |
| const MemOperand& opnd) { |
| lcr(dst, src); |
| laa(dst, dst, opnd); |
| } |
| |
| void TurboAssembler::LoadAndSub64(Register dst, Register src, |
| const MemOperand& opnd) { |
| lcgr(dst, src); |
| laag(dst, dst, opnd); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Subtract Logical Instructions |
| //---------------------------------------------------------------------------- |
| |
| // Subtract Logical 32-bit (Register - Memory) |
| void TurboAssembler::SubLogical(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| sl(dst, opnd); |
| else |
| sly(dst, opnd); |
| } |
| |
| // Subtract Logical Pointer Sized (Register - Memory) |
| void TurboAssembler::SubLogicalP(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| slgf(dst, opnd); |
| #else |
| SubLogical(dst, opnd); |
| #endif |
| } |
| |
| // Subtract Logical Pointer Size with src extension |
| // (Register dst (ptr) = Register dst (ptr) - Mem opnd (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::SubLogicalP_ExtendSrc(Register dst, |
| const MemOperand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(opnd.offset())); |
| slgf(dst, opnd); |
| #else |
| SubLogical(dst, opnd); |
| #endif |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Bitwise Operations |
| //---------------------------------------------------------------------------- |
| |
| // AND 32-bit - dst = dst & src |
| void TurboAssembler::And(Register dst, Register src) { nr(dst, src); } |
| |
| // AND Pointer Size - dst = dst & src |
| void TurboAssembler::AndP(Register dst, Register src) { AndRR(dst, src); } |
| |
| // Non-clobbering AND 32-bit - dst = src1 & src1 |
| void TurboAssembler::And(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| nrk(dst, src1, src2); |
| return; |
| } else { |
| lr(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| And(dst, src2); |
| } |
| |
| // Non-clobbering AND pointer size - dst = src1 & src1 |
| void TurboAssembler::AndP(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| AndP_RRR(dst, src1, src2); |
| return; |
| } else { |
| LoadRR(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| AndP(dst, src2); |
| } |
| |
| // AND 32-bit (Reg - Mem) |
| void TurboAssembler::And(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| n(dst, opnd); |
| else |
| ny(dst, opnd); |
| } |
| |
| // AND Pointer Size (Reg - Mem) |
| void TurboAssembler::AndP(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| ng(dst, opnd); |
| #else |
| And(dst, opnd); |
| #endif |
| } |
| |
| // AND 32-bit - dst = dst & imm |
| void TurboAssembler::And(Register dst, const Operand& opnd) { nilf(dst, opnd); } |
| |
| // AND Pointer Size - dst = dst & imm |
| void TurboAssembler::AndP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| intptr_t value = opnd.immediate(); |
| if (value >> 32 != -1) { |
| // this may not work b/c condition code won't be set correctly |
| nihf(dst, Operand(value >> 32)); |
| } |
| nilf(dst, Operand(value & 0xFFFFFFFF)); |
| #else |
| And(dst, opnd); |
| #endif |
| } |
| |
| // AND 32-bit - dst = src & imm |
| void TurboAssembler::And(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) lr(dst, src); |
| nilf(dst, opnd); |
| } |
| |
| // AND Pointer Size - dst = src & imm |
| void TurboAssembler::AndP(Register dst, Register src, const Operand& opnd) { |
| // Try to exploit RISBG first |
| intptr_t value = opnd.immediate(); |
| if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { |
| intptr_t shifted_value = value; |
| int trailing_zeros = 0; |
| |
| // We start checking how many trailing zeros are left at the end. |
| while ((0 != shifted_value) && (0 == (shifted_value & 1))) { |
| trailing_zeros++; |
| shifted_value >>= 1; |
| } |
| |
| // If temp (value with right-most set of zeros shifted out) is 1 less |
| // than power of 2, we have consecutive bits of 1. |
| // Special case: If shift_value is zero, we cannot use RISBG, as it requires |
| // selection of at least 1 bit. |
| if ((0 != shifted_value) && base::bits::IsPowerOfTwo(shifted_value + 1)) { |
| int startBit = |
| base::bits::CountLeadingZeros64(shifted_value) - trailing_zeros; |
| int endBit = 63 - trailing_zeros; |
| // Start: startBit, End: endBit, Shift = 0, true = zero unselected bits. |
| RotateInsertSelectBits(dst, src, Operand(startBit), Operand(endBit), |
| Operand::Zero(), true); |
| return; |
| } else if (-1 == shifted_value) { |
| // A Special case in which all top bits up to MSB are 1's. In this case, |
| // we can set startBit to be 0. |
| int endBit = 63 - trailing_zeros; |
| RotateInsertSelectBits(dst, src, Operand::Zero(), Operand(endBit), |
| Operand::Zero(), true); |
| return; |
| } |
| } |
| |
| // If we are &'ing zero, we can just whack the dst register and skip copy |
| if (dst != src && (0 != value)) LoadRR(dst, src); |
| AndP(dst, opnd); |
| } |
| |
| // OR 32-bit - dst = dst & src |
| void TurboAssembler::Or(Register dst, Register src) { or_z(dst, src); } |
| |
| // OR Pointer Size - dst = dst & src |
| void TurboAssembler::OrP(Register dst, Register src) { OrRR(dst, src); } |
| |
| // Non-clobbering OR 32-bit - dst = src1 & src1 |
| void TurboAssembler::Or(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| ork(dst, src1, src2); |
| return; |
| } else { |
| lr(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| Or(dst, src2); |
| } |
| |
| // Non-clobbering OR pointer size - dst = src1 & src1 |
| void TurboAssembler::OrP(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| OrP_RRR(dst, src1, src2); |
| return; |
| } else { |
| LoadRR(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| OrP(dst, src2); |
| } |
| |
| // OR 32-bit (Reg - Mem) |
| void TurboAssembler::Or(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| o(dst, opnd); |
| else |
| oy(dst, opnd); |
| } |
| |
| // OR Pointer Size (Reg - Mem) |
| void TurboAssembler::OrP(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| og(dst, opnd); |
| #else |
| Or(dst, opnd); |
| #endif |
| } |
| |
| // OR 32-bit - dst = dst & imm |
| void TurboAssembler::Or(Register dst, const Operand& opnd) { oilf(dst, opnd); } |
| |
| // OR Pointer Size - dst = dst & imm |
| void TurboAssembler::OrP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| intptr_t value = opnd.immediate(); |
| if (value >> 32 != 0) { |
| // this may not work b/c condition code won't be set correctly |
| oihf(dst, Operand(value >> 32)); |
| } |
| oilf(dst, Operand(value & 0xFFFFFFFF)); |
| #else |
| Or(dst, opnd); |
| #endif |
| } |
| |
| // OR 32-bit - dst = src & imm |
| void TurboAssembler::Or(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) lr(dst, src); |
| oilf(dst, opnd); |
| } |
| |
| // OR Pointer Size - dst = src & imm |
| void TurboAssembler::OrP(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) LoadRR(dst, src); |
| OrP(dst, opnd); |
| } |
| |
| // XOR 32-bit - dst = dst & src |
| void TurboAssembler::Xor(Register dst, Register src) { xr(dst, src); } |
| |
| // XOR Pointer Size - dst = dst & src |
| void TurboAssembler::XorP(Register dst, Register src) { XorRR(dst, src); } |
| |
| // Non-clobbering XOR 32-bit - dst = src1 & src1 |
| void TurboAssembler::Xor(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| xrk(dst, src1, src2); |
| return; |
| } else { |
| lr(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| Xor(dst, src2); |
| } |
| |
| // Non-clobbering XOR pointer size - dst = src1 & src1 |
| void TurboAssembler::XorP(Register dst, Register src1, Register src2) { |
| if (dst != src1 && dst != src2) { |
| // We prefer to generate XR/XGR, over the non clobbering XRK/XRK |
| // as XR is a smaller instruction |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| XorP_RRR(dst, src1, src2); |
| return; |
| } else { |
| LoadRR(dst, src1); |
| } |
| } else if (dst == src2) { |
| src2 = src1; |
| } |
| XorP(dst, src2); |
| } |
| |
| // XOR 32-bit (Reg - Mem) |
| void TurboAssembler::Xor(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| x(dst, opnd); |
| else |
| xy(dst, opnd); |
| } |
| |
| // XOR Pointer Size (Reg - Mem) |
| void TurboAssembler::XorP(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| xg(dst, opnd); |
| #else |
| Xor(dst, opnd); |
| #endif |
| } |
| |
| // XOR 32-bit - dst = dst & imm |
| void TurboAssembler::Xor(Register dst, const Operand& opnd) { xilf(dst, opnd); } |
| |
| // XOR Pointer Size - dst = dst & imm |
| void TurboAssembler::XorP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| intptr_t value = opnd.immediate(); |
| xihf(dst, Operand(value >> 32)); |
| xilf(dst, Operand(value & 0xFFFFFFFF)); |
| #else |
| Xor(dst, opnd); |
| #endif |
| } |
| |
| // XOR 32-bit - dst = src & imm |
| void TurboAssembler::Xor(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) lr(dst, src); |
| xilf(dst, opnd); |
| } |
| |
| // XOR Pointer Size - dst = src & imm |
| void TurboAssembler::XorP(Register dst, Register src, const Operand& opnd) { |
| if (dst != src) LoadRR(dst, src); |
| XorP(dst, opnd); |
| } |
| |
| void TurboAssembler::Not32(Register dst, Register src) { |
| if (src != no_reg && src != dst) lr(dst, src); |
| xilf(dst, Operand(0xFFFFFFFF)); |
| } |
| |
| void TurboAssembler::Not64(Register dst, Register src) { |
| if (src != no_reg && src != dst) lgr(dst, src); |
| xihf(dst, Operand(0xFFFFFFFF)); |
| xilf(dst, Operand(0xFFFFFFFF)); |
| } |
| |
| void TurboAssembler::NotP(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| Not64(dst, src); |
| #else |
| Not32(dst, src); |
| #endif |
| } |
| |
| // works the same as mov |
| void TurboAssembler::Load(Register dst, const Operand& opnd) { |
| intptr_t value = opnd.immediate(); |
| if (is_int16(value)) { |
| #if V8_TARGET_ARCH_S390X |
| lghi(dst, opnd); |
| #else |
| lhi(dst, opnd); |
| #endif |
| } else if (is_int32(value)) { |
| #if V8_TARGET_ARCH_S390X |
| lgfi(dst, opnd); |
| #else |
| iilf(dst, opnd); |
| #endif |
| } else if (is_uint32(value)) { |
| #if V8_TARGET_ARCH_S390X |
| llilf(dst, opnd); |
| #else |
| iilf(dst, opnd); |
| #endif |
| } else { |
| int32_t hi_32 = static_cast<int64_t>(value) >> 32; |
| int32_t lo_32 = static_cast<int32_t>(value); |
| |
| iihf(dst, Operand(hi_32)); |
| iilf(dst, Operand(lo_32)); |
| } |
| } |
| |
| void TurboAssembler::Load(Register dst, const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| lgf(dst, opnd); // 64<-32 |
| #else |
| if (is_uint12(opnd.offset())) { |
| l(dst, opnd); |
| } else { |
| ly(dst, opnd); |
| } |
| #endif |
| } |
| |
| void TurboAssembler::LoadPositiveP(Register result, Register input) { |
| #if V8_TARGET_ARCH_S390X |
| lpgr(result, input); |
| #else |
| lpr(result, input); |
| #endif |
| } |
| |
| void TurboAssembler::LoadPositive32(Register result, Register input) { |
| lpr(result, input); |
| lgfr(result, result); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // Compare Helpers |
| //----------------------------------------------------------------------------- |
| |
| // Compare 32-bit Register vs Register |
| void TurboAssembler::Cmp32(Register src1, Register src2) { cr_z(src1, src2); } |
| |
| // Compare Pointer Sized Register vs Register |
| void TurboAssembler::CmpP(Register src1, Register src2) { |
| #if V8_TARGET_ARCH_S390X |
| cgr(src1, src2); |
| #else |
| Cmp32(src1, src2); |
| #endif |
| } |
| |
| // Compare 32-bit Register vs Immediate |
| // This helper will set up proper relocation entries if required. |
| void TurboAssembler::Cmp32(Register dst, const Operand& opnd) { |
| if (opnd.rmode() == RelocInfo::NONE) { |
| intptr_t value = opnd.immediate(); |
| if (is_int16(value)) |
| chi(dst, opnd); |
| else |
| cfi(dst, opnd); |
| } else { |
| // Need to generate relocation record here |
| RecordRelocInfo(opnd.rmode(), opnd.immediate()); |
| cfi(dst, opnd); |
| } |
| } |
| |
| // Compare Pointer Sized Register vs Immediate |
| // This helper will set up proper relocation entries if required. |
| void TurboAssembler::CmpP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| if (opnd.rmode() == RelocInfo::NONE) { |
| cgfi(dst, opnd); |
| } else { |
| mov(r0, opnd); // Need to generate 64-bit relocation |
| cgr(dst, r0); |
| } |
| #else |
| Cmp32(dst, opnd); |
| #endif |
| } |
| |
| // Compare 32-bit Register vs Memory |
| void TurboAssembler::Cmp32(Register dst, const MemOperand& opnd) { |
| // make sure offset is within 20 bit range |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| c(dst, opnd); |
| else |
| cy(dst, opnd); |
| } |
| |
| // Compare Pointer Size Register vs Memory |
| void TurboAssembler::CmpP(Register dst, const MemOperand& opnd) { |
| // make sure offset is within 20 bit range |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| cg(dst, opnd); |
| #else |
| Cmp32(dst, opnd); |
| #endif |
| } |
| |
| // Using cs or scy based on the offset |
| void TurboAssembler::CmpAndSwap(Register old_val, Register new_val, |
| const MemOperand& opnd) { |
| if (is_uint12(opnd.offset())) { |
| cs(old_val, new_val, opnd); |
| } else { |
| csy(old_val, new_val, opnd); |
| } |
| } |
| |
| void TurboAssembler::CmpAndSwap64(Register old_val, Register new_val, |
| const MemOperand& opnd) { |
| DCHECK(is_int20(opnd.offset())); |
| csg(old_val, new_val, opnd); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // Compare Logical Helpers |
| //----------------------------------------------------------------------------- |
| |
| // Compare Logical 32-bit Register vs Register |
| void TurboAssembler::CmpLogical32(Register dst, Register src) { clr(dst, src); } |
| |
| // Compare Logical Pointer Sized Register vs Register |
| void TurboAssembler::CmpLogicalP(Register dst, Register src) { |
| #ifdef V8_TARGET_ARCH_S390X |
| clgr(dst, src); |
| #else |
| CmpLogical32(dst, src); |
| #endif |
| } |
| |
| // Compare Logical 32-bit Register vs Immediate |
| void TurboAssembler::CmpLogical32(Register dst, const Operand& opnd) { |
| clfi(dst, opnd); |
| } |
| |
| // Compare Logical Pointer Sized Register vs Immediate |
| void TurboAssembler::CmpLogicalP(Register dst, const Operand& opnd) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK_EQ(static_cast<uint32_t>(opnd.immediate() >> 32), 0); |
| clgfi(dst, opnd); |
| #else |
| CmpLogical32(dst, opnd); |
| #endif |
| } |
| |
| // Compare Logical 32-bit Register vs Memory |
| void TurboAssembler::CmpLogical32(Register dst, const MemOperand& opnd) { |
| // make sure offset is within 20 bit range |
| DCHECK(is_int20(opnd.offset())); |
| if (is_uint12(opnd.offset())) |
| cl(dst, opnd); |
| else |
| cly(dst, opnd); |
| } |
| |
| // Compare Logical Pointer Sized Register vs Memory |
| void TurboAssembler::CmpLogicalP(Register dst, const MemOperand& opnd) { |
| // make sure offset is within 20 bit range |
| DCHECK(is_int20(opnd.offset())); |
| #if V8_TARGET_ARCH_S390X |
| clg(dst, opnd); |
| #else |
| CmpLogical32(dst, opnd); |
| #endif |
| } |
| |
| // Compare Logical Byte (Mem - Imm) |
| void TurboAssembler::CmpLogicalByte(const MemOperand& mem, const Operand& imm) { |
| DCHECK(is_uint8(imm.immediate())); |
| if (is_uint12(mem.offset())) |
| cli(mem, imm); |
| else |
| cliy(mem, imm); |
| } |
| |
| void TurboAssembler::Branch(Condition c, const Operand& opnd) { |
| intptr_t value = opnd.immediate(); |
| if (is_int16(value)) |
| brc(c, opnd); |
| else |
| brcl(c, opnd); |
| } |
| |
| // Branch On Count. Decrement R1, and branch if R1 != 0. |
| void TurboAssembler::BranchOnCount(Register r1, Label* l) { |
| int32_t offset = branch_offset(l); |
| if (is_int16(offset)) { |
| #if V8_TARGET_ARCH_S390X |
| brctg(r1, Operand(offset)); |
| #else |
| brct(r1, Operand(offset)); |
| #endif |
| } else { |
| AddP(r1, Operand(-1)); |
| Branch(ne, Operand(offset)); |
| } |
| } |
| |
| void TurboAssembler::LoadIntLiteral(Register dst, int value) { |
| Load(dst, Operand(value)); |
| } |
| |
| void TurboAssembler::LoadSmiLiteral(Register dst, Smi smi) { |
| intptr_t value = static_cast<intptr_t>(smi.ptr()); |
| #if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH) |
| llilf(dst, Operand(value)); |
| #else |
| DCHECK_EQ(value & 0xFFFFFFFF, 0); |
| // The smi value is loaded in upper 32-bits. Lower 32-bit are zeros. |
| llihf(dst, Operand(value >> 32)); |
| #endif |
| } |
| |
| void TurboAssembler::LoadDoubleLiteral(DoubleRegister result, uint64_t value, |
| Register scratch) { |
| uint32_t hi_32 = value >> 32; |
| uint32_t lo_32 = static_cast<uint32_t>(value); |
| |
| // Load the 64-bit value into a GPR, then transfer it to FPR via LDGR |
| if (value == 0) { |
| lzdr(result); |
| } else if (lo_32 == 0) { |
| llihf(scratch, Operand(hi_32)); |
| ldgr(result, scratch); |
| } else { |
| iihf(scratch, Operand(hi_32)); |
| iilf(scratch, Operand(lo_32)); |
| ldgr(result, scratch); |
| } |
| } |
| |
| void TurboAssembler::LoadDoubleLiteral(DoubleRegister result, double value, |
| Register scratch) { |
| uint64_t int_val = bit_cast<uint64_t, double>(value); |
| LoadDoubleLiteral(result, int_val, scratch); |
| } |
| |
| void TurboAssembler::LoadFloat32Literal(DoubleRegister result, float value, |
| Register scratch) { |
| uint64_t int_val = static_cast<uint64_t>(bit_cast<uint32_t, float>(value)) |
| << 32; |
| LoadDoubleLiteral(result, int_val, scratch); |
| } |
| |
| void TurboAssembler::CmpSmiLiteral(Register src1, Smi smi, Register scratch) { |
| #if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH) |
| // CFI takes 32-bit immediate. |
| cfi(src1, Operand(smi)); |
| #else |
| if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| cih(src1, Operand(static_cast<intptr_t>(smi.ptr()) >> 32)); |
| } else { |
| LoadSmiLiteral(scratch, smi); |
| cgr(src1, scratch); |
| } |
| #endif |
| } |
| |
| // Load a "pointer" sized value from the memory location |
| void TurboAssembler::LoadP(Register dst, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| #if V8_TARGET_ARCH_S390X |
| MemOperand src = mem; |
| if (!is_int20(offset)) { |
| DCHECK(scratch != no_reg && scratch != r0 && mem.rx() == r0); |
| DCHECK(scratch != mem.rb()); |
| LoadIntLiteral(scratch, offset); |
| src = MemOperand(mem.rb(), scratch); |
| } |
| lg(dst, src); |
| #else |
| if (is_uint12(offset)) { |
| l(dst, mem); |
| } else if (is_int20(offset)) { |
| ly(dst, mem); |
| } else { |
| DCHECK(scratch != no_reg && scratch != r0 && mem.rx() == r0); |
| DCHECK(scratch != mem.rb()); |
| LoadIntLiteral(scratch, offset); |
| l(dst, MemOperand(mem.rb(), scratch)); |
| } |
| #endif |
| } |
| |
| // Store a "pointer" sized value to the memory location |
| void TurboAssembler::StoreP(Register src, const MemOperand& mem, |
| Register scratch) { |
| if (!is_int20(mem.offset())) { |
| DCHECK(scratch != no_reg); |
| DCHECK(scratch != r0); |
| LoadIntLiteral(scratch, mem.offset()); |
| #if V8_TARGET_ARCH_S390X |
| stg(src, MemOperand(mem.rb(), scratch)); |
| #else |
| st(src, MemOperand(mem.rb(), scratch)); |
| #endif |
| } else { |
| #if V8_TARGET_ARCH_S390X |
| stg(src, mem); |
| #else |
| // StoreW will try to generate ST if offset fits, otherwise |
| // it'll generate STY. |
| StoreW(src, mem); |
| #endif |
| } |
| } |
| |
| // Store a "pointer" sized constant to the memory location |
| void TurboAssembler::StoreP(const MemOperand& mem, const Operand& opnd, |
| Register scratch) { |
| // Relocations not supported |
| DCHECK_EQ(opnd.rmode(), RelocInfo::NONE); |
| |
| // Try to use MVGHI/MVHI |
| if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_uint12(mem.offset()) && |
| mem.getIndexRegister() == r0 && is_int16(opnd.immediate())) { |
| #if V8_TARGET_ARCH_S390X |
| mvghi(mem, opnd); |
| #else |
| mvhi(mem, opnd); |
| #endif |
| } else { |
| LoadImmP(scratch, opnd); |
| StoreP(scratch, mem); |
| } |
| } |
| |
| void TurboAssembler::LoadMultipleP(Register dst1, Register dst2, |
| const MemOperand& mem) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(mem.offset())); |
| lmg(dst1, dst2, mem); |
| #else |
| if (is_uint12(mem.offset())) { |
| lm(dst1, dst2, mem); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| lmy(dst1, dst2, mem); |
| } |
| #endif |
| } |
| |
| void TurboAssembler::StoreMultipleP(Register src1, Register src2, |
| const MemOperand& mem) { |
| #if V8_TARGET_ARCH_S390X |
| DCHECK(is_int20(mem.offset())); |
| stmg(src1, src2, mem); |
| #else |
| if (is_uint12(mem.offset())) { |
| stm(src1, src2, mem); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| stmy(src1, src2, mem); |
| } |
| #endif |
| } |
| |
| void TurboAssembler::LoadMultipleW(Register dst1, Register dst2, |
| const MemOperand& mem) { |
| if (is_uint12(mem.offset())) { |
| lm(dst1, dst2, mem); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| lmy(dst1, dst2, mem); |
| } |
| } |
| |
| void TurboAssembler::StoreMultipleW(Register src1, Register src2, |
| const MemOperand& mem) { |
| if (is_uint12(mem.offset())) { |
| stm(src1, src2, mem); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| stmy(src1, src2, mem); |
| } |
| } |
| |
| // Load 32-bits and sign extend if necessary. |
| void TurboAssembler::LoadW(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| lgfr(dst, src); |
| #else |
| if (dst != src) lr(dst, src); |
| #endif |
| } |
| |
| // Load 32-bits and sign extend if necessary. |
| void TurboAssembler::LoadW(Register dst, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int20(offset)) { |
| DCHECK(scratch != no_reg); |
| LoadIntLiteral(scratch, offset); |
| #if V8_TARGET_ARCH_S390X |
| lgf(dst, MemOperand(mem.rb(), scratch)); |
| #else |
| l(dst, MemOperand(mem.rb(), scratch)); |
| #endif |
| } else { |
| #if V8_TARGET_ARCH_S390X |
| lgf(dst, mem); |
| #else |
| if (is_uint12(offset)) { |
| l(dst, mem); |
| } else { |
| ly(dst, mem); |
| } |
| #endif |
| } |
| } |
| |
| // Load 32-bits and zero extend if necessary. |
| void TurboAssembler::LoadlW(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| llgfr(dst, src); |
| #else |
| if (dst != src) lr(dst, src); |
| #endif |
| } |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand of RX or RXY format |
| void TurboAssembler::LoadlW(Register dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.rb(); |
| int offset = mem.offset(); |
| |
| #if V8_TARGET_ARCH_S390X |
| if (is_int20(offset)) { |
| llgf(dst, mem); |
| } else if (scratch != no_reg) { |
| // Materialize offset into scratch register. |
| LoadIntLiteral(scratch, offset); |
| llgf(dst, MemOperand(base, scratch)); |
| } else { |
| DCHECK(false); |
| } |
| #else |
| bool use_RXform = false; |
| bool use_RXYform = false; |
| if (is_uint12(offset)) { |
| // RX-format supports unsigned 12-bits offset. |
| use_RXform = true; |
| } else if (is_int20(offset)) { |
| // RXY-format supports signed 20-bits offset. |
| use_RXYform = true; |
| } else if (scratch != no_reg) { |
| // Materialize offset into scratch register. |
| LoadIntLiteral(scratch, offset); |
| } else { |
| DCHECK(false); |
| } |
| |
| if (use_RXform) { |
| l(dst, mem); |
| } else if (use_RXYform) { |
| ly(dst, mem); |
| } else { |
| ly(dst, MemOperand(base, scratch)); |
| } |
| #endif |
| } |
| |
| void TurboAssembler::LoadLogicalHalfWordP(Register dst, const MemOperand& mem) { |
| #if V8_TARGET_ARCH_S390X |
| llgh(dst, mem); |
| #else |
| llh(dst, mem); |
| #endif |
| } |
| |
| void TurboAssembler::LoadLogicalHalfWordP(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| llghr(dst, src); |
| #else |
| llhr(dst, src); |
| #endif |
| } |
| |
| void TurboAssembler::LoadB(Register dst, const MemOperand& mem) { |
| #if V8_TARGET_ARCH_S390X |
| lgb(dst, mem); |
| #else |
| lb(dst, mem); |
| #endif |
| } |
| |
| void TurboAssembler::LoadB(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| lgbr(dst, src); |
| #else |
| lbr(dst, src); |
| #endif |
| } |
| |
| void TurboAssembler::LoadlB(Register dst, const MemOperand& mem) { |
| #if V8_TARGET_ARCH_S390X |
| llgc(dst, mem); |
| #else |
| llc(dst, mem); |
| #endif |
| } |
| |
| void TurboAssembler::LoadlB(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| llgcr(dst, src); |
| #else |
| llcr(dst, src); |
| #endif |
| } |
| |
| void TurboAssembler::LoadLogicalReversedWordP(Register dst, |
| const MemOperand& mem) { |
| lrv(dst, mem); |
| LoadlW(dst, dst); |
| } |
| |
| void TurboAssembler::LoadLogicalReversedHalfWordP(Register dst, |
| const MemOperand& mem) { |
| lrvh(dst, mem); |
| LoadLogicalHalfWordP(dst, dst); |
| } |
| |
| // Load And Test (Reg <- Reg) |
| void TurboAssembler::LoadAndTest32(Register dst, Register src) { |
| ltr(dst, src); |
| } |
| |
| // Load And Test |
| // (Register dst(ptr) = Register src (32 | 32->64)) |
| // src is treated as a 32-bit signed integer, which is sign extended to |
| // 64-bit if necessary. |
| void TurboAssembler::LoadAndTestP_ExtendSrc(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| ltgfr(dst, src); |
| #else |
| ltr(dst, src); |
| #endif |
| } |
| |
| // Load And Test Pointer Sized (Reg <- Reg) |
| void TurboAssembler::LoadAndTestP(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| ltgr(dst, src); |
| #else |
| ltr(dst, src); |
| #endif |
| } |
| |
| // Load And Test 32-bit (Reg <- Mem) |
| void TurboAssembler::LoadAndTest32(Register dst, const MemOperand& mem) { |
| lt_z(dst, mem); |
| } |
| |
| // Load And Test Pointer Sized (Reg <- Mem) |
| void TurboAssembler::LoadAndTestP(Register dst, const MemOperand& mem) { |
| #if V8_TARGET_ARCH_S390X |
| ltg(dst, mem); |
| #else |
| lt_z(dst, mem); |
| #endif |
| } |
| |
| // Load On Condition Pointer Sized (Reg <- Reg) |
| void TurboAssembler::LoadOnConditionP(Condition cond, Register dst, |
| Register src) { |
| #if V8_TARGET_ARCH_S390X |
| locgr(cond, dst, src); |
| #else |
| locr(cond, dst, src); |
| #endif |
| } |
| |
| // Load Double Precision (64-bit) Floating Point number from memory |
| void TurboAssembler::LoadDouble(DoubleRegister dst, const MemOperand& mem) { |
| // for 32bit and 64bit we all use 64bit floating point regs |
| if (is_uint12(mem.offset())) { |
| ld(dst, mem); |
| } else { |
| ldy(dst, mem); |
| } |
| } |
| |
| // Load Single Precision (32-bit) Floating Point number from memory |
| void TurboAssembler::LoadFloat32(DoubleRegister dst, const MemOperand& mem) { |
| if (is_uint12(mem.offset())) { |
| le_z(dst, mem); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| ley(dst, mem); |
| } |
| } |
| |
| // Load Single Precision (32-bit) Floating Point number from memory, |
| // and convert to Double Precision (64-bit) |
| void TurboAssembler::LoadFloat32ConvertToDouble(DoubleRegister dst, |
| const MemOperand& mem) { |
| LoadFloat32(dst, mem); |
| ldebr(dst, dst); |
| } |
| |
| void TurboAssembler::LoadSimd128(Simd128Register dst, const MemOperand& mem, |
| Register scratch) { |
| if (is_uint12(mem.offset())) { |
| vl(dst, mem, Condition(0)); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| lay(scratch, mem); |
| vl(dst, MemOperand(scratch), Condition(0)); |
| } |
| } |
| |
| // Store Double Precision (64-bit) Floating Point number to memory |
| void TurboAssembler::StoreDouble(DoubleRegister dst, const MemOperand& mem) { |
| if (is_uint12(mem.offset())) { |
| std(dst, mem); |
| } else { |
| stdy(dst, mem); |
| } |
| } |
| |
| // Store Single Precision (32-bit) Floating Point number to memory |
| void TurboAssembler::StoreFloat32(DoubleRegister src, const MemOperand& mem) { |
| if (is_uint12(mem.offset())) { |
| ste(src, mem); |
| } else { |
| stey(src, mem); |
| } |
| } |
| |
| // Convert Double precision (64-bit) to Single Precision (32-bit) |
| // and store resulting Float32 to memory |
| void TurboAssembler::StoreDoubleAsFloat32(DoubleRegister src, |
| const MemOperand& mem, |
| DoubleRegister scratch) { |
| ledbr(scratch, src); |
| StoreFloat32(scratch, mem); |
| } |
| |
| void TurboAssembler::StoreSimd128(Simd128Register src, const MemOperand& mem, |
| Register scratch) { |
| if (is_uint12(mem.offset())) { |
| vst(src, mem, Condition(0)); |
| } else { |
| DCHECK(is_int20(mem.offset())); |
| lay(scratch, mem); |
| vst(src, MemOperand(scratch), Condition(0)); |
| } |
| } |
| |
| void TurboAssembler::AddFloat32(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| aeb(dst, opnd); |
| } else { |
| ley(scratch, opnd); |
| aebr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::AddFloat64(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| adb(dst, opnd); |
| } else { |
| ldy(scratch, opnd); |
| adbr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::SubFloat32(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| seb(dst, opnd); |
| } else { |
| ley(scratch, opnd); |
| sebr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::SubFloat64(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| sdb(dst, opnd); |
| } else { |
| ldy(scratch, opnd); |
| sdbr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::MulFloat32(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| meeb(dst, opnd); |
| } else { |
| ley(scratch, opnd); |
| meebr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::MulFloat64(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| mdb(dst, opnd); |
| } else { |
| ldy(scratch, opnd); |
| mdbr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::DivFloat32(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| deb(dst, opnd); |
| } else { |
| ley(scratch, opnd); |
| debr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::DivFloat64(DoubleRegister dst, const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| ddb(dst, opnd); |
| } else { |
| ldy(scratch, opnd); |
| ddbr(dst, scratch); |
| } |
| } |
| |
| void TurboAssembler::LoadFloat32ToDouble(DoubleRegister dst, |
| const MemOperand& opnd, |
| DoubleRegister scratch) { |
| if (is_uint12(opnd.offset())) { |
| ldeb(dst, opnd); |
| } else { |
| ley(scratch, opnd); |
| ldebr(dst, scratch); |
| } |
| } |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand of RX or RXY format |
| void TurboAssembler::StoreW(Register src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.rb(); |
| int offset = mem.offset(); |
| |
| bool use_RXform = false; |
| bool use_RXYform = false; |
| |
| if (is_uint12(offset)) { |
| // RX-format supports unsigned 12-bits offset. |
| use_RXform = true; |
| } else if (is_int20(offset)) { |
| // RXY-format supports signed 20-bits offset. |
| use_RXYform = true; |
| } else if (scratch != no_reg) { |
| // Materialize offset into scratch register. |
| LoadIntLiteral(scratch, offset); |
| } else { |
| // scratch is no_reg |
| DCHECK(false); |
| } |
| |
| if (use_RXform) { |
| st(src, mem); |
| } else if (use_RXYform) { |
| sty(src, mem); |
| } else { |
| StoreW(src, MemOperand(base, scratch)); |
| } |
| } |
| |
| void TurboAssembler::LoadHalfWordP(Register dst, Register src) { |
| #if V8_TARGET_ARCH_S390X |
| lghr(dst, src); |
| #else |
| lhr(dst, src); |
| #endif |
| } |
| |
| // Loads 16-bits half-word value from memory and sign extends to pointer |
| // sized register |
| void TurboAssembler::LoadHalfWordP(Register dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.rb(); |
| int offset = mem.offset(); |
| |
| if (!is_int20(offset)) { |
| DCHECK(scratch != no_reg); |
| LoadIntLiteral(scratch, offset); |
| #if V8_TARGET_ARCH_S390X |
| lgh(dst, MemOperand(base, scratch)); |
| #else |
| lh(dst, MemOperand(base, scratch)); |
| #endif |
| } else { |
| #if V8_TARGET_ARCH_S390X |
| lgh(dst, mem); |
| #else |
| if (is_uint12(offset)) { |
| lh(dst, mem); |
| } else { |
| lhy(dst, mem); |
| } |
| #endif |
| } |
| } |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand current only supports d-form |
| void TurboAssembler::StoreHalfWord(Register src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.rb(); |
| int offset = mem.offset(); |
| |
| if (is_uint12(offset)) { |
| sth(src, mem); |
| } else if (is_int20(offset)) { |
| sthy(src, mem); |
| } else { |
| DCHECK(scratch != no_reg); |
| LoadIntLiteral(scratch, offset); |
| sth(src, MemOperand(base, scratch)); |
| } |
| } |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand current only supports d-form |
| void TurboAssembler::StoreByte(Register src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.rb(); |
| int offset = mem.offset(); |
| |
| if (is_uint12(offset)) { |
| stc(src, mem); |
| } else if (is_int20(offset)) { |
| stcy(src, mem); |
| } else { |
| DCHECK(scratch != no_reg); |
| LoadIntLiteral(scratch, offset); |
| stc(src, MemOperand(base, scratch)); |
| } |
| } |
| |
| // Shift left logical for 32-bit integer types. |
| void TurboAssembler::ShiftLeft(Register dst, Register src, const Operand& val) { |
| if (dst == src) { |
| sll(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| sllk(dst, src, val); |
| } else { |
| lr(dst, src); |
| sll(dst, val); |
| } |
| } |
| |
| // Shift left logical for 32-bit integer types. |
| void TurboAssembler::ShiftLeft(Register dst, Register src, Register val) { |
| if (dst == src) { |
| sll(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| sllk(dst, src, val); |
| } else { |
| DCHECK(dst != val); // The lr/sll path clobbers val. |
| lr(dst, src); |
| sll(dst, val); |
| } |
| } |
| |
| // Shift right logical for 32-bit integer types. |
| void TurboAssembler::ShiftRight(Register dst, Register src, |
| const Operand& val) { |
| if (dst == src) { |
| srl(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| srlk(dst, src, val); |
| } else { |
| lr(dst, src); |
| srl(dst, val); |
| } |
| } |
| |
| // Shift right logical for 32-bit integer types. |
| void TurboAssembler::ShiftRight(Register dst, Register src, Register val) { |
| if (dst == src) { |
| srl(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| srlk(dst, src, val); |
| } else { |
| DCHECK(dst != val); // The lr/srl path clobbers val. |
| lr(dst, src); |
| srl(dst, val); |
| } |
| } |
| |
| // Shift left arithmetic for 32-bit integer types. |
| void TurboAssembler::ShiftLeftArith(Register dst, Register src, |
| const Operand& val) { |
| if (dst == src) { |
| sla(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| slak(dst, src, val); |
| } else { |
| lr(dst, src); |
| sla(dst, val); |
| } |
| } |
| |
| // Shift left arithmetic for 32-bit integer types. |
| void TurboAssembler::ShiftLeftArith(Register dst, Register src, Register val) { |
| if (dst == src) { |
| sla(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| slak(dst, src, val); |
| } else { |
| DCHECK(dst != val); // The lr/sla path clobbers val. |
| lr(dst, src); |
| sla(dst, val); |
| } |
| } |
| |
| // Shift right arithmetic for 32-bit integer types. |
| void TurboAssembler::ShiftRightArith(Register dst, Register src, |
| const Operand& val) { |
| if (dst == src) { |
| sra(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| srak(dst, src, val); |
| } else { |
| lr(dst, src); |
| sra(dst, val); |
| } |
| } |
| |
| // Shift right arithmetic for 32-bit integer types. |
| void TurboAssembler::ShiftRightArith(Register dst, Register src, Register val) { |
| if (dst == src) { |
| sra(dst, val); |
| } else if (CpuFeatures::IsSupported(DISTINCT_OPS)) { |
| srak(dst, src, val); |
| } else { |
| DCHECK(dst != val); // The lr/sra path clobbers val. |
| lr(dst, src); |
| sra(dst, val); |
| } |
| } |
| |
| // Clear right most # of bits |
| void TurboAssembler::ClearRightImm(Register dst, Register src, |
| const Operand& val) { |
| int numBitsToClear = val.immediate() % (kSystemPointerSize * 8); |
| |
| // Try to use RISBG if possible |
| if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { |
| int endBit = 63 - numBitsToClear; |
| RotateInsertSelectBits(dst, src, Operand::Zero(), Operand(endBit), |
| Operand::Zero(), true); |
| return; |
| } |
| |
| uint64_t hexMask = ~((1L << numBitsToClear) - 1); |
| |
| // S390 AND instr clobbers source. Make a copy if necessary |
| if (dst != src) LoadRR(dst, src); |
| |
| if (numBitsToClear <= 16) { |
| nill(dst, Operand(static_cast<uint16_t>(hexMask))); |
| } else if (numBitsToClear <= 32) { |
| nilf(dst, Operand(static_cast<uint32_t>(hexMask))); |
| } else if (numBitsToClear <= 64) { |
| nilf(dst, Operand(static_cast<intptr_t>(0))); |
| nihf(dst, Operand(hexMask >> 32)); |
| } |
| } |
| |
| void TurboAssembler::Popcnt32(Register dst, Register src) { |
| DCHECK(src != r0); |
| DCHECK(dst != r0); |
| |
| popcnt(dst, src); |
| ShiftRight(r0, dst, Operand(16)); |
| ar(dst, r0); |
| ShiftRight(r0, dst, Operand(8)); |
| ar(dst, r0); |
| llgcr(dst, dst); |
| } |
| |
| #ifdef V8_TARGET_ARCH_S390X |
| void TurboAssembler::Popcnt64(Register dst, Register src) { |
| DCHECK(src != r0); |
| DCHECK(dst != r0); |
| |
| popcnt(dst, src); |
| ShiftRightP(r0, dst, Operand(32)); |
| AddP(dst, r0); |
| ShiftRightP(r0, dst, Operand(16)); |
| AddP(dst, r0); |
| ShiftRightP(r0, dst, Operand(8)); |
| AddP(dst, r0); |
| LoadlB(dst, dst); |
| } |
| #endif |
| |
| void TurboAssembler::SwapP(Register src, Register dst, Register scratch) { |
| if (src == dst) return; |
| DCHECK(!AreAliased(src, dst, scratch)); |
| LoadRR(scratch, src); |
| LoadRR(src, dst); |
| LoadRR(dst, scratch); |
| } |
| |
| void TurboAssembler::SwapP(Register src, MemOperand dst, Register scratch) { |
| if (dst.rx() != r0) DCHECK(!AreAliased(src, dst.rx(), scratch)); |
| if (dst.rb() != r0) DCHECK(!AreAliased(src, dst.rb(), scratch)); |
| DCHECK(!AreAliased(src, scratch)); |
| LoadRR(scratch, src); |
| LoadP(src, dst); |
| StoreP(scratch, dst); |
| } |
| |
| void TurboAssembler::SwapP(MemOperand src, MemOperand dst, Register scratch_0, |
| Register scratch_1) { |
| if (src.rx() != r0) DCHECK(!AreAliased(src.rx(), scratch_0, scratch_1)); |
| if (src.rb() != r0) DCHECK(!AreAliased(src.rb(), scratch_0, scratch_1)); |
| if (dst.rx() != r0) DCHECK(!AreAliased(dst.rx(), scratch_0, scratch_1)); |
| if (dst.rb() != r0) DCHECK(!AreAliased(dst.rb(), scratch_0, scratch_1)); |
| DCHECK(!AreAliased(scratch_0, scratch_1)); |
| LoadP(scratch_0, src); |
| LoadP(scratch_1, dst); |
| StoreP(scratch_0, dst); |
| StoreP(scratch_1, src); |
| } |
| |
| void TurboAssembler::SwapFloat32(DoubleRegister src, DoubleRegister dst, |
| DoubleRegister scratch) { |
| if (src == dst) return; |
| DCHECK(!AreAliased(src, dst, scratch)); |
| ldr(scratch, src); |
| ldr(src, dst); |
| ldr(dst, scratch); |
| } |
| |
| void TurboAssembler::SwapFloat32(DoubleRegister src, MemOperand dst, |
| DoubleRegister scratch) { |
| DCHECK(!AreAliased(src, scratch)); |
| ldr(scratch, src); |
| LoadFloat32(src, dst); |
| StoreFloat32(scratch, dst); |
| } |
| |
| void TurboAssembler::SwapFloat32(MemOperand src, MemOperand dst, |
| DoubleRegister scratch) { |
| // push d0, to be used as scratch |
| lay(sp, MemOperand(sp, -kDoubleSize)); |
| StoreDouble(d0, MemOperand(sp)); |
| LoadFloat32(scratch, src); |
| LoadFloat32(d0, dst); |
| StoreFloat32(scratch, dst); |
| StoreFloat32(d0, src); |
| // restore d0 |
| LoadDouble(d0, MemOperand(sp)); |
| lay(sp, MemOperand(sp, kDoubleSize)); |
| } |
| |
| void TurboAssembler::SwapDouble(DoubleRegister src, DoubleRegister dst, |
| DoubleRegister scratch) { |
| if (src == dst) return; |
| DCHECK(!AreAliased(src, dst, scratch)); |
| ldr(scratch, src); |
| ldr(src, dst); |
| ldr(dst, scratch); |
| } |
| |
| void TurboAssembler::SwapDouble(DoubleRegister src, MemOperand dst, |
| DoubleRegister scratch) { |
| DCHECK(!AreAliased(src, scratch)); |
| ldr(scratch, src); |
| LoadDouble(src, dst); |
| StoreDouble(scratch, dst); |
| } |
| |
| void TurboAssembler::SwapDouble(MemOperand src, MemOperand dst, |
| DoubleRegister scratch) { |
| // push d0, to be used as scratch |
| lay(sp, MemOperand(sp, -kDoubleSize)); |
| StoreDouble(d0, MemOperand(sp)); |
| LoadDouble(scratch, src); |
| LoadDouble(d0, dst); |
| StoreDouble(scratch, dst); |
| StoreDouble(d0, src); |
| // restore d0 |
| LoadDouble(d0, MemOperand(sp)); |
| lay(sp, MemOperand(sp, kDoubleSize)); |
| } |
| |
| void TurboAssembler::SwapSimd128(Simd128Register src, Simd128Register dst, |
| Simd128Register scratch) { |
| if (src == dst) return; |
| vlr(scratch, src, Condition(0), Condition(0), Condition(0)); |
| vlr(src, dst, Condition(0), Condition(0), Condition(0)); |
| vlr(dst, scratch, Condition(0), Condition(0), Condition(0)); |
| } |
| |
| void TurboAssembler::SwapSimd128(Simd128Register src, MemOperand dst, |
| Simd128Register scratch) { |
| DCHECK(!AreAliased(src, scratch)); |
| vlr(scratch, src, Condition(0), Condition(0), Condition(0)); |
| LoadSimd128(src, dst, ip); |
| StoreSimd128(scratch, dst, ip); |
| } |
| |
| void TurboAssembler::SwapSimd128(MemOperand src, MemOperand dst, |
| Simd128Register scratch) { |
| // push d0, to be used as scratch |
| lay(sp, MemOperand(sp, -kSimd128Size)); |
| StoreSimd128(d0, MemOperand(sp), ip); |
| LoadSimd128(scratch, src, ip); |
| LoadSimd128(d0, dst, ip); |
| StoreSimd128(scratch, dst, ip); |
| StoreSimd128(d0, src, ip); |
| // restore d0 |
| LoadSimd128(d0, MemOperand(sp), ip); |
| lay(sp, MemOperand(sp, kSimd128Size)); |
| } |
| |
| void TurboAssembler::ResetSpeculationPoisonRegister() { |
| mov(kSpeculationPoisonRegister, Operand(-1)); |
| } |
| |
| void TurboAssembler::ComputeCodeStartAddress(Register dst) { |
| larl(dst, Operand(-pc_offset() / 2)); |
| } |
| |
| void TurboAssembler::LoadPC(Register dst) { |
| Label current_pc; |
| larl(dst, ¤t_pc); |
| bind(¤t_pc); |
| } |
| |
| void TurboAssembler::JumpIfEqual(Register x, int32_t y, Label* dest) { |
| Cmp32(x, Operand(y)); |
| beq(dest); |
| } |
| |
| void TurboAssembler::JumpIfLessThan(Register x, int32_t y, Label* dest) { |
| Cmp32(x, Operand(y)); |
| blt(dest); |
| } |
| |
| void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { |
| STATIC_ASSERT(kSystemPointerSize == 8); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| STATIC_ASSERT(kSmiTag == 0); |
| // The builtin_index register contains the builtin index as a Smi. |
| if (SmiValuesAre32Bits()) { |
| ShiftRightArithP(builtin_index, builtin_index, |
| Operand(kSmiShift - kSystemPointerSizeLog2)); |
| } else { |
| DCHECK(SmiValuesAre31Bits()); |
| ShiftLeftP(builtin_index, builtin_index, |
| Operand(kSystemPointerSizeLog2 - kSmiShift)); |
| } |
| LoadP(builtin_index, MemOperand(kRootRegister, builtin_index, |
| IsolateData::builtin_entry_table_offset())); |
| } |
| |
| void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { |
| LoadEntryFromBuiltinIndex(builtin_index); |
| Call(builtin_index); |
| } |
| |
| void TurboAssembler::LoadCodeObjectEntry(Register destination, |
| Register code_object) { |
| // Code objects are called differently depending on whether we are generating |
| // builtin code (which will later be embedded into the binary) or compiling |
| // user JS code at runtime. |
| // * Builtin code runs in --jitless mode and thus must not call into on-heap |
| // Code targets. Instead, we dispatch through the builtins entry table. |
| // * Codegen at runtime does not have this restriction and we can use the |
| // shorter, branchless instruction sequence. The assumption here is that |
| // targets are usually generated code and not builtin Code objects. |
| |
| if (options().isolate_independent_code) { |
| DCHECK(root_array_available()); |
| Label if_code_is_off_heap, out; |
| |
| Register scratch = r1; |
| |
| DCHECK(!AreAliased(destination, scratch)); |
| DCHECK(!AreAliased(code_object, scratch)); |
| |
| // Check whether the Code object is an off-heap trampoline. If so, call its |
| // (off-heap) entry point directly without going through the (on-heap) |
| // trampoline. Otherwise, just call the Code object as always. |
| LoadW(scratch, FieldMemOperand(code_object, Code::kFlagsOffset)); |
| tmlh(scratch, Operand(Code::IsOffHeapTrampoline::kMask >> 16)); |
| bne(&if_code_is_off_heap); |
| |
| // Not an off-heap trampoline, the entry point is at |
| // Code::raw_instruction_start(). |
| AddP(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| b(&out); |
| |
| // An off-heap trampoline, the entry point is loaded from the builtin entry |
| // table. |
| bind(&if_code_is_off_heap); |
| LoadW(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset)); |
| ShiftLeftP(destination, scratch, Operand(kSystemPointerSizeLog2)); |
| AddP(destination, destination, kRootRegister); |
| LoadP(destination, |
| MemOperand(destination, IsolateData::builtin_entry_table_offset())); |
| |
| bind(&out); |
| } else { |
| AddP(destination, code_object, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } |
| |
| void TurboAssembler::CallCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| Call(code_object); |
| } |
| |
| void TurboAssembler::JumpCodeObject(Register code_object) { |
| LoadCodeObjectEntry(code_object, code_object); |
| Jump(code_object); |
| } |
| |
| void TurboAssembler::StoreReturnAddressAndCall(Register target) { |
| // This generates the final instruction sequence for calls to C functions |
| // once an exit frame has been constructed. |
| // |
| // Note that this assumes the caller code (i.e. the Code object currently |
| // being generated) is immovable or that the callee function cannot trigger |
| // GC, since the callee function will return to it. |
| |
| Label return_label; |
| larl(r14, &return_label); // Generate the return addr of call later. |
| StoreP(r14, MemOperand(sp, kStackFrameRASlot * kSystemPointerSize)); |
| |
| // zLinux ABI requires caller's frame to have sufficient space for callee |
| // preserved regsiter save area. |
| b(target); |
| bind(&return_label); |
| } |
| |
| void TurboAssembler::CallForDeoptimization(Builtins::Name target, int, |
| Label* exit, DeoptimizeKind kind, |
| Label*) { |
| LoadP(ip, MemOperand(kRootRegister, |
| IsolateData::builtin_entry_slot_offset(target))); |
| Call(ip); |
| DCHECK_EQ(SizeOfCodeGeneratedSince(exit), |
| (kind == DeoptimizeKind::kLazy) |
| ? Deoptimizer::kLazyDeoptExitSize |
| : Deoptimizer::kNonLazyDeoptExitSize); |
| USE(exit, kind); |
| } |
| |
| void TurboAssembler::Trap() { stop(); } |
| void TurboAssembler::DebugBreak() { stop(); } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_S390 |