| /* | 
 |  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved. | 
 |  * | 
 |  *  Use of this source code is governed by a BSD-style license | 
 |  *  that can be found in the LICENSE file in the root of the source | 
 |  *  tree. An additional intellectual property rights grant can be found | 
 |  *  in the file PATENTS.  All contributing project authors may | 
 |  *  be found in the AUTHORS file in the root of the source tree. | 
 |  */ | 
 |  | 
 | #include "./vpx_config.h" | 
 | #include "vpx_dsp/vpx_dsp_common.h" | 
 | #include "vpx_mem/vpx_mem.h" | 
 | #include "vp9/common/vp9_entropymode.h" | 
 | #include "vp9/common/vp9_thread_common.h" | 
 | #include "vp9/common/vp9_reconinter.h" | 
 | #include "vp9/common/vp9_loopfilter.h" | 
 |  | 
 | #if CONFIG_MULTITHREAD | 
 | static INLINE void mutex_lock(pthread_mutex_t *const mutex) { | 
 |   const int kMaxTryLocks = 4000; | 
 |   int locked = 0; | 
 |   int i; | 
 |  | 
 |   for (i = 0; i < kMaxTryLocks; ++i) { | 
 |     if (!pthread_mutex_trylock(mutex)) { | 
 |       locked = 1; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!locked) | 
 |     pthread_mutex_lock(mutex); | 
 | } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |  | 
 | static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) { | 
 | #if CONFIG_MULTITHREAD | 
 |   const int nsync = lf_sync->sync_range; | 
 |  | 
 |   if (r && !(c & (nsync - 1))) { | 
 |     pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1]; | 
 |     mutex_lock(mutex); | 
 |  | 
 |     while (c > lf_sync->cur_sb_col[r - 1] - nsync) { | 
 |       pthread_cond_wait(&lf_sync->cond_[r - 1], mutex); | 
 |     } | 
 |     pthread_mutex_unlock(mutex); | 
 |   } | 
 | #else | 
 |   (void)lf_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c, | 
 |                               const int sb_cols) { | 
 | #if CONFIG_MULTITHREAD | 
 |   const int nsync = lf_sync->sync_range; | 
 |   int cur; | 
 |   // Only signal when there are enough filtered SB for next row to run. | 
 |   int sig = 1; | 
 |  | 
 |   if (c < sb_cols - 1) { | 
 |     cur = c; | 
 |     if (c % nsync) | 
 |       sig = 0; | 
 |   } else { | 
 |     cur = sb_cols + nsync; | 
 |   } | 
 |  | 
 |   if (sig) { | 
 |     mutex_lock(&lf_sync->mutex_[r]); | 
 |  | 
 |     lf_sync->cur_sb_col[r] = cur; | 
 |  | 
 |     pthread_cond_signal(&lf_sync->cond_[r]); | 
 |     pthread_mutex_unlock(&lf_sync->mutex_[r]); | 
 |   } | 
 | #else | 
 |   (void)lf_sync; | 
 |   (void)r; | 
 |   (void)c; | 
 |   (void)sb_cols; | 
 | #endif  // CONFIG_MULTITHREAD | 
 | } | 
 |  | 
 | // Implement row loopfiltering for each thread. | 
 | static INLINE | 
 | void thread_loop_filter_rows(const YV12_BUFFER_CONFIG *const frame_buffer, | 
 |                              VP9_COMMON *const cm, | 
 |                              struct macroblockd_plane planes[MAX_MB_PLANE], | 
 |                              int start, int stop, int y_only, | 
 |                              VP9LfSync *const lf_sync) { | 
 |   const int num_planes = y_only ? 1 : MAX_MB_PLANE; | 
 |   const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2; | 
 |   int mi_row, mi_col; | 
 |   enum lf_path path; | 
 |   if (y_only) | 
 |     path = LF_PATH_444; | 
 |   else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) | 
 |     path = LF_PATH_420; | 
 |   else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) | 
 |     path = LF_PATH_444; | 
 |   else | 
 |     path = LF_PATH_SLOW; | 
 |  | 
 |   for (mi_row = start; mi_row < stop; | 
 |        mi_row += lf_sync->num_workers * MI_BLOCK_SIZE) { | 
 |     MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride; | 
 |     LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0); | 
 |  | 
 |     for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) { | 
 |       const int r = mi_row >> MI_BLOCK_SIZE_LOG2; | 
 |       const int c = mi_col >> MI_BLOCK_SIZE_LOG2; | 
 |       int plane; | 
 |  | 
 |       sync_read(lf_sync, r, c); | 
 |  | 
 |       vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); | 
 |  | 
 |       vp9_adjust_mask(cm, mi_row, mi_col, lfm); | 
 |  | 
 |       vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm); | 
 |       for (plane = 1; plane < num_planes; ++plane) { | 
 |         switch (path) { | 
 |           case LF_PATH_420: | 
 |             vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm); | 
 |             break; | 
 |           case LF_PATH_444: | 
 |             vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm); | 
 |             break; | 
 |           case LF_PATH_SLOW: | 
 |             vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, | 
 |                                           mi_row, mi_col); | 
 |             break; | 
 |         } | 
 |       } | 
 |  | 
 |       sync_write(lf_sync, r, c, sb_cols); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Row-based multi-threaded loopfilter hook | 
 | static int loop_filter_row_worker(VP9LfSync *const lf_sync, | 
 |                                   LFWorkerData *const lf_data) { | 
 |   thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, | 
 |                           lf_data->start, lf_data->stop, lf_data->y_only, | 
 |                           lf_sync); | 
 |   return 1; | 
 | } | 
 |  | 
 | static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, | 
 |                                 VP9_COMMON *cm, | 
 |                                 struct macroblockd_plane planes[MAX_MB_PLANE], | 
 |                                 int start, int stop, int y_only, | 
 |                                 VPxWorker *workers, int nworkers, | 
 |                                 VP9LfSync *lf_sync) { | 
 |   const VPxWorkerInterface *const winterface = vpx_get_worker_interface(); | 
 |   // Number of superblock rows and cols | 
 |   const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; | 
 |   // Decoder may allocate more threads than number of tiles based on user's | 
 |   // input. | 
 |   const int tile_cols = 1 << cm->log2_tile_cols; | 
 |   const int num_workers = VPXMIN(nworkers, tile_cols); | 
 |   int i; | 
 |  | 
 |   if (!lf_sync->sync_range || sb_rows != lf_sync->rows || | 
 |       num_workers > lf_sync->num_workers) { | 
 |     vp9_loop_filter_dealloc(lf_sync); | 
 |     vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); | 
 |   } | 
 |  | 
 |   // Initialize cur_sb_col to -1 for all SB rows. | 
 |   memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); | 
 |  | 
 |   // Set up loopfilter thread data. | 
 |   // The decoder is capping num_workers because it has been observed that using | 
 |   // more threads on the loopfilter than there are cores will hurt performance | 
 |   // on Android. This is because the system will only schedule the tile decode | 
 |   // workers on cores equal to the number of tile columns. Then if the decoder | 
 |   // tries to use more threads for the loopfilter, it will hurt performance | 
 |   // because of contention. If the multithreading code changes in the future | 
 |   // then the number of workers used by the loopfilter should be revisited. | 
 |   for (i = 0; i < num_workers; ++i) { | 
 |     VPxWorker *const worker = &workers[i]; | 
 |     LFWorkerData *const lf_data = &lf_sync->lfdata[i]; | 
 |  | 
 |     worker->hook = (VPxWorkerHook)loop_filter_row_worker; | 
 |     worker->data1 = lf_sync; | 
 |     worker->data2 = lf_data; | 
 |  | 
 |     // Loopfilter data | 
 |     vp9_loop_filter_data_reset(lf_data, frame, cm, planes); | 
 |     lf_data->start = start + i * MI_BLOCK_SIZE; | 
 |     lf_data->stop = stop; | 
 |     lf_data->y_only = y_only; | 
 |  | 
 |     // Start loopfiltering | 
 |     if (i == num_workers - 1) { | 
 |       winterface->execute(worker); | 
 |     } else { | 
 |       winterface->launch(worker); | 
 |     } | 
 |   } | 
 |  | 
 |   // Wait till all rows are finished | 
 |   for (i = 0; i < num_workers; ++i) { | 
 |     winterface->sync(&workers[i]); | 
 |   } | 
 | } | 
 |  | 
 | void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, | 
 |                               VP9_COMMON *cm, | 
 |                               struct macroblockd_plane planes[MAX_MB_PLANE], | 
 |                               int frame_filter_level, | 
 |                               int y_only, int partial_frame, | 
 |                               VPxWorker *workers, int num_workers, | 
 |                               VP9LfSync *lf_sync) { | 
 |   int start_mi_row, end_mi_row, mi_rows_to_filter; | 
 |  | 
 |   if (!frame_filter_level) return; | 
 |  | 
 |   start_mi_row = 0; | 
 |   mi_rows_to_filter = cm->mi_rows; | 
 |   if (partial_frame && cm->mi_rows > 8) { | 
 |     start_mi_row = cm->mi_rows >> 1; | 
 |     start_mi_row &= 0xfffffff8; | 
 |     mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); | 
 |   } | 
 |   end_mi_row = start_mi_row + mi_rows_to_filter; | 
 |   vp9_loop_filter_frame_init(cm, frame_filter_level); | 
 |  | 
 |   loop_filter_rows_mt(frame, cm, planes, start_mi_row, end_mi_row, | 
 |                       y_only, workers, num_workers, lf_sync); | 
 | } | 
 |  | 
 | // Set up nsync by width. | 
 | static INLINE int get_sync_range(int width) { | 
 |   // nsync numbers are picked by testing. For example, for 4k | 
 |   // video, using 4 gives best performance. | 
 |   if (width < 640) | 
 |     return 1; | 
 |   else if (width <= 1280) | 
 |     return 2; | 
 |   else if (width <= 4096) | 
 |     return 4; | 
 |   else | 
 |     return 8; | 
 | } | 
 |  | 
 | // Allocate memory for lf row synchronization | 
 | void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows, | 
 |                            int width, int num_workers) { | 
 |   lf_sync->rows = rows; | 
 | #if CONFIG_MULTITHREAD | 
 |   { | 
 |     int i; | 
 |  | 
 |     CHECK_MEM_ERROR(cm, lf_sync->mutex_, | 
 |                     vpx_malloc(sizeof(*lf_sync->mutex_) * rows)); | 
 |     if (lf_sync->mutex_) { | 
 |       for (i = 0; i < rows; ++i) { | 
 |         pthread_mutex_init(&lf_sync->mutex_[i], NULL); | 
 |       } | 
 |     } | 
 |  | 
 |     CHECK_MEM_ERROR(cm, lf_sync->cond_, | 
 |                     vpx_malloc(sizeof(*lf_sync->cond_) * rows)); | 
 |     if (lf_sync->cond_) { | 
 |       for (i = 0; i < rows; ++i) { | 
 |         pthread_cond_init(&lf_sync->cond_[i], NULL); | 
 |       } | 
 |     } | 
 |   } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |  | 
 |   CHECK_MEM_ERROR(cm, lf_sync->lfdata, | 
 |                   vpx_malloc(num_workers * sizeof(*lf_sync->lfdata))); | 
 |   lf_sync->num_workers = num_workers; | 
 |  | 
 |   CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, | 
 |                   vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); | 
 |  | 
 |   // Set up nsync. | 
 |   lf_sync->sync_range = get_sync_range(width); | 
 | } | 
 |  | 
 | // Deallocate lf synchronization related mutex and data | 
 | void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) { | 
 |   if (lf_sync != NULL) { | 
 | #if CONFIG_MULTITHREAD | 
 |     int i; | 
 |  | 
 |     if (lf_sync->mutex_ != NULL) { | 
 |       for (i = 0; i < lf_sync->rows; ++i) { | 
 |         pthread_mutex_destroy(&lf_sync->mutex_[i]); | 
 |       } | 
 |       vpx_free(lf_sync->mutex_); | 
 |     } | 
 |     if (lf_sync->cond_ != NULL) { | 
 |       for (i = 0; i < lf_sync->rows; ++i) { | 
 |         pthread_cond_destroy(&lf_sync->cond_[i]); | 
 |       } | 
 |       vpx_free(lf_sync->cond_); | 
 |     } | 
 | #endif  // CONFIG_MULTITHREAD | 
 |     vpx_free(lf_sync->lfdata); | 
 |     vpx_free(lf_sync->cur_sb_col); | 
 |     // clear the structure as the source of this call may be a resize in which | 
 |     // case this call will be followed by an _alloc() which may fail. | 
 |     vp9_zero(*lf_sync); | 
 |   } | 
 | } | 
 |  | 
 | // Accumulate frame counts. | 
 | void vp9_accumulate_frame_counts(FRAME_COUNTS *accum, | 
 |                                  const FRAME_COUNTS *counts, int is_dec) { | 
 |   int i, j, k, l, m; | 
 |  | 
 |   for (i = 0; i < BLOCK_SIZE_GROUPS; i++) | 
 |     for (j = 0; j < INTRA_MODES; j++) | 
 |       accum->y_mode[i][j] += counts->y_mode[i][j]; | 
 |  | 
 |   for (i = 0; i < INTRA_MODES; i++) | 
 |     for (j = 0; j < INTRA_MODES; j++) | 
 |       accum->uv_mode[i][j] += counts->uv_mode[i][j]; | 
 |  | 
 |   for (i = 0; i < PARTITION_CONTEXTS; i++) | 
 |     for (j = 0; j < PARTITION_TYPES; j++) | 
 |       accum->partition[i][j] += counts->partition[i][j]; | 
 |  | 
 |   if (is_dec) { | 
 |     int n; | 
 |     for (i = 0; i < TX_SIZES; i++) | 
 |       for (j = 0; j < PLANE_TYPES; j++) | 
 |         for (k = 0; k < REF_TYPES; k++) | 
 |           for (l = 0; l < COEF_BANDS; l++) | 
 |             for (m = 0; m < COEFF_CONTEXTS; m++) { | 
 |               accum->eob_branch[i][j][k][l][m] += | 
 |                   counts->eob_branch[i][j][k][l][m]; | 
 |               for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) | 
 |                 accum->coef[i][j][k][l][m][n] += | 
 |                     counts->coef[i][j][k][l][m][n]; | 
 |             } | 
 |   } else { | 
 |     for (i = 0; i < TX_SIZES; i++) | 
 |       for (j = 0; j < PLANE_TYPES; j++) | 
 |         for (k = 0; k < REF_TYPES; k++) | 
 |           for (l = 0; l < COEF_BANDS; l++) | 
 |             for (m = 0; m < COEFF_CONTEXTS; m++) | 
 |               accum->eob_branch[i][j][k][l][m] += | 
 |                   counts->eob_branch[i][j][k][l][m]; | 
 |                 // In the encoder, coef is only updated at frame | 
 |                 // level, so not need to accumulate it here. | 
 |                 // for (n = 0; n < UNCONSTRAINED_NODES + 1; n++) | 
 |                 //   accum->coef[i][j][k][l][m][n] += | 
 |                 //       counts->coef[i][j][k][l][m][n]; | 
 |   } | 
 |  | 
 |   for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) | 
 |     for (j = 0; j < SWITCHABLE_FILTERS; j++) | 
 |       accum->switchable_interp[i][j] += counts->switchable_interp[i][j]; | 
 |  | 
 |   for (i = 0; i < INTER_MODE_CONTEXTS; i++) | 
 |     for (j = 0; j < INTER_MODES; j++) | 
 |       accum->inter_mode[i][j] += counts->inter_mode[i][j]; | 
 |  | 
 |   for (i = 0; i < INTRA_INTER_CONTEXTS; i++) | 
 |     for (j = 0; j < 2; j++) | 
 |       accum->intra_inter[i][j] += counts->intra_inter[i][j]; | 
 |  | 
 |   for (i = 0; i < COMP_INTER_CONTEXTS; i++) | 
 |     for (j = 0; j < 2; j++) | 
 |       accum->comp_inter[i][j] += counts->comp_inter[i][j]; | 
 |  | 
 |   for (i = 0; i < REF_CONTEXTS; i++) | 
 |     for (j = 0; j < 2; j++) | 
 |       for (k = 0; k < 2; k++) | 
 |       accum->single_ref[i][j][k] += counts->single_ref[i][j][k]; | 
 |  | 
 |   for (i = 0; i < REF_CONTEXTS; i++) | 
 |     for (j = 0; j < 2; j++) | 
 |       accum->comp_ref[i][j] += counts->comp_ref[i][j]; | 
 |  | 
 |   for (i = 0; i < TX_SIZE_CONTEXTS; i++) { | 
 |     for (j = 0; j < TX_SIZES; j++) | 
 |       accum->tx.p32x32[i][j] += counts->tx.p32x32[i][j]; | 
 |  | 
 |     for (j = 0; j < TX_SIZES - 1; j++) | 
 |       accum->tx.p16x16[i][j] += counts->tx.p16x16[i][j]; | 
 |  | 
 |     for (j = 0; j < TX_SIZES - 2; j++) | 
 |       accum->tx.p8x8[i][j] += counts->tx.p8x8[i][j]; | 
 |   } | 
 |  | 
 |   for (i = 0; i < TX_SIZES; i++) | 
 |     accum->tx.tx_totals[i] += counts->tx.tx_totals[i]; | 
 |  | 
 |   for (i = 0; i < SKIP_CONTEXTS; i++) | 
 |     for (j = 0; j < 2; j++) | 
 |       accum->skip[i][j] += counts->skip[i][j]; | 
 |  | 
 |   for (i = 0; i < MV_JOINTS; i++) | 
 |     accum->mv.joints[i] += counts->mv.joints[i]; | 
 |  | 
 |   for (k = 0; k < 2; k++) { | 
 |     nmv_component_counts *const comps = &accum->mv.comps[k]; | 
 |     const nmv_component_counts *const comps_t = &counts->mv.comps[k]; | 
 |  | 
 |     for (i = 0; i < 2; i++) { | 
 |       comps->sign[i] += comps_t->sign[i]; | 
 |       comps->class0_hp[i] += comps_t->class0_hp[i]; | 
 |       comps->hp[i] += comps_t->hp[i]; | 
 |     } | 
 |  | 
 |     for (i = 0; i < MV_CLASSES; i++) | 
 |       comps->classes[i] += comps_t->classes[i]; | 
 |  | 
 |     for (i = 0; i < CLASS0_SIZE; i++) { | 
 |       comps->class0[i] += comps_t->class0[i]; | 
 |       for (j = 0; j < MV_FP_SIZE; j++) | 
 |         comps->class0_fp[i][j] += comps_t->class0_fp[i][j]; | 
 |     } | 
 |  | 
 |     for (i = 0; i < MV_OFFSET_BITS; i++) | 
 |       for (j = 0; j < 2; j++) | 
 |         comps->bits[i][j] += comps_t->bits[i][j]; | 
 |  | 
 |     for (i = 0; i < MV_FP_SIZE; i++) | 
 |       comps->fp[i] += comps_t->fp[i]; | 
 |   } | 
 | } |