| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/openpgp_symmetric_encryption.h" |
| |
| #include <stdlib.h> |
| |
| #include <sechash.h> |
| #include <cryptohi.h> |
| |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "crypto/random.h" |
| #include "crypto/scoped_nss_types.h" |
| #include "crypto/nss_util.h" |
| |
| namespace crypto { |
| |
| namespace { |
| |
| // Reader wraps a StringPiece and provides methods to read several datatypes |
| // while advancing the StringPiece. |
| class Reader { |
| public: |
| Reader(base::StringPiece input) |
| : data_(input) { |
| } |
| |
| bool U8(uint8* out) { |
| if (data_.size() < 1) |
| return false; |
| *out = static_cast<uint8>(data_[0]); |
| data_.remove_prefix(1); |
| return true; |
| } |
| |
| bool U32(uint32* out) { |
| if (data_.size() < 4) |
| return false; |
| *out = static_cast<uint32>(data_[0]) << 24 | |
| static_cast<uint32>(data_[1]) << 16 | |
| static_cast<uint32>(data_[2]) << 8 | |
| static_cast<uint32>(data_[3]); |
| data_.remove_prefix(4); |
| return true; |
| } |
| |
| // Prefix sets |*out| to the first |n| bytes of the StringPiece and advances |
| // the StringPiece by |n|. |
| bool Prefix(size_t n, base::StringPiece *out) { |
| if (data_.size() < n) |
| return false; |
| *out = base::StringPiece(data_.data(), n); |
| data_.remove_prefix(n); |
| return true; |
| } |
| |
| // Remainder returns the remainer of the StringPiece and advances it to the |
| // end. |
| base::StringPiece Remainder() { |
| base::StringPiece ret = data_; |
| data_ = base::StringPiece(); |
| return ret; |
| } |
| |
| typedef base::StringPiece Position; |
| |
| Position tell() const { |
| return data_; |
| } |
| |
| void Seek(Position p) { |
| data_ = p; |
| } |
| |
| bool Skip(size_t n) { |
| if (data_.size() < n) |
| return false; |
| data_.remove_prefix(n); |
| return true; |
| } |
| |
| bool empty() const { |
| return data_.empty(); |
| } |
| |
| size_t size() const { |
| return data_.size(); |
| } |
| |
| private: |
| base::StringPiece data_; |
| }; |
| |
| // SaltedIteratedS2K implements the salted and iterated string-to-key |
| // convertion. See RFC 4880, section 3.7.1.3. |
| void SaltedIteratedS2K(unsigned cipher_key_length, |
| HASH_HashType hash_function, |
| base::StringPiece passphrase, |
| base::StringPiece salt, |
| unsigned count, |
| uint8 *out_key) { |
| const std::string combined = salt.as_string() + passphrase.as_string(); |
| const size_t combined_len = combined.size(); |
| |
| unsigned done = 0; |
| uint8 zero[1] = {0}; |
| |
| HASHContext* hash_context = HASH_Create(hash_function); |
| |
| for (unsigned i = 0; done < cipher_key_length; i++) { |
| HASH_Begin(hash_context); |
| |
| for (unsigned j = 0; j < i; j++) |
| HASH_Update(hash_context, zero, sizeof(zero)); |
| |
| unsigned written = 0; |
| while (written < count) { |
| if (written + combined_len > count) { |
| unsigned todo = count - written; |
| HASH_Update(hash_context, |
| reinterpret_cast<const uint8*>(combined.data()), |
| todo); |
| written = count; |
| } else { |
| HASH_Update(hash_context, |
| reinterpret_cast<const uint8*>(combined.data()), |
| combined_len); |
| written += combined_len; |
| } |
| } |
| |
| unsigned num_hash_bytes; |
| uint8 digest[HASH_LENGTH_MAX]; |
| HASH_End(hash_context, digest, &num_hash_bytes, sizeof(digest)); |
| |
| unsigned todo = cipher_key_length - done; |
| if (todo > num_hash_bytes) |
| todo = num_hash_bytes; |
| memcpy(out_key + done, digest, todo); |
| done += todo; |
| } |
| |
| HASH_Destroy(hash_context); |
| } |
| |
| // CreateAESContext sets up |out_key| to be an AES context, with the given key, |
| // in ECB mode and with no IV. |
| bool CreateAESContext(const uint8* key, unsigned key_len, |
| ScopedPK11Context* out_decryption_context) { |
| ScopedPK11Slot slot(PK11_GetInternalSlot()); |
| if (!slot.get()) |
| return false; |
| SECItem key_item; |
| key_item.type = siBuffer; |
| key_item.data = const_cast<uint8*>(key); |
| key_item.len = key_len; |
| ScopedPK11SymKey pk11_key(PK11_ImportSymKey( |
| slot.get(), CKM_AES_ECB, PK11_OriginUnwrap, CKA_ENCRYPT, &key_item, |
| NULL)); |
| if (!pk11_key.get()) |
| return false; |
| ScopedSECItem iv_param(PK11_ParamFromIV(CKM_AES_ECB, NULL)); |
| out_decryption_context->reset( |
| PK11_CreateContextBySymKey(CKM_AES_ECB, CKA_ENCRYPT, pk11_key.get(), |
| iv_param.get())); |
| return out_decryption_context->get() != NULL; |
| } |
| |
| |
| // These constants are the tag numbers for the various packet types that we |
| // use. |
| static const unsigned kSymmetricKeyEncryptedTag = 3; |
| static const unsigned kSymmetricallyEncryptedTag = 18; |
| static const unsigned kCompressedTag = 8; |
| static const unsigned kLiteralDataTag = 11; |
| |
| class Decrypter { |
| public: |
| ~Decrypter() { |
| for (std::vector<void*>::iterator |
| i = arena_.begin(); i != arena_.end(); i++) { |
| free(*i); |
| } |
| arena_.clear(); |
| } |
| |
| OpenPGPSymmetricEncrytion::Result Decrypt(base::StringPiece in, |
| base::StringPiece passphrase, |
| base::StringPiece *out_contents) { |
| Reader reader(in); |
| unsigned tag; |
| base::StringPiece contents; |
| ScopedPK11Context decryption_context; |
| |
| if (!ParsePacket(&reader, &tag, &contents)) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| if (tag != kSymmetricKeyEncryptedTag) |
| return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; |
| Reader inner(contents); |
| OpenPGPSymmetricEncrytion::Result result = |
| ParseSymmetricKeyEncrypted(&inner, passphrase, &decryption_context); |
| if (result != OpenPGPSymmetricEncrytion::OK) |
| return result; |
| |
| if (!ParsePacket(&reader, &tag, &contents)) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| if (tag != kSymmetricallyEncryptedTag) |
| return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; |
| if (!reader.empty()) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| inner = Reader(contents); |
| if (!ParseSymmetricallyEncrypted(&inner, &decryption_context, &contents)) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| |
| reader = Reader(contents); |
| if (!ParsePacket(&reader, &tag, &contents)) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| if (tag == kCompressedTag) |
| return OpenPGPSymmetricEncrytion::COMPRESSED; |
| if (tag != kLiteralDataTag) |
| return OpenPGPSymmetricEncrytion::NOT_SYMMETRICALLY_ENCRYPTED; |
| inner = Reader(contents); |
| if (!ParseLiteralData(&inner, out_contents)) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| |
| return OpenPGPSymmetricEncrytion::OK; |
| } |
| |
| private: |
| // ParsePacket parses an OpenPGP packet from reader. See RFC 4880, section |
| // 4.2.2. |
| bool ParsePacket(Reader *reader, |
| unsigned *out_tag, |
| base::StringPiece *out_contents) { |
| uint8 header; |
| if (!reader->U8(&header)) |
| return false; |
| if ((header & 0x80) == 0) { |
| // Tag byte must have MSB set. |
| return false; |
| } |
| |
| if ((header & 0x40) == 0) { |
| // Old format packet. |
| *out_tag = (header & 0x3f) >> 2; |
| |
| uint8 length_type = header & 3; |
| if (length_type == 3) { |
| *out_contents = reader->Remainder(); |
| return true; |
| } |
| |
| const unsigned length_bytes = 1 << length_type; |
| size_t length = 0; |
| for (unsigned i = 0; i < length_bytes; i++) { |
| uint8 length_byte; |
| if (!reader->U8(&length_byte)) |
| return false; |
| length <<= 8; |
| length |= length_byte; |
| } |
| |
| return reader->Prefix(length, out_contents); |
| } |
| |
| // New format packet. |
| *out_tag = header & 0x3f; |
| size_t length; |
| bool is_partial; |
| if (!ParseLength(reader, &length, &is_partial)) |
| return false; |
| if (is_partial) |
| return ParseStreamContents(reader, length, out_contents); |
| return reader->Prefix(length, out_contents); |
| } |
| |
| // ParseStreamContents parses all the chunks of a partial length stream from |
| // reader. See http://tools.ietf.org/html/rfc4880#section-4.2.2.4 |
| bool ParseStreamContents(Reader *reader, |
| size_t length, |
| base::StringPiece *out_contents) { |
| const Reader::Position beginning_of_stream = reader->tell(); |
| const size_t first_chunk_length = length; |
| |
| // First we parse the stream to find its length. |
| if (!reader->Skip(length)) |
| return false; |
| |
| for (;;) { |
| size_t chunk_length; |
| bool is_partial; |
| |
| if (!ParseLength(reader, &chunk_length, &is_partial)) |
| return false; |
| if (length + chunk_length < length) |
| return false; |
| length += chunk_length; |
| if (!reader->Skip(chunk_length)) |
| return false; |
| if (!is_partial) |
| break; |
| } |
| |
| // Now we have the length of the whole stream in |length|. |
| char* buf = reinterpret_cast<char*>(malloc(length)); |
| arena_.push_back(buf); |
| size_t j = 0; |
| reader->Seek(beginning_of_stream); |
| |
| base::StringPiece first_chunk; |
| if (!reader->Prefix(first_chunk_length, &first_chunk)) |
| return false; |
| memcpy(buf + j, first_chunk.data(), first_chunk_length); |
| j += first_chunk_length; |
| |
| // Now we parse the stream again, this time copying into |buf| |
| for (;;) { |
| size_t chunk_length; |
| bool is_partial; |
| |
| if (!ParseLength(reader, &chunk_length, &is_partial)) |
| return false; |
| base::StringPiece chunk; |
| if (!reader->Prefix(chunk_length, &chunk)) |
| return false; |
| memcpy(buf + j, chunk.data(), chunk_length); |
| j += chunk_length; |
| if (!is_partial) |
| break; |
| } |
| |
| *out_contents = base::StringPiece(buf, length); |
| return true; |
| } |
| |
| // ParseLength parses an OpenPGP length from reader. See RFC 4880, section |
| // 4.2.2. |
| bool ParseLength(Reader *reader, size_t *out_length, bool *out_is_prefix) { |
| uint8 length_spec; |
| if (!reader->U8(&length_spec)) |
| return false; |
| |
| *out_is_prefix = false; |
| if (length_spec < 192) { |
| *out_length = length_spec; |
| return true; |
| } else if (length_spec < 224) { |
| uint8 next_byte; |
| if (!reader->U8(&next_byte)) |
| return false; |
| |
| *out_length = (length_spec - 192) << 8; |
| *out_length += next_byte; |
| return true; |
| } else if (length_spec < 255) { |
| *out_length = 1u << (length_spec & 0x1f); |
| *out_is_prefix = true; |
| return true; |
| } else { |
| uint32 length32; |
| if (!reader->U32(&length32)) |
| return false; |
| *out_length = length32; |
| return true; |
| } |
| } |
| |
| // ParseSymmetricKeyEncrypted parses a passphrase protected session key. See |
| // RFC 4880, section 5.3. |
| OpenPGPSymmetricEncrytion::Result ParseSymmetricKeyEncrypted( |
| Reader *reader, |
| base::StringPiece passphrase, |
| ScopedPK11Context *decryption_context) { |
| uint8 version, cipher, s2k_type, hash_func_id; |
| if (!reader->U8(&version) || version != 4) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| |
| if (!reader->U8(&cipher) || |
| !reader->U8(&s2k_type) || |
| !reader->U8(&hash_func_id)) { |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| } |
| |
| uint8 cipher_key_length = OpenPGPCipherIdToKeyLength(cipher); |
| if (cipher_key_length == 0) |
| return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; |
| |
| HASH_HashType hash_function; |
| switch (hash_func_id) { |
| case 2: // SHA-1 |
| hash_function = HASH_AlgSHA1; |
| break; |
| case 8: // SHA-256 |
| hash_function = HASH_AlgSHA256; |
| break; |
| default: |
| return OpenPGPSymmetricEncrytion::UNKNOWN_HASH; |
| } |
| |
| // This chunk of code parses the S2K specifier. See RFC 4880, section 3.7.1. |
| base::StringPiece salt; |
| uint8 key[32]; |
| uint8 count_spec; |
| switch (s2k_type) { |
| case 1: |
| if (!reader->Prefix(8, &salt)) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| // Fall through. |
| case 0: |
| SaltedIteratedS2K(cipher_key_length, hash_function, passphrase, salt, |
| passphrase.size() + salt.size(), key); |
| break; |
| case 3: |
| if (!reader->Prefix(8, &salt) || |
| !reader->U8(&count_spec)) { |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| } |
| SaltedIteratedS2K( |
| cipher_key_length, hash_function, passphrase, salt, |
| static_cast<unsigned>( |
| 16 + (count_spec&15)) << ((count_spec >> 4) + 6), key); |
| break; |
| default: |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| } |
| |
| if (!CreateAESContext(key, cipher_key_length, decryption_context)) |
| return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; |
| |
| if (reader->empty()) { |
| // The resulting key is used directly. |
| return OpenPGPSymmetricEncrytion::OK; |
| } |
| |
| // The S2K derived key encrypts another key that follows: |
| base::StringPiece encrypted_key = reader->Remainder(); |
| if (encrypted_key.size() < 1) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| |
| uint8* plaintext_key = reinterpret_cast<uint8*>( |
| malloc(encrypted_key.size())); |
| arena_.push_back(plaintext_key); |
| |
| CFBDecrypt(encrypted_key, decryption_context, plaintext_key); |
| |
| cipher_key_length = OpenPGPCipherIdToKeyLength(plaintext_key[0]); |
| if (cipher_key_length == 0) |
| return OpenPGPSymmetricEncrytion::UNKNOWN_CIPHER; |
| if (encrypted_key.size() != 1u + cipher_key_length) |
| return OpenPGPSymmetricEncrytion::PARSE_ERROR; |
| if (!CreateAESContext(plaintext_key + 1, cipher_key_length, |
| decryption_context)) { |
| return OpenPGPSymmetricEncrytion::INTERNAL_ERROR; |
| } |
| return OpenPGPSymmetricEncrytion::OK; |
| } |
| |
| // CFBDecrypt decrypts the cipher-feedback encrypted data in |in| to |out| |
| // using |decryption_context| and assumes an IV of all zeros. |
| void CFBDecrypt(base::StringPiece in, ScopedPK11Context* decryption_context, |
| uint8* out) { |
| // We need this for PK11_CipherOp to write to, but we never check it as we |
| // work in ECB mode, one block at a time. |
| int out_len; |
| |
| uint8 mask[AES_BLOCK_SIZE]; |
| memset(mask, 0, sizeof(mask)); |
| |
| unsigned used = AES_BLOCK_SIZE; |
| |
| for (size_t i = 0; i < in.size(); i++) { |
| if (used == AES_BLOCK_SIZE) { |
| PK11_CipherOp(decryption_context->get(), mask, &out_len, sizeof(mask), |
| mask, AES_BLOCK_SIZE); |
| used = 0; |
| } |
| |
| uint8 t = in[i]; |
| out[i] = t ^ mask[used]; |
| mask[used] = t; |
| used++; |
| } |
| } |
| |
| // OpenPGPCipherIdToKeyLength converts an OpenPGP cipher id (see RFC 4880, |
| // section 9.2) to the key length of that cipher. It returns 0 on error. |
| unsigned OpenPGPCipherIdToKeyLength(uint8 cipher) { |
| switch (cipher) { |
| case 7: // AES-128 |
| return 16; |
| case 8: // AES-192 |
| return 24; |
| case 9: // AES-256 |
| return 32; |
| default: |
| return 0; |
| } |
| } |
| |
| // ParseSymmetricallyEncrypted parses a Symmetrically Encrypted packet. See |
| // RFC 4880, sections 5.7 and 5.13. |
| bool ParseSymmetricallyEncrypted(Reader *reader, |
| ScopedPK11Context *decryption_context, |
| base::StringPiece *out_plaintext) { |
| // We need this for PK11_CipherOp to write to, but we never check it as we |
| // work in ECB mode, one block at a time. |
| int out_len; |
| |
| uint8 version; |
| if (!reader->U8(&version) || version != 1) |
| return false; |
| |
| base::StringPiece prefix_sp; |
| if (!reader->Prefix(AES_BLOCK_SIZE + 2, &prefix_sp)) |
| return false; |
| uint8 prefix[AES_BLOCK_SIZE + 2]; |
| memcpy(prefix, prefix_sp.data(), sizeof(prefix)); |
| |
| uint8 prefix_copy[AES_BLOCK_SIZE + 2]; |
| uint8 fre[AES_BLOCK_SIZE]; |
| |
| memset(prefix_copy, 0, AES_BLOCK_SIZE); |
| PK11_CipherOp(decryption_context->get(), fre, &out_len, sizeof(fre), |
| prefix_copy, AES_BLOCK_SIZE); |
| for (unsigned i = 0; i < AES_BLOCK_SIZE; i++) |
| prefix_copy[i] = fre[i] ^ prefix[i]; |
| PK11_CipherOp(decryption_context->get(), fre, &out_len, sizeof(fre), prefix, |
| AES_BLOCK_SIZE); |
| prefix_copy[AES_BLOCK_SIZE] = prefix[AES_BLOCK_SIZE] ^ fre[0]; |
| prefix_copy[AES_BLOCK_SIZE + 1] = prefix[AES_BLOCK_SIZE + 1] ^ fre[1]; |
| |
| if (prefix_copy[AES_BLOCK_SIZE - 2] != prefix_copy[AES_BLOCK_SIZE] || |
| prefix_copy[AES_BLOCK_SIZE - 1] != prefix_copy[AES_BLOCK_SIZE + 1]) { |
| return false; |
| } |
| |
| fre[0] = prefix[AES_BLOCK_SIZE]; |
| fre[1] = prefix[AES_BLOCK_SIZE + 1]; |
| |
| unsigned out_used = 2; |
| |
| const size_t plaintext_size = reader->size(); |
| if (plaintext_size < SHA1_LENGTH + 2) { |
| // Too small to contain an MDC trailer. |
| return false; |
| } |
| |
| uint8* plaintext = reinterpret_cast<uint8*>(malloc(plaintext_size)); |
| arena_.push_back(plaintext); |
| |
| for (size_t i = 0; i < plaintext_size; i++) { |
| uint8 b; |
| if (!reader->U8(&b)) |
| return false; |
| if (out_used == AES_BLOCK_SIZE) { |
| PK11_CipherOp(decryption_context->get(), fre, &out_len, sizeof(fre), |
| fre, AES_BLOCK_SIZE); |
| out_used = 0; |
| } |
| |
| plaintext[i] = b ^ fre[out_used]; |
| fre[out_used++] = b; |
| } |
| |
| // The plaintext should be followed by a Modification Detection Code |
| // packet. This packet is specified such that the header is always |
| // serialized as exactly these two bytes: |
| if (plaintext[plaintext_size - SHA1_LENGTH - 2] != 0xd3 || |
| plaintext[plaintext_size - SHA1_LENGTH - 1] != 0x14) { |
| return false; |
| } |
| |
| HASHContext* hash_context = HASH_Create(HASH_AlgSHA1); |
| HASH_Begin(hash_context); |
| HASH_Update(hash_context, prefix_copy, sizeof(prefix_copy)); |
| HASH_Update(hash_context, plaintext, plaintext_size - SHA1_LENGTH); |
| uint8 digest[SHA1_LENGTH]; |
| unsigned num_hash_bytes; |
| HASH_End(hash_context, digest, &num_hash_bytes, sizeof(digest)); |
| HASH_Destroy(hash_context); |
| |
| if (memcmp(digest, &plaintext[plaintext_size - SHA1_LENGTH], |
| SHA1_LENGTH) != 0) { |
| return false; |
| } |
| |
| *out_plaintext = base::StringPiece(reinterpret_cast<char*>(plaintext), |
| plaintext_size - SHA1_LENGTH); |
| return true; |
| } |
| |
| // ParseLiteralData parses a Literal Data packet. See RFC 4880, section 5.9. |
| bool ParseLiteralData(Reader *reader, base::StringPiece *out_data) { |
| uint8 is_binary, filename_len; |
| if (!reader->U8(&is_binary) || |
| !reader->U8(&filename_len) || |
| !reader->Skip(filename_len) || |
| !reader->Skip(sizeof(uint32) /* mtime */)) { |
| return false; |
| } |
| |
| *out_data = reader->Remainder(); |
| return true; |
| } |
| |
| // arena_ contains malloced pointers that are used as temporary space during |
| // the decryption. |
| std::vector<void*> arena_; |
| }; |
| |
| class Encrypter { |
| public: |
| // ByteString is used throughout in order to avoid signedness issues with a |
| // std::string. |
| typedef std::basic_string<uint8> ByteString; |
| |
| static ByteString Encrypt(base::StringPiece plaintext, |
| base::StringPiece passphrase) { |
| ByteString key; |
| ByteString ske = SerializeSymmetricKeyEncrypted(passphrase, &key); |
| |
| ByteString literal_data = SerializeLiteralData(plaintext); |
| ByteString se = SerializeSymmetricallyEncrypted(literal_data, key); |
| return ske + se; |
| } |
| |
| private: |
| // MakePacket returns an OpenPGP packet tagged as type |tag|. It always uses |
| // new-format headers. See RFC 4880, section 4.2. |
| static ByteString MakePacket(unsigned tag, const ByteString& contents) { |
| ByteString header; |
| header.push_back(0x80 | 0x40 | tag); |
| |
| if (contents.size() < 192) { |
| header.push_back(contents.size()); |
| } else if (contents.size() < 8384) { |
| size_t length = contents.size(); |
| length -= 192; |
| header.push_back(192 + (length >> 8)); |
| header.push_back(length & 0xff); |
| } else { |
| size_t length = contents.size(); |
| header.push_back(255); |
| header.push_back(length >> 24); |
| header.push_back(length >> 16); |
| header.push_back(length >> 8); |
| header.push_back(length); |
| } |
| |
| return header + contents; |
| } |
| |
| // SerializeLiteralData returns a Literal Data packet containing |contents| |
| // as binary data with no filename nor mtime specified. See RFC 4880, section |
| // 5.9. |
| static ByteString SerializeLiteralData(base::StringPiece contents) { |
| ByteString literal_data; |
| literal_data.push_back(0x74); // text mode |
| literal_data.push_back(0x00); // no filename |
| literal_data.push_back(0x00); // zero mtime |
| literal_data.push_back(0x00); |
| literal_data.push_back(0x00); |
| literal_data.push_back(0x00); |
| literal_data += ByteString(reinterpret_cast<const uint8*>(contents.data()), |
| contents.size()); |
| return MakePacket(kLiteralDataTag, literal_data); |
| } |
| |
| // SerializeSymmetricKeyEncrypted generates a random AES-128 key from |
| // |passphrase|, sets |out_key| to it and returns a Symmetric Key Encrypted |
| // packet. See RFC 4880, section 5.3. |
| static ByteString SerializeSymmetricKeyEncrypted(base::StringPiece passphrase, |
| ByteString *out_key) { |
| ByteString ske; |
| ske.push_back(4); // version 4 |
| ske.push_back(7); // AES-128 |
| ske.push_back(3); // iterated and salted S2K |
| ske.push_back(2); // SHA-1 |
| |
| uint64 salt64; |
| crypto::RandBytes(&salt64, sizeof(salt64)); |
| ByteString salt(sizeof(salt64), 0); |
| |
| // It's a random value, so endianness doesn't matter. |
| ske += ByteString(reinterpret_cast<uint8*>(&salt64), sizeof(salt64)); |
| ske.push_back(96); // iteration count of 65536 |
| |
| uint8 key[16]; |
| SaltedIteratedS2K( |
| sizeof(key), HASH_AlgSHA1, passphrase, |
| base::StringPiece(reinterpret_cast<char*>(&salt64), sizeof(salt64)), |
| 65536, key); |
| *out_key = ByteString(key, sizeof(key)); |
| return MakePacket(kSymmetricKeyEncryptedTag, ske); |
| } |
| |
| // SerializeSymmetricallyEncrypted encrypts |plaintext| with |key| and |
| // returns a Symmetrically Encrypted packet containing the ciphertext. See |
| // RFC 4880, section 5.7. |
| static ByteString SerializeSymmetricallyEncrypted(ByteString plaintext, |
| const ByteString& key) { |
| // We need this for PK11_CipherOp to write to, but we never check it as we |
| // work in ECB mode, one block at a time. |
| int out_len; |
| |
| ByteString packet; |
| packet.push_back(1); // version 1 |
| static const unsigned kBlockSize = 16; // AES block size |
| |
| uint8 prefix[kBlockSize + 2], fre[kBlockSize], iv[kBlockSize]; |
| crypto::RandBytes(iv, kBlockSize); |
| memset(fre, 0, sizeof(fre)); |
| |
| ScopedPK11Context aes_context; |
| CHECK(CreateAESContext(key.data(), key.size(), &aes_context)); |
| |
| PK11_CipherOp(aes_context.get(), fre, &out_len, sizeof(fre), fre, |
| AES_BLOCK_SIZE); |
| for (unsigned i = 0; i < 16; i++) |
| prefix[i] = iv[i] ^ fre[i]; |
| PK11_CipherOp(aes_context.get(), fre, &out_len, sizeof(fre), prefix, |
| AES_BLOCK_SIZE); |
| prefix[kBlockSize] = iv[kBlockSize - 2] ^ fre[0]; |
| prefix[kBlockSize + 1] = iv[kBlockSize - 1] ^ fre[1]; |
| |
| packet += ByteString(prefix, sizeof(prefix)); |
| |
| ByteString plaintext_copy = plaintext; |
| plaintext_copy.push_back(0xd3); // MDC packet |
| plaintext_copy.push_back(20); // packet length (20 bytes) |
| |
| HASHContext* hash_context = HASH_Create(HASH_AlgSHA1); |
| HASH_Begin(hash_context); |
| HASH_Update(hash_context, iv, sizeof(iv)); |
| HASH_Update(hash_context, iv + kBlockSize - 2, 2); |
| HASH_Update(hash_context, plaintext_copy.data(), plaintext_copy.size()); |
| uint8 digest[SHA1_LENGTH]; |
| unsigned num_hash_bytes; |
| HASH_End(hash_context, digest, &num_hash_bytes, sizeof(digest)); |
| HASH_Destroy(hash_context); |
| |
| plaintext_copy += ByteString(digest, sizeof(digest)); |
| |
| fre[0] = prefix[kBlockSize]; |
| fre[1] = prefix[kBlockSize+1]; |
| unsigned out_used = 2; |
| |
| for (size_t i = 0; i < plaintext_copy.size(); i++) { |
| if (out_used == kBlockSize) { |
| PK11_CipherOp(aes_context.get(), fre, &out_len, sizeof(fre), fre, |
| AES_BLOCK_SIZE); |
| out_used = 0; |
| } |
| |
| uint8 c = plaintext_copy[i] ^ fre[out_used]; |
| fre[out_used++] = c; |
| packet.push_back(c); |
| } |
| |
| return MakePacket(kSymmetricallyEncryptedTag, packet); |
| } |
| }; |
| |
| } // anonymous namespace |
| |
| // static |
| OpenPGPSymmetricEncrytion::Result OpenPGPSymmetricEncrytion::Decrypt( |
| base::StringPiece encrypted, |
| base::StringPiece passphrase, |
| std::string *out) { |
| EnsureNSSInit(); |
| |
| Decrypter decrypter; |
| base::StringPiece result; |
| Result reader = decrypter.Decrypt(encrypted, passphrase, &result); |
| if (reader == OK) |
| *out = result.as_string(); |
| return reader; |
| } |
| |
| // static |
| std::string OpenPGPSymmetricEncrytion::Encrypt( |
| base::StringPiece plaintext, |
| base::StringPiece passphrase) { |
| EnsureNSSInit(); |
| |
| Encrypter::ByteString b = |
| Encrypter::Encrypt(plaintext, passphrase); |
| return std::string(reinterpret_cast<const char*>(b.data()), b.size()); |
| } |
| |
| } // namespace crypto |