| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/rsa_private_key.h" |
| |
| #include <algorithm> |
| #include <list> |
| |
| #include "base/logging.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/string_util.h" |
| |
| // This file manually encodes and decodes RSA private keys using PrivateKeyInfo |
| // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: |
| // |
| // PrivateKeyInfo ::= SEQUENCE { |
| // version Version, |
| // privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, |
| // privateKey PrivateKey, |
| // attributes [0] IMPLICIT Attributes OPTIONAL |
| // } |
| // |
| // RSAPrivateKey ::= SEQUENCE { |
| // version Version, |
| // modulus INTEGER, |
| // publicExponent INTEGER, |
| // privateExponent INTEGER, |
| // prime1 INTEGER, |
| // prime2 INTEGER, |
| // exponent1 INTEGER, |
| // exponent2 INTEGER, |
| // coefficient INTEGER |
| // } |
| |
| namespace { |
| // Helper for error handling during key import. |
| #define READ_ASSERT(truth) \ |
| if (!(truth)) { \ |
| NOTREACHED(); \ |
| return false; \ |
| } |
| } // namespace |
| |
| namespace crypto { |
| |
| const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { |
| 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, |
| 0x05, 0x00 |
| }; |
| |
| PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) |
| : big_endian_(big_endian) {} |
| |
| PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} |
| |
| bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) { |
| std::list<uint8> content; |
| |
| // Version (always zero) |
| uint8 version = 0; |
| |
| PrependInteger(coefficient_, &content); |
| PrependInteger(exponent2_, &content); |
| PrependInteger(exponent1_, &content); |
| PrependInteger(prime2_, &content); |
| PrependInteger(prime1_, &content); |
| PrependInteger(private_exponent_, &content); |
| PrependInteger(public_exponent_, &content); |
| PrependInteger(modulus_, &content); |
| PrependInteger(&version, 1, &content); |
| PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); |
| |
| // RSA algorithm OID |
| for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| |
| PrependInteger(&version, 1, &content); |
| PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| |
| // Copy everying into the output. |
| output->reserve(content.size()); |
| output->assign(content.begin(), content.end()); |
| |
| return true; |
| } |
| |
| bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) { |
| // Create a sequence with the modulus (n) and public exponent (e). |
| std::vector<uint8> bit_string; |
| if (!ExportPublicKey(&bit_string)) |
| return false; |
| |
| // Add the sequence as the contents of a bit string. |
| std::list<uint8> content; |
| PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), |
| &content); |
| |
| // Add the RSA algorithm OID. |
| for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| |
| // Finally, wrap everything in a sequence. |
| PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| |
| // Copy everything into the output. |
| output->reserve(content.size()); |
| output->assign(content.begin(), content.end()); |
| |
| return true; |
| } |
| |
| bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8>* output) { |
| // Create a sequence with the modulus (n) and public exponent (e). |
| std::list<uint8> content; |
| PrependInteger(&public_exponent_[0], |
| static_cast<int>(public_exponent_.size()), |
| &content); |
| PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); |
| PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| |
| // Copy everything into the output. |
| output->reserve(content.size()); |
| output->assign(content.begin(), content.end()); |
| |
| return true; |
| } |
| |
| bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) { |
| if (input.empty()) { |
| return false; |
| } |
| |
| // Parse the private key info up to the public key values, ignoring |
| // the subsequent private key values. |
| uint8* src = const_cast<uint8*>(&input.front()); |
| uint8* end = src + input.size(); |
| if (!ReadSequence(&src, end) || |
| !ReadVersion(&src, end) || |
| !ReadAlgorithmIdentifier(&src, end) || |
| !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || |
| !ReadSequence(&src, end) || |
| !ReadVersion(&src, end) || |
| !ReadInteger(&src, end, &modulus_)) |
| return false; |
| |
| int mod_size = modulus_.size(); |
| READ_ASSERT(mod_size % 2 == 0); |
| int primes_size = mod_size / 2; |
| |
| if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || |
| !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || |
| !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || |
| !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || |
| !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || |
| !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || |
| !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) |
| return false; |
| |
| READ_ASSERT(src == end); |
| |
| |
| return true; |
| } |
| |
| void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in, |
| std::list<uint8>* out) { |
| uint8* ptr = const_cast<uint8*>(&in.front()); |
| PrependIntegerImpl(ptr, in.size(), out, big_endian_); |
| } |
| |
| // Helper to prepend an ASN.1 integer. |
| void PrivateKeyInfoCodec::PrependInteger(uint8* val, |
| int num_bytes, |
| std::list<uint8>* data) { |
| PrependIntegerImpl(val, num_bytes, data, big_endian_); |
| } |
| |
| void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val, |
| int num_bytes, |
| std::list<uint8>* data, |
| bool big_endian) { |
| // Reverse input if little-endian. |
| std::vector<uint8> tmp; |
| if (!big_endian) { |
| tmp.assign(val, val + num_bytes); |
| std::reverse(tmp.begin(), tmp.end()); |
| val = &tmp.front(); |
| } |
| |
| // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes |
| // from the most-significant end of the integer. |
| int start = 0; |
| while (start < (num_bytes - 1) && val[start] == 0x00) { |
| start++; |
| num_bytes--; |
| } |
| PrependBytes(val, start, num_bytes, data); |
| |
| // ASN.1 integers are signed. To encode a positive integer whose sign bit |
| // (the most significant bit) would otherwise be set and make the number |
| // negative, ASN.1 requires a leading null byte to force the integer to be |
| // positive. |
| uint8 front = data->front(); |
| if ((front & 0x80) != 0) { |
| data->push_front(0x00); |
| num_bytes++; |
| } |
| |
| PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); |
| } |
| |
| bool PrivateKeyInfoCodec::ReadInteger(uint8** pos, |
| uint8* end, |
| std::vector<uint8>* out) { |
| return ReadIntegerImpl(pos, end, out, big_endian_); |
| } |
| |
| bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos, |
| uint8* end, |
| size_t expected_size, |
| std::vector<uint8>* out) { |
| std::vector<uint8> temp; |
| if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian |
| return false; |
| |
| int pad = expected_size - temp.size(); |
| int index = 0; |
| if (out->size() == expected_size + 1) { |
| READ_ASSERT(out->front() == 0x00); |
| pad++; |
| index++; |
| } else { |
| READ_ASSERT(out->size() <= expected_size); |
| } |
| |
| out->insert(out->end(), pad, 0x00); |
| out->insert(out->end(), temp.begin(), temp.end()); |
| |
| // Reverse output if little-endian. |
| if (!big_endian_) |
| std::reverse(out->begin(), out->end()); |
| return true; |
| } |
| |
| bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos, |
| uint8* end, |
| std::vector<uint8>* out, |
| bool big_endian) { |
| uint32 length = 0; |
| if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) |
| return false; |
| |
| // The first byte can be zero to force positiveness. We can ignore this. |
| if (**pos == 0x00) { |
| ++(*pos); |
| --length; |
| } |
| |
| if (length) |
| out->insert(out->end(), *pos, (*pos) + length); |
| |
| (*pos) += length; |
| |
| // Reverse output if little-endian. |
| if (!big_endian) |
| std::reverse(out->begin(), out->end()); |
| return true; |
| } |
| |
| void PrivateKeyInfoCodec::PrependBytes(uint8* val, |
| int start, |
| int num_bytes, |
| std::list<uint8>* data) { |
| while (num_bytes > 0) { |
| --num_bytes; |
| data->push_front(val[start + num_bytes]); |
| } |
| } |
| |
| void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) { |
| // The high bit is used to indicate whether additional octets are needed to |
| // represent the length. |
| if (size < 0x80) { |
| data->push_front(static_cast<uint8>(size)); |
| } else { |
| uint8 num_bytes = 0; |
| while (size > 0) { |
| data->push_front(static_cast<uint8>(size & 0xFF)); |
| size >>= 8; |
| num_bytes++; |
| } |
| CHECK_LE(num_bytes, 4); |
| data->push_front(0x80 | num_bytes); |
| } |
| } |
| |
| void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type, |
| uint32 length, |
| std::list<uint8>* output) { |
| PrependLength(length, output); |
| output->push_front(type); |
| } |
| |
| void PrivateKeyInfoCodec::PrependBitString(uint8* val, |
| int num_bytes, |
| std::list<uint8>* output) { |
| // Start with the data. |
| PrependBytes(val, 0, num_bytes, output); |
| // Zero unused bits. |
| output->push_front(0); |
| // Add the length. |
| PrependLength(num_bytes + 1, output); |
| // Finally, add the bit string tag. |
| output->push_front((uint8) kBitStringTag); |
| } |
| |
| bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) { |
| READ_ASSERT(*pos < end); |
| int length = 0; |
| |
| // If the MSB is not set, the length is just the byte itself. |
| if (!(**pos & 0x80)) { |
| length = **pos; |
| (*pos)++; |
| } else { |
| // Otherwise, the lower 7 indicate the length of the length. |
| int length_of_length = **pos & 0x7F; |
| READ_ASSERT(length_of_length <= 4); |
| (*pos)++; |
| READ_ASSERT(*pos + length_of_length < end); |
| |
| length = 0; |
| for (int i = 0; i < length_of_length; ++i) { |
| length <<= 8; |
| length |= **pos; |
| (*pos)++; |
| } |
| } |
| |
| READ_ASSERT(*pos + length <= end); |
| if (result) *result = length; |
| return true; |
| } |
| |
| bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos, |
| uint8* end, |
| uint8 expected_tag, |
| uint32* length) { |
| READ_ASSERT(*pos < end); |
| READ_ASSERT(**pos == expected_tag); |
| (*pos)++; |
| |
| return ReadLength(pos, end, length); |
| } |
| |
| bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) { |
| return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); |
| } |
| |
| bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) { |
| READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); |
| READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, |
| sizeof(kRsaAlgorithmIdentifier)) == 0); |
| (*pos) += sizeof(kRsaAlgorithmIdentifier); |
| return true; |
| } |
| |
| bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) { |
| uint32 length = 0; |
| if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) |
| return false; |
| |
| // The version should be zero. |
| for (uint32 i = 0; i < length; ++i) { |
| READ_ASSERT(**pos == 0x00); |
| (*pos)++; |
| } |
| |
| return true; |
| } |
| |
| } // namespace crypto |