| |
| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #ifndef SkMath_DEFINED |
| #define SkMath_DEFINED |
| |
| #include "build/build_config.h" |
| |
| #include "SkTypes.h" |
| |
| // 64bit -> 32bit utilities |
| |
| /** |
| * Return true iff the 64bit value can exactly be represented in signed 32bits |
| */ |
| static inline bool sk_64_isS32(int64_t value) { |
| return (int32_t)value == value; |
| } |
| |
| /** |
| * Return the 64bit argument as signed 32bits, asserting in debug that the arg |
| * exactly fits in signed 32bits. In the release build, no checks are preformed |
| * and the return value if the arg does not fit is undefined. |
| */ |
| static inline int32_t sk_64_asS32(int64_t value) { |
| SkASSERT(sk_64_isS32(value)); |
| return (int32_t)value; |
| } |
| |
| // Handy util that can be passed two ints, and will automatically promote to |
| // 64bits before the multiply, so the caller doesn't have to remember to cast |
| // e.g. (int64_t)a * b; |
| static inline int64_t sk_64_mul(int64_t a, int64_t b) { |
| return a * b; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * Computes numer1 * numer2 / denom in full 64 intermediate precision. |
| * It is an error for denom to be 0. There is no special handling if |
| * the result overflows 32bits. |
| */ |
| static inline int32_t SkMulDiv(int32_t numer1, int32_t numer2, int32_t denom) { |
| SkASSERT(denom); |
| |
| int64_t tmp = sk_64_mul(numer1, numer2) / denom; |
| return sk_64_asS32(tmp); |
| } |
| |
| /** |
| * Computes (numer1 << shift) / denom in full 64 intermediate precision. |
| * It is an error for denom to be 0. There is no special handling if |
| * the result overflows 32bits. |
| */ |
| int32_t SkDivBits(int32_t numer, int32_t denom, int shift); |
| |
| /** |
| * Return the integer square root of value, with a bias of bitBias |
| */ |
| int32_t SkSqrtBits(int32_t value, int bitBias); |
| |
| /** Return the integer square root of n, treated as a SkFixed (16.16) |
| */ |
| #define SkSqrt32(n) SkSqrtBits(n, 15) |
| |
| //! Returns the number of leading zero bits (0...32) |
| int SkCLZ_portable(uint32_t); |
| |
| #ifndef SkCLZ |
| #if defined(_MSC_VER) && _MSC_VER >= 1400 && !defined(OS_STARBOARD) |
| #include <intrin.h> |
| |
| static inline int SkCLZ(uint32_t mask) { |
| if (mask) { |
| DWORD index; |
| _BitScanReverse(&index, mask); |
| return index ^ 0x1F; |
| } else { |
| return 32; |
| } |
| } |
| #elif defined(SK_CPU_ARM32) || defined(__GNUC__) || defined(__clang__) |
| static inline int SkCLZ(uint32_t mask) { |
| // __builtin_clz(0) is undefined, so we have to detect that case. |
| return mask ? __builtin_clz(mask) : 32; |
| } |
| #else |
| #define SkCLZ(x) SkCLZ_portable(x) |
| #endif |
| #endif |
| |
| /** |
| * Returns (value < 0 ? 0 : value) efficiently (i.e. no compares or branches) |
| */ |
| static inline int SkClampPos(int value) { |
| return value & ~(value >> 31); |
| } |
| |
| /** Given an integer and a positive (max) integer, return the value |
| * pinned against 0 and max, inclusive. |
| * @param value The value we want returned pinned between [0...max] |
| * @param max The positive max value |
| * @return 0 if value < 0, max if value > max, else value |
| */ |
| static inline int SkClampMax(int value, int max) { |
| // ensure that max is positive |
| SkASSERT(max >= 0); |
| if (value < 0) { |
| value = 0; |
| } |
| if (value > max) { |
| value = max; |
| } |
| return value; |
| } |
| |
| /** |
| * Returns the smallest power-of-2 that is >= the specified value. If value |
| * is already a power of 2, then it is returned unchanged. It is undefined |
| * if value is <= 0. |
| */ |
| static inline int SkNextPow2(int value) { |
| SkASSERT(value > 0); |
| return 1 << (32 - SkCLZ(value - 1)); |
| } |
| |
| /** |
| * Returns the log2 of the specified value, were that value to be rounded up |
| * to the next power of 2. It is undefined to pass 0. Examples: |
| * SkNextLog2(1) -> 0 |
| * SkNextLog2(2) -> 1 |
| * SkNextLog2(3) -> 2 |
| * SkNextLog2(4) -> 2 |
| * SkNextLog2(5) -> 3 |
| */ |
| static inline int SkNextLog2(uint32_t value) { |
| SkASSERT(value != 0); |
| return 32 - SkCLZ(value - 1); |
| } |
| |
| /** |
| * Returns true if value is a power of 2. Does not explicitly check for |
| * value <= 0. |
| */ |
| static inline bool SkIsPow2(int value) { |
| return (value & (value - 1)) == 0; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| /** |
| * SkMulS16(a, b) multiplies a * b, but requires that a and b are both int16_t. |
| * With this requirement, we can generate faster instructions on some |
| * architectures. |
| */ |
| #ifdef SK_ARM_HAS_EDSP |
| static inline int32_t SkMulS16(S16CPU x, S16CPU y) { |
| SkASSERT((int16_t)x == x); |
| SkASSERT((int16_t)y == y); |
| int32_t product; |
| asm("smulbb %0, %1, %2 \n" |
| : "=r"(product) |
| : "r"(x), "r"(y) |
| ); |
| return product; |
| } |
| #else |
| #ifdef SK_DEBUG |
| static inline int32_t SkMulS16(S16CPU x, S16CPU y) { |
| SkASSERT((int16_t)x == x); |
| SkASSERT((int16_t)y == y); |
| return x * y; |
| } |
| #else |
| #define SkMulS16(x, y) ((x) * (y)) |
| #endif |
| #endif |
| |
| /** |
| * Return a*b/((1 << shift) - 1), rounding any fractional bits. |
| * Only valid if a and b are unsigned and <= 32767 and shift is > 0 and <= 8 |
| */ |
| static inline unsigned SkMul16ShiftRound(U16CPU a, U16CPU b, int shift) { |
| SkASSERT(a <= 32767); |
| SkASSERT(b <= 32767); |
| SkASSERT(shift > 0 && shift <= 8); |
| unsigned prod = SkMulS16(a, b) + (1 << (shift - 1)); |
| return (prod + (prod >> shift)) >> shift; |
| } |
| |
| /** |
| * Return a*b/255, rounding any fractional bits. |
| * Only valid if a and b are unsigned and <= 32767. |
| */ |
| static inline U8CPU SkMulDiv255Round(U16CPU a, U16CPU b) { |
| SkASSERT(a <= 32767); |
| SkASSERT(b <= 32767); |
| unsigned prod = SkMulS16(a, b) + 128; |
| return (prod + (prod >> 8)) >> 8; |
| } |
| |
| /** |
| * Stores numer/denom and numer%denom into div and mod respectively. |
| */ |
| template <typename In, typename Out> |
| inline void SkTDivMod(In numer, In denom, Out* div, Out* mod) { |
| #ifdef SK_CPU_ARM32 |
| // If we wrote this as in the else branch, GCC won't fuse the two into one |
| // divmod call, but rather a div call followed by a divmod. Silly! This |
| // version is just as fast as calling __aeabi_[u]idivmod manually, but with |
| // prettier code. |
| // |
| // This benches as around 2x faster than the code in the else branch. |
| const In d = numer/denom; |
| *div = static_cast<Out>(d); |
| *mod = static_cast<Out>(numer-d*denom); |
| #else |
| // On x86 this will just be a single idiv. |
| *div = static_cast<Out>(numer/denom); |
| *mod = static_cast<Out>(numer%denom); |
| #endif |
| } |
| |
| #endif |