blob: a2648d1737944db6d1e9bd87850ccdad823eb056 [file] [log] [blame]
// Copyright 2012 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Image transforms and color space conversion methods for lossless decoder.
//
// Authors: Vikas Arora (vikaas.arora@gmail.com)
// Jyrki Alakuijala (jyrki@google.com)
// Vincent Rabaud (vrabaud@google.com)
#ifndef WEBP_DSP_LOSSLESS_COMMON_H_
#define WEBP_DSP_LOSSLESS_COMMON_H_
#include "src/webp/types.h"
#include "src/utils/utils.h"
#ifdef __cplusplus
extern "C" {
#endif
//------------------------------------------------------------------------------
// Decoding
// color mapping related functions.
static WEBP_INLINE uint32_t VP8GetARGBIndex(uint32_t idx) {
return (idx >> 8) & 0xff;
}
static WEBP_INLINE uint8_t VP8GetAlphaIndex(uint8_t idx) {
return idx;
}
static WEBP_INLINE uint32_t VP8GetARGBValue(uint32_t val) {
return val;
}
static WEBP_INLINE uint8_t VP8GetAlphaValue(uint32_t val) {
return (val >> 8) & 0xff;
}
//------------------------------------------------------------------------------
// Misc methods.
// Computes sampled size of 'size' when sampling using 'sampling bits'.
static WEBP_INLINE uint32_t VP8LSubSampleSize(uint32_t size,
uint32_t sampling_bits) {
return (size + (1 << sampling_bits) - 1) >> sampling_bits;
}
// Converts near lossless quality into max number of bits shaved off.
static WEBP_INLINE int VP8LNearLosslessBits(int near_lossless_quality) {
// 100 -> 0
// 80..99 -> 1
// 60..79 -> 2
// 40..59 -> 3
// 20..39 -> 4
// 0..19 -> 5
return 5 - near_lossless_quality / 20;
}
// -----------------------------------------------------------------------------
// Faster logarithm for integers. Small values use a look-up table.
// The threshold till approximate version of log_2 can be used.
// Practically, we can get rid of the call to log() as the two values match to
// very high degree (the ratio of these two is 0.99999x).
// Keeping a high threshold for now.
#define APPROX_LOG_WITH_CORRECTION_MAX 65536
#define APPROX_LOG_MAX 4096
#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086
#define LOG_LOOKUP_IDX_MAX 256
extern const float kLog2Table[LOG_LOOKUP_IDX_MAX];
extern const float kSLog2Table[LOG_LOOKUP_IDX_MAX];
typedef float (*VP8LFastLog2SlowFunc)(uint32_t v);
extern VP8LFastLog2SlowFunc VP8LFastLog2Slow;
extern VP8LFastLog2SlowFunc VP8LFastSLog2Slow;
static WEBP_INLINE float VP8LFastLog2(uint32_t v) {
return (v < LOG_LOOKUP_IDX_MAX) ? kLog2Table[v] : VP8LFastLog2Slow(v);
}
// Fast calculation of v * log2(v) for integer input.
static WEBP_INLINE float VP8LFastSLog2(uint32_t v) {
return (v < LOG_LOOKUP_IDX_MAX) ? kSLog2Table[v] : VP8LFastSLog2Slow(v);
}
// -----------------------------------------------------------------------------
// PrefixEncode()
// Splitting of distance and length codes into prefixes and
// extra bits. The prefixes are encoded with an entropy code
// while the extra bits are stored just as normal bits.
static WEBP_INLINE void VP8LPrefixEncodeBitsNoLUT(int distance, int* const code,
int* const extra_bits) {
const int highest_bit = BitsLog2Floor(--distance);
const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
*extra_bits = highest_bit - 1;
*code = 2 * highest_bit + second_highest_bit;
}
static WEBP_INLINE void VP8LPrefixEncodeNoLUT(int distance, int* const code,
int* const extra_bits,
int* const extra_bits_value) {
const int highest_bit = BitsLog2Floor(--distance);
const int second_highest_bit = (distance >> (highest_bit - 1)) & 1;
*extra_bits = highest_bit - 1;
*extra_bits_value = distance & ((1 << *extra_bits) - 1);
*code = 2 * highest_bit + second_highest_bit;
}
#define PREFIX_LOOKUP_IDX_MAX 512
typedef struct {
int8_t code_;
int8_t extra_bits_;
} VP8LPrefixCode;
// These tables are derived using VP8LPrefixEncodeNoLUT.
extern const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX];
extern const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX];
static WEBP_INLINE void VP8LPrefixEncodeBits(int distance, int* const code,
int* const extra_bits) {
if (distance < PREFIX_LOOKUP_IDX_MAX) {
const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
*code = prefix_code.code_;
*extra_bits = prefix_code.extra_bits_;
} else {
VP8LPrefixEncodeBitsNoLUT(distance, code, extra_bits);
}
}
static WEBP_INLINE void VP8LPrefixEncode(int distance, int* const code,
int* const extra_bits,
int* const extra_bits_value) {
if (distance < PREFIX_LOOKUP_IDX_MAX) {
const VP8LPrefixCode prefix_code = kPrefixEncodeCode[distance];
*code = prefix_code.code_;
*extra_bits = prefix_code.extra_bits_;
*extra_bits_value = kPrefixEncodeExtraBitsValue[distance];
} else {
VP8LPrefixEncodeNoLUT(distance, code, extra_bits, extra_bits_value);
}
}
// Sum of each component, mod 256.
static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
uint32_t VP8LAddPixels(uint32_t a, uint32_t b) {
const uint32_t alpha_and_green = (a & 0xff00ff00u) + (b & 0xff00ff00u);
const uint32_t red_and_blue = (a & 0x00ff00ffu) + (b & 0x00ff00ffu);
return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
// Difference of each component, mod 256.
static WEBP_UBSAN_IGNORE_UNSIGNED_OVERFLOW WEBP_INLINE
uint32_t VP8LSubPixels(uint32_t a, uint32_t b) {
const uint32_t alpha_and_green =
0x00ff00ffu + (a & 0xff00ff00u) - (b & 0xff00ff00u);
const uint32_t red_and_blue =
0xff00ff00u + (a & 0x00ff00ffu) - (b & 0x00ff00ffu);
return (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu);
}
//------------------------------------------------------------------------------
// Transform-related functions use din both encoding and decoding.
// Macros used to create a batch predictor that iteratively uses a
// one-pixel predictor.
// The predictor is added to the output pixel (which
// is therefore considered as a residual) to get the final prediction.
#define GENERATE_PREDICTOR_ADD(PREDICTOR, PREDICTOR_ADD) \
static void PREDICTOR_ADD(const uint32_t* in, const uint32_t* upper, \
int num_pixels, uint32_t* out) { \
int x; \
for (x = 0; x < num_pixels; ++x) { \
const uint32_t pred = (PREDICTOR)(out[x - 1], upper + x); \
out[x] = VP8LAddPixels(in[x], pred); \
} \
}
// It subtracts the prediction from the input pixel and stores the residual
// in the output pixel.
#define GENERATE_PREDICTOR_SUB(PREDICTOR, PREDICTOR_SUB) \
static void PREDICTOR_SUB(const uint32_t* in, const uint32_t* upper, \
int num_pixels, uint32_t* out) { \
int x; \
for (x = 0; x < num_pixels; ++x) { \
const uint32_t pred = (PREDICTOR)(in[x - 1], upper + x); \
out[x] = VP8LSubPixels(in[x], pred); \
} \
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // WEBP_DSP_LOSSLESS_COMMON_H_