| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // Flags: --no-fast-math |
| |
| assertTrue(isNaN(Math.expm1(NaN))); |
| assertTrue(isNaN(Math.expm1(function() {}))); |
| assertTrue(isNaN(Math.expm1({ toString: function() { return NaN; } }))); |
| assertTrue(isNaN(Math.expm1({ valueOf: function() { return "abc"; } }))); |
| assertEquals(Infinity, 1/Math.expm1(0)); |
| assertEquals(-Infinity, 1/Math.expm1(-0)); |
| assertEquals(Infinity, Math.expm1(Infinity)); |
| assertEquals(-1, Math.expm1(-Infinity)); |
| |
| |
| // Sanity check: |
| // Math.expm1(x) stays reasonably close to Math.exp(x) - 1 for large values. |
| for (var x = 1; x < 700; x += 0.25) { |
| var expected = Math.exp(x) - 1; |
| assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15); |
| expected = Math.exp(-x) - 1; |
| assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-15); |
| } |
| |
| // Approximation for values close to 0: |
| // Use six terms of Taylor expansion at 0 for exp(x) as test expectation: |
| // exp(x) - 1 == exp(0) + exp(0) * x + x * x / 2 + ... - 1 |
| // == x + x * x / 2 + x * x * x / 6 + ... |
| function expm1(x) { |
| return x * (1 + x * (1/2 + x * ( |
| 1/6 + x * (1/24 + x * ( |
| 1/120 + x * (1/720 + x * ( |
| 1/5040 + x * (1/40320 + x*( |
| 1/362880 + x * (1/3628800)))))))))); |
| } |
| |
| // Sanity check: |
| // Math.expm1(x) stays reasonabliy close to the Taylor series for small values. |
| for (var x = 1E-1; x > 1E-300; x *= 0.8) { |
| var expected = expm1(x); |
| assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15); |
| } |
| |
| |
| // Tests related to the fdlibm implementation. |
| // Test overflow. |
| assertEquals(Infinity, Math.expm1(709.8)); |
| // Test largest double value. |
| assertEquals(Infinity, Math.exp(1.7976931348623157e308)); |
| // Cover various code paths. |
| assertEquals(-1, Math.expm1(-56 * Math.LN2)); |
| assertEquals(-1, Math.expm1(-50)); |
| // Test most negative double value. |
| assertEquals(-1, Math.expm1(-1.7976931348623157e308)); |
| // Test argument reduction. |
| // Cases for 0.5*log(2) < |x| < 1.5*log(2). |
| assertEquals(Math.E - 1, Math.expm1(1)); |
| assertEquals(1/Math.E - 1, Math.expm1(-1)); |
| // Cases for 1.5*log(2) < |x|. |
| assertEquals(6.38905609893065, Math.expm1(2)); |
| assertEquals(-0.8646647167633873, Math.expm1(-2)); |
| // Cases where Math.expm1(x) = x. |
| assertEquals(0, Math.expm1(0)); |
| assertEquals(Math.pow(2,-55), Math.expm1(Math.pow(2,-55))); |
| // Tests for the case where argument reduction has x in the primary range. |
| // Test branch for k = 0. |
| assertEquals(0.18920711500272105, Math.expm1(0.25 * Math.LN2)); |
| // Test branch for k = -1. |
| assertEquals(-0.5, Math.expm1(-Math.LN2)); |
| // Test branch for k = 1. |
| assertEquals(1, Math.expm1(Math.LN2)); |
| // Test branch for k <= -2 || k > 56. k = -3. |
| assertEquals(1.4411518807585582e17, Math.expm1(57 * Math.LN2)); |
| // Test last branch for k < 20, k = 19. |
| assertEquals(524286.99999999994, Math.expm1(19 * Math.LN2)); |
| // Test the else branch, k = 20. |
| assertEquals(1048575, Math.expm1(20 * Math.LN2)); |