| /* |
| * Copyright 2014 Google Inc. All Rights Reserved. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "nb/reuse_allocator.h" |
| |
| #include "nb/fixed_no_free_allocator.h" |
| #include "nb/scoped_ptr.h" |
| #include "starboard/configuration.h" |
| #include "starboard/types.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| namespace { |
| |
| inline bool IsAligned(void* ptr, std::size_t boundary) { |
| uintptr_t ptr_as_int = reinterpret_cast<uintptr_t>(ptr); |
| return ptr_as_int % boundary == 0; |
| } |
| |
| class ReuseAllocatorTest : public ::testing::Test { |
| public: |
| static const int kBufferSize = 1 * 1024 * 1024; |
| |
| ReuseAllocatorTest() { ResetAllocator(0); } |
| |
| protected: |
| void ResetAllocator(size_t small_allocation_threshold) { |
| buffer_.reset(new uint8_t[kBufferSize]); |
| fallback_allocator_.reset( |
| new nb::FixedNoFreeAllocator(buffer_.get(), kBufferSize)); |
| if (small_allocation_threshold == 0) { |
| allocator_.reset(new nb::ReuseAllocator(fallback_allocator_.get())); |
| } else { |
| allocator_.reset(new nb::ReuseAllocator( |
| fallback_allocator_.get(), kBufferSize, small_allocation_threshold)); |
| } |
| } |
| |
| nb::scoped_array<uint8_t> buffer_; |
| nb::scoped_ptr<nb::FixedNoFreeAllocator> fallback_allocator_; |
| nb::scoped_ptr<nb::ReuseAllocator> allocator_; |
| }; |
| |
| } // namespace |
| |
| TEST_F(ReuseAllocatorTest, AlignmentCheck) { |
| const std::size_t kAlignments[] = {4, 16, 256, 32768}; |
| const std::size_t kBlockSizes[] = {4, 97, 256, 65201}; |
| for (int i = 0; i < SB_ARRAY_SIZE(kAlignments); ++i) { |
| for (int j = 0; j < SB_ARRAY_SIZE(kBlockSizes); ++j) { |
| void* p = allocator_->Allocate(kBlockSizes[j], kAlignments[i]); |
| // NOTE: Don't dereference p- this doesn't point anywhere valid. |
| EXPECT_TRUE(p != NULL); |
| EXPECT_EQ(IsAligned(p, kAlignments[i]), true); |
| allocator_->Free(p); |
| } |
| } |
| } |
| |
| // Check that the reuse allocator actually merges adjacent free blocks. |
| TEST_F(ReuseAllocatorTest, FreeBlockMergingLeft) { |
| const std::size_t kBlockSizes[] = {156, 202}; |
| const std::size_t kAlignment = 4; |
| void* blocks[] = {NULL, NULL}; |
| blocks[0] = allocator_->Allocate(kBlockSizes[0], kAlignment); |
| blocks[1] = allocator_->Allocate(kBlockSizes[1], kAlignment); |
| // In an empty allocator we expect first alloc to be < second. |
| EXPECT_LT(reinterpret_cast<uintptr_t>(blocks[0]), |
| reinterpret_cast<uintptr_t>(blocks[1])); |
| allocator_->Free(blocks[0]); |
| allocator_->Free(blocks[1]); |
| // Should have merged blocks 1 with block 0. |
| void* test_p = |
| allocator_->Allocate(kBlockSizes[0] + kBlockSizes[1], kAlignment); |
| EXPECT_EQ(test_p, blocks[0]); |
| allocator_->Free(test_p); |
| } |
| |
| TEST_F(ReuseAllocatorTest, FreeBlockMergingRight) { |
| const std::size_t kBlockSizes[] = {156, 202, 354}; |
| const std::size_t kAlignment = 4; |
| void* blocks[] = {NULL, NULL, NULL}; |
| blocks[0] = allocator_->Allocate(kBlockSizes[0], kAlignment); |
| blocks[1] = allocator_->Allocate(kBlockSizes[1], kAlignment); |
| blocks[2] = allocator_->Allocate(kBlockSizes[2], kAlignment); |
| // In an empty allocator we expect first alloc to be < second. |
| EXPECT_LT(reinterpret_cast<uintptr_t>(blocks[1]), |
| reinterpret_cast<uintptr_t>(blocks[2])); |
| allocator_->Free(blocks[2]); |
| allocator_->Free(blocks[1]); |
| // Should have merged block 1 with block 2. |
| void* test_p = |
| allocator_->Allocate(kBlockSizes[1] + kBlockSizes[2], kAlignment); |
| EXPECT_EQ(test_p, blocks[1]); |
| allocator_->Free(test_p); |
| allocator_->Free(blocks[0]); |
| } |
| |
| TEST_F(ReuseAllocatorTest, SmallAlloc) { |
| // Recreate allocator with small allocation threshold to 256. |
| ResetAllocator(256); |
| |
| const std::size_t kBlockSizes[] = {117, 193, 509, 1111}; |
| const std::size_t kAlignment = 16; |
| void* blocks[] = {NULL, NULL, NULL, NULL}; |
| for (int i = 0; i < SB_ARRAY_SIZE(kBlockSizes); ++i) { |
| blocks[i] = allocator_->Allocate(kBlockSizes[i], kAlignment); |
| } |
| // The two small allocs should be in the back in reverse order. |
| EXPECT_GT(reinterpret_cast<uintptr_t>(blocks[0]), |
| reinterpret_cast<uintptr_t>(blocks[1])); |
| // Small allocs should has higher address than other allocs. |
| EXPECT_GT(reinterpret_cast<uintptr_t>(blocks[1]), |
| reinterpret_cast<uintptr_t>(blocks[3])); |
| // Non-small allocs are allocated from the front and the first one has the |
| // lowest address. |
| EXPECT_LT(reinterpret_cast<uintptr_t>(blocks[2]), |
| reinterpret_cast<uintptr_t>(blocks[3])); |
| for (int i = 0; i < SB_ARRAY_SIZE(kBlockSizes); ++i) { |
| allocator_->Free(blocks[i]); |
| } |
| // Should have one single free block equals to the capacity. |
| void* test_p = allocator_->Allocate(allocator_->GetCapacity()); |
| EXPECT_TRUE(test_p != NULL); |
| allocator_->Free(test_p); |
| } |