| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "base/basictypes.h" | 
 | #include "base/bind.h" | 
 | #include "base/bind_helpers.h" | 
 | #include "base/file_util.h" | 
 | #include "base/threading/platform_thread.h" | 
 | #include "base/timer.h" | 
 | #include "base/string_util.h" | 
 | #include "net/base/completion_callback.h" | 
 | #include "net/base/io_buffer.h" | 
 | #include "net/base/net_errors.h" | 
 | #include "net/base/test_completion_callback.h" | 
 | #include "net/disk_cache/backend_impl.h" | 
 | #include "net/disk_cache/disk_cache_test_base.h" | 
 | #include "net/disk_cache/disk_cache_test_util.h" | 
 | #include "net/disk_cache/entry_impl.h" | 
 | #include "net/disk_cache/mem_entry_impl.h" | 
 | #include "testing/gtest/include/gtest/gtest.h" | 
 |  | 
 | using base::Time; | 
 |  | 
 | // Tests that can run with different types of caches. | 
 | class DiskCacheEntryTest : public DiskCacheTestWithCache { | 
 |  public: | 
 |   void InternalSyncIOBackground(disk_cache::Entry* entry); | 
 |   void ExternalSyncIOBackground(disk_cache::Entry* entry); | 
 |  | 
 |  protected: | 
 |   void InternalSyncIO(); | 
 |   void InternalAsyncIO(); | 
 |   void ExternalSyncIO(); | 
 |   void ExternalAsyncIO(); | 
 |   void ReleaseBuffer(); | 
 |   void StreamAccess(); | 
 |   void GetKey(); | 
 |   void GetTimes(); | 
 |   void GrowData(); | 
 |   void TruncateData(); | 
 |   void ZeroLengthIO(); | 
 |   void Buffering(); | 
 |   void SizeChanges(); | 
 |   void ReuseEntry(int size); | 
 |   void InvalidData(); | 
 |   void DoomNormalEntry(); | 
 |   void DoomEntryNextToOpenEntry(); | 
 |   void DoomedEntry(); | 
 |   void BasicSparseIO(); | 
 |   void HugeSparseIO(); | 
 |   void GetAvailableRange(); | 
 |   void CouldBeSparse(); | 
 |   void UpdateSparseEntry(); | 
 |   void DoomSparseEntry(); | 
 |   void PartialSparseEntry(); | 
 | }; | 
 |  | 
 | // This part of the test runs on the background thread. | 
 | void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry* entry) { | 
 |   const int kSize1 = 10; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   EXPECT_EQ(0, entry->ReadData( | 
 |       0, 0, buffer1, kSize1, net::CompletionCallback())); | 
 |   base::strlcpy(buffer1->data(), "the data", kSize1); | 
 |   EXPECT_EQ(10, entry->WriteData( | 
 |       0, 0, buffer1, kSize1, net::CompletionCallback(), false)); | 
 |   memset(buffer1->data(), 0, kSize1); | 
 |   EXPECT_EQ(10, entry->ReadData( | 
 |       0, 0, buffer1, kSize1, net::CompletionCallback())); | 
 |   EXPECT_STREQ("the data", buffer1->data()); | 
 |  | 
 |   const int kSize2 = 5000; | 
 |   const int kSize3 = 10000; | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |   scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | 
 |   memset(buffer3->data(), 0, kSize3); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize2, false); | 
 |   base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | 
 |   EXPECT_EQ(5000, entry->WriteData( | 
 |       1, 1500, buffer2, kSize2, net::CompletionCallback(), false)); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |   EXPECT_EQ(4989, entry->ReadData( | 
 |       1, 1511, buffer2, kSize2, net::CompletionCallback())); | 
 |   EXPECT_STREQ("big data goes here", buffer2->data()); | 
 |   EXPECT_EQ(5000, entry->ReadData( | 
 |       1, 0, buffer2, kSize2, net::CompletionCallback())); | 
 |   EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); | 
 |   EXPECT_EQ(1500, entry->ReadData( | 
 |       1, 5000, buffer2, kSize2, net::CompletionCallback())); | 
 |  | 
 |   EXPECT_EQ(0, entry->ReadData( | 
 |       1, 6500, buffer2, kSize2, net::CompletionCallback())); | 
 |   EXPECT_EQ(6500, entry->ReadData( | 
 |       1, 0, buffer3, kSize3, net::CompletionCallback())); | 
 |   EXPECT_EQ(8192, entry->WriteData( | 
 |       1, 0, buffer3, 8192, net::CompletionCallback(), false)); | 
 |   EXPECT_EQ(8192, entry->ReadData( | 
 |       1, 0, buffer3, kSize3, net::CompletionCallback())); | 
 |   EXPECT_EQ(8192, entry->GetDataSize(1)); | 
 |  | 
 |   // We need to delete the memory buffer on this thread. | 
 |   EXPECT_EQ(0, entry->WriteData( | 
 |       0, 0, NULL, 0, net::CompletionCallback(), true)); | 
 |   EXPECT_EQ(0, entry->WriteData( | 
 |       1, 0, NULL, 0, net::CompletionCallback(), true)); | 
 | } | 
 |  | 
 | // We need to support synchronous IO even though it is not a supported operation | 
 | // from the point of view of the disk cache's public interface, because we use | 
 | // it internally, not just by a few tests, but as part of the implementation | 
 | // (see sparse_control.cc, for example). | 
 | void DiskCacheEntryTest::InternalSyncIO() { | 
 |   disk_cache::Entry* entry = NULL; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | 
 |   ASSERT_TRUE(NULL != entry); | 
 |  | 
 |   // The bulk of the test runs from within the callback, on the cache thread. | 
 |   RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground, | 
 |                             base::Unretained(this), | 
 |                             entry)); | 
 |  | 
 |  | 
 |   entry->Doom(); | 
 |   entry->Close(); | 
 |   FlushQueueForTest(); | 
 |   EXPECT_EQ(0, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, InternalSyncIO) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   InternalSyncIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyInternalSyncIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   InternalSyncIO(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::InternalAsyncIO() { | 
 |   disk_cache::Entry* entry = NULL; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | 
 |   ASSERT_TRUE(NULL != entry); | 
 |  | 
 |   // Avoid using internal buffers for the test. We have to write something to | 
 |   // the entry and close it so that we flush the internal buffer to disk. After | 
 |   // that, IO operations will be really hitting the disk. We don't care about | 
 |   // the content, so just extending the entry is enough (all extensions zero- | 
 |   // fill any holes). | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 15 * 1024, NULL, 0, false)); | 
 |   EXPECT_EQ(0, WriteData(entry, 1, 15 * 1024, NULL, 0, false)); | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry("the first key", &entry)); | 
 |  | 
 |   MessageLoopHelper helper; | 
 |   // Let's verify that each IO goes to the right callback object. | 
 |   CallbackTest callback1(&helper, false); | 
 |   CallbackTest callback2(&helper, false); | 
 |   CallbackTest callback3(&helper, false); | 
 |   CallbackTest callback4(&helper, false); | 
 |   CallbackTest callback5(&helper, false); | 
 |   CallbackTest callback6(&helper, false); | 
 |   CallbackTest callback7(&helper, false); | 
 |   CallbackTest callback8(&helper, false); | 
 |   CallbackTest callback9(&helper, false); | 
 |   CallbackTest callback10(&helper, false); | 
 |   CallbackTest callback11(&helper, false); | 
 |   CallbackTest callback12(&helper, false); | 
 |   CallbackTest callback13(&helper, false); | 
 |  | 
 |   const int kSize1 = 10; | 
 |   const int kSize2 = 5000; | 
 |   const int kSize3 = 10000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |   scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize2, false); | 
 |   CacheTestFillBuffer(buffer3->data(), kSize3, false); | 
 |  | 
 |   EXPECT_EQ(0, entry->ReadData( | 
 |       0, 15 * 1024, buffer1, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback1)))); | 
 |   base::strlcpy(buffer1->data(), "the data", kSize1); | 
 |   int expected = 0; | 
 |   int ret = entry->WriteData( | 
 |       0, 0, buffer1, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback2)), false); | 
 |   EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |   ret = entry->ReadData( | 
 |       0, 0, buffer2, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback3))); | 
 |   EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_STREQ("the data", buffer2->data()); | 
 |  | 
 |   base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | 
 |   ret = entry->WriteData( | 
 |       1, 1500, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback4)), true); | 
 |   EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   memset(buffer3->data(), 0, kSize3); | 
 |   ret = entry->ReadData( | 
 |       1, 1511, buffer3, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback5))); | 
 |   EXPECT_TRUE(4989 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_STREQ("big data goes here", buffer3->data()); | 
 |   ret = entry->ReadData( | 
 |       1, 0, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback6))); | 
 |   EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   memset(buffer3->data(), 0, kSize3); | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_EQ(0, memcmp(buffer2->data(), buffer3->data(), 1500)); | 
 |   ret = entry->ReadData( | 
 |       1, 5000, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback7))); | 
 |   EXPECT_TRUE(1500 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   ret = entry->ReadData( | 
 |       1, 0, buffer3, kSize3, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback9))); | 
 |   EXPECT_TRUE(6500 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   ret = entry->WriteData( | 
 |       1, 0, buffer3, 8192, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback10)), true); | 
 |   EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   ret = entry->ReadData( | 
 |       1, 0, buffer3, kSize3, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback11))); | 
 |   EXPECT_TRUE(8192 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_EQ(8192, entry->GetDataSize(1)); | 
 |  | 
 |   ret = entry->ReadData( | 
 |       0, 0, buffer1, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback12))); | 
 |   EXPECT_TRUE(10 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   ret = entry->ReadData( | 
 |       1, 0, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback13))); | 
 |   EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |  | 
 |   EXPECT_FALSE(helper.callback_reused_error()); | 
 |  | 
 |   entry->Doom(); | 
 |   entry->Close(); | 
 |   FlushQueueForTest(); | 
 |   EXPECT_EQ(0, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, InternalAsyncIO) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   InternalAsyncIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyInternalAsyncIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   InternalAsyncIO(); | 
 | } | 
 |  | 
 | // This part of the test runs on the background thread. | 
 | void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry* entry) { | 
 |   const int kSize1 = 17000; | 
 |   const int kSize2 = 25000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize2, false); | 
 |   base::strlcpy(buffer1->data(), "the data", kSize1); | 
 |   EXPECT_EQ(17000, entry->WriteData( | 
 |       0, 0, buffer1, kSize1, net::CompletionCallback(), false)); | 
 |   memset(buffer1->data(), 0, kSize1); | 
 |   EXPECT_EQ(17000, entry->ReadData( | 
 |       0, 0, buffer1, kSize1, net::CompletionCallback())); | 
 |   EXPECT_STREQ("the data", buffer1->data()); | 
 |  | 
 |   base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | 
 |   EXPECT_EQ(25000, entry->WriteData( | 
 |       1, 10000, buffer2, kSize2, net::CompletionCallback(), false)); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |   EXPECT_EQ(24989, entry->ReadData( | 
 |       1, 10011, buffer2, kSize2, net::CompletionCallback())); | 
 |   EXPECT_STREQ("big data goes here", buffer2->data()); | 
 |   EXPECT_EQ(25000, entry->ReadData( | 
 |       1, 0, buffer2, kSize2, net::CompletionCallback())); | 
 |   EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); | 
 |   EXPECT_EQ(5000, entry->ReadData( | 
 |       1, 30000, buffer2, kSize2, net::CompletionCallback())); | 
 |  | 
 |   EXPECT_EQ(0, entry->ReadData( | 
 |       1, 35000, buffer2, kSize2, net::CompletionCallback())); | 
 |   EXPECT_EQ(17000, entry->ReadData( | 
 |       1, 0, buffer1, kSize1, net::CompletionCallback())); | 
 |   EXPECT_EQ(17000, entry->WriteData( | 
 |       1, 20000, buffer1, kSize1, net::CompletionCallback(), false)); | 
 |   EXPECT_EQ(37000, entry->GetDataSize(1)); | 
 |  | 
 |   // We need to delete the memory buffer on this thread. | 
 |   EXPECT_EQ(0, entry->WriteData( | 
 |       0, 0, NULL, 0, net::CompletionCallback(), true)); | 
 |   EXPECT_EQ(0, entry->WriteData( | 
 |       1, 0, NULL, 0, net::CompletionCallback(), true)); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::ExternalSyncIO() { | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | 
 |  | 
 |   // The bulk of the test runs from within the callback, on the cache thread. | 
 |   RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground, | 
 |                             base::Unretained(this), | 
 |                             entry)); | 
 |  | 
 |   entry->Doom(); | 
 |   entry->Close(); | 
 |   FlushQueueForTest(); | 
 |   EXPECT_EQ(0, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ExternalSyncIO) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   ExternalSyncIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ExternalSyncIONoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   ExternalSyncIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyExternalSyncIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   ExternalSyncIO(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::ExternalAsyncIO() { | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | 
 |  | 
 |   int expected = 0; | 
 |  | 
 |   MessageLoopHelper helper; | 
 |   // Let's verify that each IO goes to the right callback object. | 
 |   CallbackTest callback1(&helper, false); | 
 |   CallbackTest callback2(&helper, false); | 
 |   CallbackTest callback3(&helper, false); | 
 |   CallbackTest callback4(&helper, false); | 
 |   CallbackTest callback5(&helper, false); | 
 |   CallbackTest callback6(&helper, false); | 
 |   CallbackTest callback7(&helper, false); | 
 |   CallbackTest callback8(&helper, false); | 
 |   CallbackTest callback9(&helper, false); | 
 |  | 
 |   const int kSize1 = 17000; | 
 |   const int kSize2 = 25000; | 
 |   const int kSize3 = 25000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |   scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize2, false); | 
 |   CacheTestFillBuffer(buffer3->data(), kSize3, false); | 
 |   base::strlcpy(buffer1->data(), "the data", kSize1); | 
 |   int ret = entry->WriteData( | 
 |       0, 0, buffer1, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback1)), false); | 
 |   EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |  | 
 |   memset(buffer2->data(), 0, kSize1); | 
 |   ret = entry->ReadData( | 
 |       0, 0, buffer2, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback2))); | 
 |   EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_STREQ("the data", buffer1->data()); | 
 |  | 
 |   base::strlcpy(buffer2->data(), "The really big data goes here", kSize2); | 
 |   ret = entry->WriteData( | 
 |       1, 10000, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback3)), false); | 
 |   EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |  | 
 |   memset(buffer3->data(), 0, kSize3); | 
 |   ret = entry->ReadData( | 
 |       1, 10011, buffer3, kSize3, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback4))); | 
 |   EXPECT_TRUE(24989 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_STREQ("big data goes here", buffer3->data()); | 
 |   ret = entry->ReadData( | 
 |       1, 0, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback5))); | 
 |   EXPECT_TRUE(25000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_EQ(0, memcmp(buffer2->data(), buffer2->data(), 10000)); | 
 |   ret = entry->ReadData( | 
 |       1, 30000, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback6))); | 
 |   EXPECT_TRUE(5000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_EQ(0, entry->ReadData( | 
 |       1, 35000, buffer2, kSize2, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback7)))); | 
 |   ret = entry->ReadData( | 
 |       1, 0, buffer1, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback8))); | 
 |   EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |   ret = entry->WriteData( | 
 |       1, 20000, buffer1, kSize1, | 
 |       base::Bind(&CallbackTest::Run, base::Unretained(&callback9)), false); | 
 |   EXPECT_TRUE(17000 == ret || net::ERR_IO_PENDING == ret); | 
 |   if (net::ERR_IO_PENDING == ret) | 
 |     expected++; | 
 |  | 
 |   EXPECT_TRUE(helper.WaitUntilCacheIoFinished(expected)); | 
 |   EXPECT_EQ(37000, entry->GetDataSize(1)); | 
 |  | 
 |   EXPECT_FALSE(helper.callback_reused_error()); | 
 |  | 
 |   entry->Doom(); | 
 |   entry->Close(); | 
 |   FlushQueueForTest(); | 
 |   EXPECT_EQ(0, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ExternalAsyncIO) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   ExternalAsyncIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ExternalAsyncIONoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   ExternalAsyncIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyExternalAsyncIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   ExternalAsyncIO(); | 
 | } | 
 |  | 
 | // Makes sure that the buffer is not referenced when the callback runs. | 
 | class ReleaseBufferCompletionCallback: public net::TestCompletionCallback { | 
 |  public: | 
 |   explicit ReleaseBufferCompletionCallback(net::IOBuffer* buffer) | 
 |       : buffer_(buffer) { | 
 |   } | 
 |  | 
 |  private: | 
 |   virtual void SetResult(int result) OVERRIDE { | 
 |     if (!buffer_->HasOneRef()) | 
 |       result = net::ERR_FAILED; | 
 |     TestCompletionCallback::SetResult(result); | 
 |   } | 
 |  | 
 |   net::IOBuffer* buffer_; | 
 |   DISALLOW_COPY_AND_ASSIGN(ReleaseBufferCompletionCallback); | 
 | }; | 
 |  | 
 | // Tests that IOBuffers are not referenced after IO completes. | 
 | void DiskCacheEntryTest::ReleaseBuffer() { | 
 |   disk_cache::Entry* entry = NULL; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | 
 |   ASSERT_TRUE(NULL != entry); | 
 |  | 
 |   const int kBufferSize = 1024; | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kBufferSize)); | 
 |   CacheTestFillBuffer(buffer->data(), kBufferSize, false); | 
 |  | 
 |   ReleaseBufferCompletionCallback cb(buffer); | 
 |   int rv = entry->WriteData(0, 0, buffer, kBufferSize, cb.callback(), false); | 
 |   EXPECT_EQ(kBufferSize, cb.GetResult(rv)); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ReleaseBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   ReleaseBuffer(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyReleaseBuffer) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   ReleaseBuffer(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::StreamAccess() { | 
 |   disk_cache::Entry* entry = NULL; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the first key", &entry)); | 
 |   ASSERT_TRUE(NULL != entry); | 
 |  | 
 |   const int kBufferSize = 1024; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kBufferSize)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kBufferSize)); | 
 |  | 
 |   const int kNumStreams = 3; | 
 |   for (int i = 0; i < kNumStreams; i++) { | 
 |     CacheTestFillBuffer(buffer1->data(), kBufferSize, false); | 
 |     EXPECT_EQ(kBufferSize, WriteData(entry, i, 0, buffer1, kBufferSize, false)); | 
 |     memset(buffer2->data(), 0, kBufferSize); | 
 |     EXPECT_EQ(kBufferSize, ReadData(entry, i, 0, buffer2, kBufferSize)); | 
 |     EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kBufferSize)); | 
 |   } | 
 |  | 
 |   EXPECT_EQ(net::ERR_INVALID_ARGUMENT, | 
 |             ReadData(entry, kNumStreams, 0, buffer1, kBufferSize)); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, StreamAccess) { | 
 |   InitCache(); | 
 |   StreamAccess(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyStreamAccess) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   StreamAccess(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::GetKey() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_EQ(key, entry->GetKey()) << "short key"; | 
 |   entry->Close(); | 
 |  | 
 |   int seed = static_cast<int>(Time::Now().ToInternalValue()); | 
 |   srand(seed); | 
 |   char key_buffer[20000]; | 
 |  | 
 |   CacheTestFillBuffer(key_buffer, 3000, true); | 
 |   key_buffer[1000] = '\0'; | 
 |  | 
 |   key = key_buffer; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_TRUE(key == entry->GetKey()) << "1000 bytes key"; | 
 |   entry->Close(); | 
 |  | 
 |   key_buffer[1000] = 'p'; | 
 |   key_buffer[3000] = '\0'; | 
 |   key = key_buffer; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_TRUE(key == entry->GetKey()) << "medium size key"; | 
 |   entry->Close(); | 
 |  | 
 |   CacheTestFillBuffer(key_buffer, sizeof(key_buffer), true); | 
 |   key_buffer[19999] = '\0'; | 
 |  | 
 |   key = key_buffer; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_TRUE(key == entry->GetKey()) << "long key"; | 
 |   entry->Close(); | 
 |  | 
 |   CacheTestFillBuffer(key_buffer, 0x4000, true); | 
 |   key_buffer[0x4000] = '\0'; | 
 |  | 
 |   key = key_buffer; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_TRUE(key == entry->GetKey()) << "16KB key"; | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, GetKey) { | 
 |   InitCache(); | 
 |   GetKey(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyGetKey) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   GetKey(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::GetTimes() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |  | 
 |   Time t1 = Time::Now(); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_TRUE(entry->GetLastModified() >= t1); | 
 |   EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); | 
 |  | 
 |   AddDelay(); | 
 |   Time t2 = Time::Now(); | 
 |   EXPECT_TRUE(t2 > t1); | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 200, NULL, 0, false)); | 
 |   if (type_ == net::APP_CACHE) { | 
 |     EXPECT_TRUE(entry->GetLastModified() < t2); | 
 |   } else { | 
 |     EXPECT_TRUE(entry->GetLastModified() >= t2); | 
 |   } | 
 |   EXPECT_TRUE(entry->GetLastModified() == entry->GetLastUsed()); | 
 |  | 
 |   AddDelay(); | 
 |   Time t3 = Time::Now(); | 
 |   EXPECT_TRUE(t3 > t2); | 
 |   const int kSize = 200; | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 0, 0, buffer, kSize)); | 
 |   if (type_ == net::APP_CACHE) { | 
 |     EXPECT_TRUE(entry->GetLastUsed() < t2); | 
 |     EXPECT_TRUE(entry->GetLastModified() < t2); | 
 |   } else { | 
 |     EXPECT_TRUE(entry->GetLastUsed() >= t3); | 
 |     EXPECT_TRUE(entry->GetLastModified() < t3); | 
 |   } | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, GetTimes) { | 
 |   InitCache(); | 
 |   GetTimes(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyGetTimes) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   GetTimes(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, AppCacheGetTimes) { | 
 |   SetCacheType(net::APP_CACHE); | 
 |   InitCache(); | 
 |   GetTimes(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::GrowData() { | 
 |   std::string key1("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); | 
 |  | 
 |   const int kSize = 20000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize, false); | 
 |   memset(buffer2->data(), 0, kSize); | 
 |  | 
 |   base::strlcpy(buffer1->data(), "the data", kSize); | 
 |   EXPECT_EQ(10, WriteData(entry, 0, 0, buffer1, 10, false)); | 
 |   EXPECT_EQ(10, ReadData(entry, 0, 0, buffer2, 10)); | 
 |   EXPECT_STREQ("the data", buffer2->data()); | 
 |   EXPECT_EQ(10, entry->GetDataSize(0)); | 
 |  | 
 |   EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1, 2000, false)); | 
 |   EXPECT_EQ(2000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2, 2000)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); | 
 |  | 
 |   EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, kSize, false)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); | 
 |   entry->Close(); | 
 |  | 
 |   memset(buffer2->data(), 0, kSize); | 
 |   std::string key2("Second key"); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); | 
 |   EXPECT_EQ(10, WriteData(entry, 0, 0, buffer1, 10, false)); | 
 |   EXPECT_EQ(10, entry->GetDataSize(0)); | 
 |   entry->Close(); | 
 |  | 
 |   // Go from an internal address to a bigger block size. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | 
 |   EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1, 2000, false)); | 
 |   EXPECT_EQ(2000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2, 2000)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 2000)); | 
 |   entry->Close(); | 
 |   memset(buffer2->data(), 0, kSize); | 
 |  | 
 |   // Go from an internal address to an external one. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | 
 |   EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, kSize, false)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), kSize)); | 
 |   entry->Close(); | 
 |  | 
 |   // Double check the size from disk. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |  | 
 |   // Now extend the entry without actual data. | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 45500, buffer1, 0, false)); | 
 |   entry->Close(); | 
 |  | 
 |   // And check again from disk. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | 
 |   EXPECT_EQ(45500, entry->GetDataSize(0)); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, GrowData) { | 
 |   InitCache(); | 
 |   GrowData(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, GrowDataNoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   GrowData(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyGrowData) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   GrowData(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::TruncateData() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize1 = 20000; | 
 |   const int kSize2 = 20000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |  | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |  | 
 |   // Simple truncation: | 
 |   EXPECT_EQ(200, WriteData(entry, 0, 0, buffer1, 200, false)); | 
 |   EXPECT_EQ(200, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(100, WriteData(entry, 0, 0, buffer1, 100, false)); | 
 |   EXPECT_EQ(200, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(100, WriteData(entry, 0, 0, buffer1, 100, true)); | 
 |   EXPECT_EQ(100, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 50, buffer1, 0, true)); | 
 |   EXPECT_EQ(50, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 0, buffer1, 0, true)); | 
 |   EXPECT_EQ(0, entry->GetDataSize(0)); | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |  | 
 |   // Go to an external file. | 
 |   EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, 20000, true)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(20000, ReadData(entry, 0, 0, buffer2, 20000)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 20000)); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |  | 
 |   // External file truncation | 
 |   EXPECT_EQ(18000, WriteData(entry, 0, 0, buffer1, 18000, false)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(18000, WriteData(entry, 0, 0, buffer1, 18000, true)); | 
 |   EXPECT_EQ(18000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 17500, buffer1, 0, true)); | 
 |   EXPECT_EQ(17500, entry->GetDataSize(0)); | 
 |  | 
 |   // And back to an internal block. | 
 |   EXPECT_EQ(600, WriteData(entry, 0, 1000, buffer1, 600, true)); | 
 |   EXPECT_EQ(1600, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(600, ReadData(entry, 0, 1000, buffer2, 600)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 600)); | 
 |   EXPECT_EQ(1000, ReadData(entry, 0, 0, buffer2, 1000)); | 
 |   EXPECT_TRUE(!memcmp(buffer1->data(), buffer2->data(), 1000)) << | 
 |       "Preserves previous data"; | 
 |  | 
 |   // Go from external file to zero length. | 
 |   EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer1, 20000, true)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 0, buffer1, 0, true)); | 
 |   EXPECT_EQ(0, entry->GetDataSize(0)); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, TruncateData) { | 
 |   InitCache(); | 
 |   TruncateData(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, TruncateDataNoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   TruncateData(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyTruncateData) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   TruncateData(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::ZeroLengthIO() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   EXPECT_EQ(0, ReadData(entry, 0, 0, NULL, 0)); | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 0, NULL, 0, false)); | 
 |  | 
 |   // This write should extend the entry. | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 1000, NULL, 0, false)); | 
 |   EXPECT_EQ(0, ReadData(entry, 0, 500, NULL, 0)); | 
 |   EXPECT_EQ(0, ReadData(entry, 0, 2000, NULL, 0)); | 
 |   EXPECT_EQ(1000, entry->GetDataSize(0)); | 
 |  | 
 |   EXPECT_EQ(0, WriteData(entry, 0, 100000, NULL, 0, true)); | 
 |   EXPECT_EQ(0, ReadData(entry, 0, 50000, NULL, 0)); | 
 |   EXPECT_EQ(100000, entry->GetDataSize(0)); | 
 |  | 
 |   // Let's verify the actual content. | 
 |   const int kSize = 20; | 
 |   const char zeros[kSize] = {}; | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | 
 |  | 
 |   CacheTestFillBuffer(buffer->data(), kSize, false); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 0, 500, buffer, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); | 
 |  | 
 |   CacheTestFillBuffer(buffer->data(), kSize, false); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 0, 5000, buffer, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); | 
 |  | 
 |   CacheTestFillBuffer(buffer->data(), kSize, false); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 0, 50000, buffer, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer->data(), zeros, kSize)); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ZeroLengthIO) { | 
 |   InitCache(); | 
 |   ZeroLengthIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ZeroLengthIONoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   ZeroLengthIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyZeroLengthIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   ZeroLengthIO(); | 
 | } | 
 |  | 
 | // Tests that we handle the content correctly when buffering. | 
 | void DiskCacheEntryTest::Buffering() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 200; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize, true); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |  | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1, kSize, false)); | 
 |   entry->Close(); | 
 |  | 
 |   // Write a little more and read what we wrote before. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 5000, buffer1, kSize, false)); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |  | 
 |   // Now go to an external file. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 18000, buffer1, kSize, false)); | 
 |   entry->Close(); | 
 |  | 
 |   // Write something else and verify old data. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 10000, buffer1, kSize, false)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 5000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 0, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |  | 
 |   // Extend the file some more. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1, kSize, false)); | 
 |   entry->Close(); | 
 |  | 
 |   // And now make sure that we can deal with data in both places (ram/disk). | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1, kSize, false)); | 
 |  | 
 |   // We should not overwrite the data at 18000 with this. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1, kSize, false)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 18000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 17000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |  | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 22900, buffer1, kSize, false)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(100, ReadData(entry, 1, 23000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); | 
 |  | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(100, ReadData(entry, 1, 23100, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + 100, 100)); | 
 |  | 
 |   // Extend the file again and read before without closing the entry. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1, kSize, false)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 45000, buffer1, kSize, false)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 25000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 45000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data(), kSize)); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, Buffering) { | 
 |   InitCache(); | 
 |   Buffering(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, BufferingNoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   Buffering(); | 
 | } | 
 |  | 
 | // Some extra tests to make sure that buffering works properly when changing | 
 | // the entry size. | 
 | void DiskCacheEntryTest::SizeChanges() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 200; | 
 |   const char zeros[kSize] = {}; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize, true); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |  | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 0, buffer1, kSize, true)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 17000, buffer1, kSize, true)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 23000, buffer1, kSize, true)); | 
 |   entry->Close(); | 
 |  | 
 |   // Extend the file and read between the old size and the new write. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_EQ(23000 + kSize, entry->GetDataSize(1)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1, kSize, true)); | 
 |   EXPECT_EQ(25000 + kSize, entry->GetDataSize(1)); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 24000, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), zeros, kSize)); | 
 |  | 
 |   // Read at the end of the old file size. | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 23000 + kSize - 35, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 35, 35)); | 
 |  | 
 |   // Read slightly before the last write. | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 24900, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | 
 |  | 
 |   // Extend the entry a little more. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 26000, buffer1, kSize, true)); | 
 |   EXPECT_EQ(26000 + kSize, entry->GetDataSize(1)); | 
 |   CacheTestFillBuffer(buffer2->data(), kSize, true); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 25900, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | 
 |  | 
 |   // And now reduce the size. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 25000, buffer1, kSize, true)); | 
 |   EXPECT_EQ(25000 + kSize, entry->GetDataSize(1)); | 
 |   EXPECT_EQ(28, ReadData(entry, 1, 25000 + kSize - 28, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), buffer1->data() + kSize - 28, 28)); | 
 |  | 
 |   // Reduce the size with a buffer that is not extending the size. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 24000, buffer1, kSize, false)); | 
 |   EXPECT_EQ(25000 + kSize, entry->GetDataSize(1)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 24500, buffer1, kSize, true)); | 
 |   EXPECT_EQ(24500 + kSize, entry->GetDataSize(1)); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 23900, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | 
 |  | 
 |   // And now reduce the size below the old size. | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 19000, buffer1, kSize, true)); | 
 |   EXPECT_EQ(19000 + kSize, entry->GetDataSize(1)); | 
 |   EXPECT_EQ(kSize, ReadData(entry, 1, 18900, buffer2, kSize)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data(), zeros, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer2->data() + 100, buffer1->data(), kSize - 100)); | 
 |  | 
 |   // Verify that the actual file is truncated. | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_EQ(19000 + kSize, entry->GetDataSize(1)); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, SizeChanges) { | 
 |   InitCache(); | 
 |   SizeChanges(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, SizeChangesNoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   SizeChanges(); | 
 | } | 
 |  | 
 | // Write more than the total cache capacity but to a single entry. |size| is the | 
 | // amount of bytes to write each time. | 
 | void DiskCacheEntryTest::ReuseEntry(int size) { | 
 |   std::string key1("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key1, &entry)); | 
 |  | 
 |   entry->Close(); | 
 |   std::string key2("the second key"); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key2, &entry)); | 
 |  | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(size)); | 
 |   CacheTestFillBuffer(buffer->data(), size, false); | 
 |  | 
 |   for (int i = 0; i < 15; i++) { | 
 |     EXPECT_EQ(0, WriteData(entry, 0, 0, buffer, 0, true)); | 
 |     EXPECT_EQ(size, WriteData(entry, 0, 0, buffer, size, false)); | 
 |     entry->Close(); | 
 |     ASSERT_EQ(net::OK, OpenEntry(key2, &entry)); | 
 |   } | 
 |  | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key1, &entry)) << "have not evicted this entry"; | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ReuseExternalEntry) { | 
 |   SetDirectMode(); | 
 |   SetMaxSize(200 * 1024); | 
 |   InitCache(); | 
 |   ReuseEntry(20 * 1024); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyReuseExternalEntry) { | 
 |   SetDirectMode(); | 
 |   SetMemoryOnlyMode(); | 
 |   SetMaxSize(200 * 1024); | 
 |   InitCache(); | 
 |   ReuseEntry(20 * 1024); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, ReuseInternalEntry) { | 
 |   SetDirectMode(); | 
 |   SetMaxSize(100 * 1024); | 
 |   InitCache(); | 
 |   ReuseEntry(10 * 1024); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyReuseInternalEntry) { | 
 |   SetDirectMode(); | 
 |   SetMemoryOnlyMode(); | 
 |   SetMaxSize(100 * 1024); | 
 |   InitCache(); | 
 |   ReuseEntry(10 * 1024); | 
 | } | 
 |  | 
 | // Reading somewhere that was not written should return zeros. | 
 | void DiskCacheEntryTest::InvalidData() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize1 = 20000; | 
 |   const int kSize2 = 20000; | 
 |   const int kSize3 = 20000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |   scoped_refptr<net::IOBuffer> buffer3(new net::IOBuffer(kSize3)); | 
 |  | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |  | 
 |   // Simple data grow: | 
 |   EXPECT_EQ(200, WriteData(entry, 0, 400, buffer1, 200, false)); | 
 |   EXPECT_EQ(600, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(100, ReadData(entry, 0, 300, buffer3, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |  | 
 |   // The entry is now on disk. Load it and extend it. | 
 |   EXPECT_EQ(200, WriteData(entry, 0, 800, buffer1, 200, false)); | 
 |   EXPECT_EQ(1000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(100, ReadData(entry, 0, 700, buffer3, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |  | 
 |   // This time using truncate. | 
 |   EXPECT_EQ(200, WriteData(entry, 0, 1800, buffer1, 200, true)); | 
 |   EXPECT_EQ(2000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(100, ReadData(entry, 0, 1500, buffer3, 100)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 100)); | 
 |  | 
 |   // Go to an external file. | 
 |   EXPECT_EQ(200, WriteData(entry, 0, 19800, buffer1, 200, false)); | 
 |   EXPECT_EQ(20000, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(4000, ReadData(entry, 0, 14000, buffer3, 4000)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 4000)); | 
 |  | 
 |   // And back to an internal block. | 
 |   EXPECT_EQ(600, WriteData(entry, 0, 1000, buffer1, 600, true)); | 
 |   EXPECT_EQ(1600, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(600, ReadData(entry, 0, 1000, buffer3, 600)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer1->data(), 600)); | 
 |  | 
 |   // Extend it again. | 
 |   EXPECT_EQ(600, WriteData(entry, 0, 2000, buffer1, 600, false)); | 
 |   EXPECT_EQ(2600, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(200, ReadData(entry, 0, 1800, buffer3, 200)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); | 
 |  | 
 |   // And again (with truncation flag). | 
 |   EXPECT_EQ(600, WriteData(entry, 0, 3000, buffer1, 600, true)); | 
 |   EXPECT_EQ(3600, entry->GetDataSize(0)); | 
 |   EXPECT_EQ(200, ReadData(entry, 0, 2800, buffer3, 200)); | 
 |   EXPECT_TRUE(!memcmp(buffer3->data(), buffer2->data(), 200)); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, InvalidData) { | 
 |   InitCache(); | 
 |   InvalidData(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, InvalidDataNoBuffer) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   cache_impl_->SetFlags(disk_cache::kNoBuffering); | 
 |   InvalidData(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyInvalidData) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   InvalidData(); | 
 | } | 
 |  | 
 | // Tests that the cache preserves the buffer of an IO operation. | 
 | TEST_F(DiskCacheEntryTest, ReadWriteDestroyBuffer) { | 
 |   InitCache(); | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 200; | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buffer->data(), kSize, false); | 
 |  | 
 |   net::TestCompletionCallback cb; | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, | 
 |             entry->WriteData(0, 0, buffer, kSize, cb.callback(), false)); | 
 |  | 
 |   // Release our reference to the buffer. | 
 |   buffer = NULL; | 
 |   EXPECT_EQ(kSize, cb.WaitForResult()); | 
 |  | 
 |   // And now test with a Read(). | 
 |   buffer = new net::IOBuffer(kSize); | 
 |   CacheTestFillBuffer(buffer->data(), kSize, false); | 
 |  | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, | 
 |             entry->ReadData(0, 0, buffer, kSize, cb.callback())); | 
 |   buffer = NULL; | 
 |   EXPECT_EQ(kSize, cb.WaitForResult()); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::DoomNormalEntry() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   entry->Doom(); | 
 |   entry->Close(); | 
 |  | 
 |   const int kSize = 20000; | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buffer->data(), kSize, true); | 
 |   buffer->data()[19999] = '\0'; | 
 |  | 
 |   key = buffer->data(); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_EQ(20000, WriteData(entry, 0, 0, buffer, kSize, false)); | 
 |   EXPECT_EQ(20000, WriteData(entry, 1, 0, buffer, kSize, false)); | 
 |   entry->Doom(); | 
 |   entry->Close(); | 
 |  | 
 |   FlushQueueForTest(); | 
 |   EXPECT_EQ(0, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, DoomEntry) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   DoomNormalEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyDoomEntry) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   DoomNormalEntry(); | 
 | } | 
 |  | 
 | // Tests dooming an entry that's linked to an open entry. | 
 | void DiskCacheEntryTest::DoomEntryNextToOpenEntry() { | 
 |   InitCache(); | 
 |  | 
 |   disk_cache::Entry* entry1; | 
 |   disk_cache::Entry* entry2; | 
 |   ASSERT_EQ(net::OK, CreateEntry("fixed", &entry1)); | 
 |   entry1->Close(); | 
 |   ASSERT_EQ(net::OK, CreateEntry("foo", &entry1)); | 
 |   entry1->Close(); | 
 |   ASSERT_EQ(net::OK, CreateEntry("bar", &entry1)); | 
 |   entry1->Close(); | 
 |  | 
 |   ASSERT_EQ(net::OK, OpenEntry("foo", &entry1)); | 
 |   ASSERT_EQ(net::OK, OpenEntry("bar", &entry2)); | 
 |   entry2->Doom(); | 
 |   entry2->Close(); | 
 |  | 
 |   ASSERT_EQ(net::OK, OpenEntry("foo", &entry2)); | 
 |   entry2->Doom(); | 
 |   entry2->Close(); | 
 |   entry1->Close(); | 
 |  | 
 |   ASSERT_EQ(net::OK, OpenEntry("fixed", &entry1)); | 
 |   entry1->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, DoomEntryNextToOpenEntry) { | 
 |   DoomEntryNextToOpenEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, NewEvictionDoomEntryNextToOpenEntry) { | 
 |   SetNewEviction(); | 
 |   DoomEntryNextToOpenEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, AppCacheDoomEntryNextToOpenEntry) { | 
 |   SetCacheType(net::APP_CACHE); | 
 |   DoomEntryNextToOpenEntry(); | 
 | } | 
 |  | 
 | // Verify that basic operations work as expected with doomed entries. | 
 | void DiskCacheEntryTest::DoomedEntry() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   entry->Doom(); | 
 |  | 
 |   FlushQueueForTest(); | 
 |   EXPECT_EQ(0, cache_->GetEntryCount()); | 
 |   Time initial = Time::Now(); | 
 |   AddDelay(); | 
 |  | 
 |   const int kSize1 = 2000; | 
 |   const int kSize2 = 2000; | 
 |   scoped_refptr<net::IOBuffer> buffer1(new net::IOBuffer(kSize1)); | 
 |   scoped_refptr<net::IOBuffer> buffer2(new net::IOBuffer(kSize2)); | 
 |   CacheTestFillBuffer(buffer1->data(), kSize1, false); | 
 |   memset(buffer2->data(), 0, kSize2); | 
 |  | 
 |   EXPECT_EQ(2000, WriteData(entry, 0, 0, buffer1, 2000, false)); | 
 |   EXPECT_EQ(2000, ReadData(entry, 0, 0, buffer2, 2000)); | 
 |   EXPECT_EQ(0, memcmp(buffer1->data(), buffer2->data(), kSize1)); | 
 |   EXPECT_EQ(key, entry->GetKey()); | 
 |   EXPECT_TRUE(initial < entry->GetLastModified()); | 
 |   EXPECT_TRUE(initial < entry->GetLastUsed()); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, DoomedEntry) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |   DoomedEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   DoomedEntry(); | 
 | } | 
 |  | 
 | // Tests that we discard entries if the data is missing. | 
 | TEST_F(DiskCacheEntryTest, MissingData) { | 
 |   SetDirectMode(); | 
 |   InitCache(); | 
 |  | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   // Write to an external file. | 
 |   const int kSize = 20000; | 
 |   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buffer->data(), kSize, false); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 0, 0, buffer, kSize, false)); | 
 |   entry->Close(); | 
 |   FlushQueueForTest(); | 
 |  | 
 |   disk_cache::Addr address(0x80000001); | 
 |   FilePath name = cache_impl_->GetFileName(address); | 
 |   EXPECT_TRUE(file_util::Delete(name, false)); | 
 |  | 
 |   // Attempt to read the data. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_EQ(net::ERR_FAILED, ReadData(entry, 0, 0, buffer, kSize)); | 
 |   entry->Close(); | 
 |  | 
 |   // The entry should be gone. | 
 |   ASSERT_NE(net::OK, OpenEntry(key, &entry)); | 
 | } | 
 |  | 
 | // Test that child entries in a memory cache backend are not visible from | 
 | // enumerations. | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSparseEntries) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |  | 
 |   const int kSize = 4096; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* parent_entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &parent_entry)); | 
 |  | 
 |   // Writes to the parent entry. | 
 |   EXPECT_EQ(kSize, parent_entry->WriteSparseData(0, buf, kSize, | 
 |                                                  net::CompletionCallback())); | 
 |  | 
 |   // This write creates a child entry and writes to it. | 
 |   EXPECT_EQ(kSize, parent_entry->WriteSparseData(8192, buf, kSize, | 
 |                                                  net::CompletionCallback())); | 
 |  | 
 |   parent_entry->Close(); | 
 |  | 
 |   // Perform the enumerations. | 
 |   void* iter = NULL; | 
 |   disk_cache::Entry* entry = NULL; | 
 |   int count = 0; | 
 |   while (OpenNextEntry(&iter, &entry) == net::OK) { | 
 |     ASSERT_TRUE(entry != NULL); | 
 |     ++count; | 
 |     disk_cache::MemEntryImpl* mem_entry = | 
 |         reinterpret_cast<disk_cache::MemEntryImpl*>(entry); | 
 |     EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type()); | 
 |     mem_entry->Close(); | 
 |   } | 
 |   EXPECT_EQ(1, count); | 
 | } | 
 |  | 
 | // Writes |buf_1| to offset and reads it back as |buf_2|. | 
 | void VerifySparseIO(disk_cache::Entry* entry, int64 offset, | 
 |                     net::IOBuffer* buf_1, int size, net::IOBuffer* buf_2) { | 
 |   net::TestCompletionCallback cb; | 
 |  | 
 |   memset(buf_2->data(), 0, size); | 
 |   int ret = entry->ReadSparseData(offset, buf_2, size, cb.callback()); | 
 |   EXPECT_EQ(0, cb.GetResult(ret)); | 
 |  | 
 |   ret = entry->WriteSparseData(offset, buf_1, size, cb.callback()); | 
 |   EXPECT_EQ(size, cb.GetResult(ret)); | 
 |  | 
 |   ret = entry->ReadSparseData(offset, buf_2, size, cb.callback()); | 
 |   EXPECT_EQ(size, cb.GetResult(ret)); | 
 |  | 
 |   EXPECT_EQ(0, memcmp(buf_1->data(), buf_2->data(), size)); | 
 | } | 
 |  | 
 | // Reads |size| bytes from |entry| at |offset| and verifies that they are the | 
 | // same as the content of the provided |buffer|. | 
 | void VerifyContentSparseIO(disk_cache::Entry* entry, int64 offset, char* buffer, | 
 |                            int size) { | 
 |   net::TestCompletionCallback cb; | 
 |  | 
 |   scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(size)); | 
 |   memset(buf_1->data(), 0, size); | 
 |   int ret = entry->ReadSparseData(offset, buf_1, size, cb.callback()); | 
 |   EXPECT_EQ(size, cb.GetResult(ret)); | 
 |   EXPECT_EQ(0, memcmp(buf_1->data(), buffer, size)); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::BasicSparseIO() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 2048; | 
 |   scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf_1->data(), kSize, false); | 
 |  | 
 |   // Write at offset 0. | 
 |   VerifySparseIO(entry, 0, buf_1, kSize, buf_2); | 
 |  | 
 |   // Write at offset 0x400000 (4 MB). | 
 |   VerifySparseIO(entry, 0x400000, buf_1, kSize, buf_2); | 
 |  | 
 |   // Write at offset 0x800000000 (32 GB). | 
 |   VerifySparseIO(entry, 0x800000000LL, buf_1, kSize, buf_2); | 
 |  | 
 |   entry->Close(); | 
 |  | 
 |   // Check everything again. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); | 
 |   VerifyContentSparseIO(entry, 0x400000, buf_1->data(), kSize); | 
 |   VerifyContentSparseIO(entry, 0x800000000LL, buf_1->data(), kSize); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, BasicSparseIO) { | 
 |   InitCache(); | 
 |   BasicSparseIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   BasicSparseIO(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::HugeSparseIO() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   // Write 1.2 MB so that we cover multiple entries. | 
 |   const int kSize = 1200 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf_1->data(), kSize, false); | 
 |  | 
 |   // Write at offset 0x20F0000 (33 MB - 64 KB). | 
 |   VerifySparseIO(entry, 0x20F0000, buf_1, kSize, buf_2); | 
 |   entry->Close(); | 
 |  | 
 |   // Check it again. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   VerifyContentSparseIO(entry, 0x20F0000, buf_1->data(), kSize); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, HugeSparseIO) { | 
 |   InitCache(); | 
 |   HugeSparseIO(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   HugeSparseIO(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::GetAvailableRange() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 16 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB). | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf, kSize)); | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F4400, buf, kSize)); | 
 |  | 
 |   // We stop at the first empty block. | 
 |   int64 start; | 
 |   net::TestCompletionCallback cb; | 
 |   int rv = entry->GetAvailableRange( | 
 |       0x20F0000, kSize * 2, &start, cb.callback()); | 
 |   EXPECT_EQ(kSize, cb.GetResult(rv)); | 
 |   EXPECT_EQ(0x20F0000, start); | 
 |  | 
 |   start = 0; | 
 |   rv = entry->GetAvailableRange(0, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(0, cb.GetResult(rv)); | 
 |   rv = entry->GetAvailableRange( | 
 |       0x20F0000 - kSize, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(0, cb.GetResult(rv)); | 
 |   rv = entry->GetAvailableRange(0, 0x2100000, &start, cb.callback()); | 
 |   EXPECT_EQ(kSize, cb.GetResult(rv)); | 
 |   EXPECT_EQ(0x20F0000, start); | 
 |  | 
 |   // We should be able to Read based on the results of GetAvailableRange. | 
 |   start = -1; | 
 |   rv = entry->GetAvailableRange(0x2100000, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(0, cb.GetResult(rv)); | 
 |   rv = entry->ReadSparseData(start, buf, kSize, cb.callback()); | 
 |   EXPECT_EQ(0, cb.GetResult(rv)); | 
 |  | 
 |   start = 0; | 
 |   rv = entry->GetAvailableRange(0x20F2000, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(0x2000, cb.GetResult(rv)); | 
 |   EXPECT_EQ(0x20F2000, start); | 
 |   EXPECT_EQ(0x2000, ReadSparseData(entry, start, buf, kSize)); | 
 |  | 
 |   // Make sure that we respect the |len| argument. | 
 |   start = 0; | 
 |   rv = entry->GetAvailableRange( | 
 |       0x20F0001 - kSize, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(1, cb.GetResult(rv)); | 
 |   EXPECT_EQ(0x20F0000, start); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, GetAvailableRange) { | 
 |   InitCache(); | 
 |   GetAvailableRange(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   GetAvailableRange(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::CouldBeSparse() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 16 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   // Write at offset 0x20F0000 (33 MB - 64 KB). | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 0x20F0000, buf, kSize)); | 
 |  | 
 |   EXPECT_TRUE(entry->CouldBeSparse()); | 
 |   entry->Close(); | 
 |  | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_TRUE(entry->CouldBeSparse()); | 
 |   entry->Close(); | 
 |  | 
 |   // Now verify a regular entry. | 
 |   key.assign("another key"); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |   EXPECT_FALSE(entry->CouldBeSparse()); | 
 |  | 
 |   EXPECT_EQ(kSize, WriteData(entry, 0, 0, buf, kSize, false)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 1, 0, buf, kSize, false)); | 
 |   EXPECT_EQ(kSize, WriteData(entry, 2, 0, buf, kSize, false)); | 
 |  | 
 |   EXPECT_FALSE(entry->CouldBeSparse()); | 
 |   entry->Close(); | 
 |  | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |   EXPECT_FALSE(entry->CouldBeSparse()); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, CouldBeSparse) { | 
 |   InitCache(); | 
 |   CouldBeSparse(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryCouldBeSparse) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   CouldBeSparse(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |  | 
 |   const int kSize = 8192; | 
 |   scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf_1->data(), kSize, false); | 
 |  | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   // This loop writes back to back starting from offset 0 and 9000. | 
 |   for (int i = 0; i < kSize; i += 1024) { | 
 |     scoped_refptr<net::WrappedIOBuffer> buf_3( | 
 |       new net::WrappedIOBuffer(buf_1->data() + i)); | 
 |     VerifySparseIO(entry, i, buf_3, 1024, buf_2); | 
 |     VerifySparseIO(entry, 9000 + i, buf_3, 1024, buf_2); | 
 |   } | 
 |  | 
 |   // Make sure we have data written. | 
 |   VerifyContentSparseIO(entry, 0, buf_1->data(), kSize); | 
 |   VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize); | 
 |  | 
 |   // This tests a large write that spans 3 entries from a misaligned offset. | 
 |   VerifySparseIO(entry, 20481, buf_1, 8192, buf_2); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |  | 
 |   const int kSize = 8192; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   disk_cache::Entry* entry; | 
 |   std::string key("the first key"); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   // Writes in the middle of an entry. | 
 |   EXPECT_EQ(1024, entry->WriteSparseData( | 
 |       0, buf, 1024, net::CompletionCallback())); | 
 |   EXPECT_EQ(1024, entry->WriteSparseData( | 
 |       5120, buf, 1024, net::CompletionCallback())); | 
 |   EXPECT_EQ(1024, entry->WriteSparseData( | 
 |       10000, buf, 1024, net::CompletionCallback())); | 
 |  | 
 |   // Writes in the middle of an entry and spans 2 child entries. | 
 |   EXPECT_EQ(8192, entry->WriteSparseData( | 
 |       50000, buf, 8192, net::CompletionCallback())); | 
 |  | 
 |   int64 start; | 
 |   net::TestCompletionCallback cb; | 
 |   // Test that we stop at a discontinuous child at the second block. | 
 |   int rv = entry->GetAvailableRange(0, 10000, &start, cb.callback()); | 
 |   EXPECT_EQ(1024, cb.GetResult(rv)); | 
 |   EXPECT_EQ(0, start); | 
 |  | 
 |   // Test that number of bytes is reported correctly when we start from the | 
 |   // middle of a filled region. | 
 |   rv = entry->GetAvailableRange(512, 10000, &start, cb.callback()); | 
 |   EXPECT_EQ(512, cb.GetResult(rv)); | 
 |   EXPECT_EQ(512, start); | 
 |  | 
 |   // Test that we found bytes in the child of next block. | 
 |   rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback()); | 
 |   EXPECT_EQ(1024, cb.GetResult(rv)); | 
 |   EXPECT_EQ(5120, start); | 
 |  | 
 |   // Test that the desired length is respected. It starts within a filled | 
 |   // region. | 
 |   rv = entry->GetAvailableRange(5500, 512, &start, cb.callback()); | 
 |   EXPECT_EQ(512, cb.GetResult(rv)); | 
 |   EXPECT_EQ(5500, start); | 
 |  | 
 |   // Test that the desired length is respected. It starts before a filled | 
 |   // region. | 
 |   rv = entry->GetAvailableRange(5000, 620, &start, cb.callback()); | 
 |   EXPECT_EQ(500, cb.GetResult(rv)); | 
 |   EXPECT_EQ(5120, start); | 
 |  | 
 |   // Test that multiple blocks are scanned. | 
 |   rv = entry->GetAvailableRange(40000, 20000, &start, cb.callback()); | 
 |   EXPECT_EQ(8192, cb.GetResult(rv)); | 
 |   EXPECT_EQ(50000, start); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::UpdateSparseEntry() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry1; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry1)); | 
 |  | 
 |   const int kSize = 2048; | 
 |   scoped_refptr<net::IOBuffer> buf_1(new net::IOBuffer(kSize)); | 
 |   scoped_refptr<net::IOBuffer> buf_2(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf_1->data(), kSize, false); | 
 |  | 
 |   // Write at offset 0. | 
 |   VerifySparseIO(entry1, 0, buf_1, kSize, buf_2); | 
 |   entry1->Close(); | 
 |  | 
 |   // Write at offset 2048. | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry1)); | 
 |   VerifySparseIO(entry1, 2048, buf_1, kSize, buf_2); | 
 |  | 
 |   disk_cache::Entry* entry2; | 
 |   ASSERT_EQ(net::OK, CreateEntry("the second key", &entry2)); | 
 |  | 
 |   entry1->Close(); | 
 |   entry2->Close(); | 
 |   FlushQueueForTest(); | 
 |   if (memory_only_) | 
 |     EXPECT_EQ(2, cache_->GetEntryCount()); | 
 |   else | 
 |     EXPECT_EQ(3, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, UpdateSparseEntry) { | 
 |   SetDirectMode(); | 
 |   SetCacheType(net::MEDIA_CACHE); | 
 |   InitCache(); | 
 |   UpdateSparseEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyUpdateSparseEntry) { | 
 |   SetMemoryOnlyMode(); | 
 |   SetCacheType(net::MEDIA_CACHE); | 
 |   InitCache(); | 
 |   UpdateSparseEntry(); | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::DoomSparseEntry() { | 
 |   std::string key1("the first key"); | 
 |   std::string key2("the second key"); | 
 |   disk_cache::Entry *entry1, *entry2; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key1, &entry1)); | 
 |   ASSERT_EQ(net::OK, CreateEntry(key2, &entry2)); | 
 |  | 
 |   const int kSize = 4 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   int64 offset = 1024; | 
 |   // Write to a bunch of ranges. | 
 |   for (int i = 0; i < 12; i++) { | 
 |     EXPECT_EQ(kSize, entry1->WriteSparseData(offset, buf, kSize, | 
 |                                              net::CompletionCallback())); | 
 |     // Keep the second map under the default size. | 
 |     if (i < 9) { | 
 |       EXPECT_EQ(kSize, entry2->WriteSparseData(offset, buf, kSize, | 
 |                                                net::CompletionCallback())); | 
 |     } | 
 |  | 
 |     offset *= 4; | 
 |   } | 
 |  | 
 |   if (memory_only_) | 
 |     EXPECT_EQ(2, cache_->GetEntryCount()); | 
 |   else | 
 |     EXPECT_EQ(15, cache_->GetEntryCount()); | 
 |  | 
 |   // Doom the first entry while it's still open. | 
 |   entry1->Doom(); | 
 |   entry1->Close(); | 
 |   entry2->Close(); | 
 |  | 
 |   // Doom the second entry after it's fully saved. | 
 |   EXPECT_EQ(net::OK, DoomEntry(key2)); | 
 |  | 
 |   // Make sure we do all needed work. This may fail for entry2 if between Close | 
 |   // and DoomEntry the system decides to remove all traces of the file from the | 
 |   // system cache so we don't see that there is pending IO. | 
 |   MessageLoop::current()->RunUntilIdle(); | 
 |  | 
 |   if (memory_only_) { | 
 |     EXPECT_EQ(0, cache_->GetEntryCount()); | 
 |   } else { | 
 |     if (5 == cache_->GetEntryCount()) { | 
 |       // Most likely we are waiting for the result of reading the sparse info | 
 |       // (it's always async on Posix so it is easy to miss). Unfortunately we | 
 |       // don't have any signal to watch for so we can only wait. | 
 |       base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500)); | 
 |       MessageLoop::current()->RunUntilIdle(); | 
 |     } | 
 |     EXPECT_EQ(0, cache_->GetEntryCount()); | 
 |   } | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, DoomSparseEntry) { | 
 |   SetDirectMode(); | 
 |   UseCurrentThread(); | 
 |   InitCache(); | 
 |   DoomSparseEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryOnlyDoomSparseEntry) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   DoomSparseEntry(); | 
 | } | 
 |  | 
 | // A CompletionCallback wrapper that deletes the cache from within the callback. | 
 | // The way a CompletionCallback works means that all tasks (even new ones) | 
 | // are executed by the message loop before returning to the caller so the only | 
 | // way to simulate a race is to execute what we want on the callback. | 
 | class SparseTestCompletionCallback: public net::TestCompletionCallback { | 
 |  public: | 
 |   explicit SparseTestCompletionCallback(disk_cache::Backend* cache) | 
 |       : cache_(cache) { | 
 |   } | 
 |  | 
 |  private: | 
 |   virtual void SetResult(int result) OVERRIDE { | 
 |     delete cache_; | 
 |     TestCompletionCallback::SetResult(result); | 
 |   } | 
 |  | 
 |   disk_cache::Backend* cache_; | 
 |   DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback); | 
 | }; | 
 |  | 
 | // Tests that we don't crash when the backend is deleted while we are working | 
 | // deleting the sub-entries of a sparse entry. | 
 | TEST_F(DiskCacheEntryTest, DoomSparseEntry2) { | 
 |   SetDirectMode(); | 
 |   UseCurrentThread(); | 
 |   InitCache(); | 
 |   std::string key("the key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 4 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   int64 offset = 1024; | 
 |   // Write to a bunch of ranges. | 
 |   for (int i = 0; i < 12; i++) { | 
 |     EXPECT_EQ(kSize, entry->WriteSparseData(offset, buf, kSize, | 
 |                                             net::CompletionCallback())); | 
 |     offset *= 4; | 
 |   } | 
 |   EXPECT_EQ(9, cache_->GetEntryCount()); | 
 |  | 
 |   entry->Close(); | 
 |   SparseTestCompletionCallback cb(cache_); | 
 |   int rv = cache_->DoomEntry(key, cb.callback()); | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, rv); | 
 |   EXPECT_EQ(net::OK, cb.WaitForResult()); | 
 |  | 
 |   // TearDown will attempt to delete the cache_. | 
 |   cache_ = NULL; | 
 | } | 
 |  | 
 | void DiskCacheEntryTest::PartialSparseEntry() { | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   // We should be able to deal with IO that is not aligned to the block size | 
 |   // of a sparse entry, at least to write a big range without leaving holes. | 
 |   const int kSize = 4 * 1024; | 
 |   const int kSmallSize = 128; | 
 |   scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf1->data(), kSize, false); | 
 |  | 
 |   // The first write is just to extend the entry. The third write occupies | 
 |   // a 1KB block partially, it may not be written internally depending on the | 
 |   // implementation. | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 20000, buf1, kSize)); | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 500, buf1, kSize)); | 
 |   EXPECT_EQ(kSmallSize, WriteSparseData(entry, 1080321, buf1, kSmallSize)); | 
 |   entry->Close(); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |  | 
 |   scoped_refptr<net::IOBuffer> buf2(new net::IOBuffer(kSize)); | 
 |   memset(buf2->data(), 0, kSize); | 
 |   EXPECT_EQ(0, ReadSparseData(entry, 8000, buf2, kSize)); | 
 |  | 
 |   EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2, kSize)); | 
 |   EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); | 
 |   EXPECT_EQ(0, ReadSparseData(entry, 0, buf2, kSize)); | 
 |  | 
 |   // This read should not change anything. | 
 |   EXPECT_EQ(96, ReadSparseData(entry, 24000, buf2, kSize)); | 
 |   EXPECT_EQ(500, ReadSparseData(entry, kSize, buf2, kSize)); | 
 |   EXPECT_EQ(0, ReadSparseData(entry, 99, buf2, kSize)); | 
 |  | 
 |   int rv; | 
 |   int64 start; | 
 |   net::TestCompletionCallback cb; | 
 |   if (memory_only_) { | 
 |     rv = entry->GetAvailableRange(0, 600, &start, cb.callback()); | 
 |     EXPECT_EQ(100, cb.GetResult(rv)); | 
 |     EXPECT_EQ(500, start); | 
 |   } else { | 
 |     rv = entry->GetAvailableRange(0, 2048, &start, cb.callback()); | 
 |     EXPECT_EQ(1024, cb.GetResult(rv)); | 
 |     EXPECT_EQ(1024, start); | 
 |   } | 
 |   rv = entry->GetAvailableRange(kSize, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(500, cb.GetResult(rv)); | 
 |   EXPECT_EQ(kSize, start); | 
 |   rv = entry->GetAvailableRange(20 * 1024, 10000, &start, cb.callback()); | 
 |   EXPECT_EQ(3616, cb.GetResult(rv)); | 
 |   EXPECT_EQ(20 * 1024, start); | 
 |  | 
 |   // 1. Query before a filled 1KB block. | 
 |   // 2. Query within a filled 1KB block. | 
 |   // 3. Query beyond a filled 1KB block. | 
 |   if (memory_only_) { | 
 |     rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback()); | 
 |     EXPECT_EQ(3496, cb.GetResult(rv)); | 
 |     EXPECT_EQ(20000, start); | 
 |   } else { | 
 |     rv = entry->GetAvailableRange(19400, kSize, &start, cb.callback()); | 
 |     EXPECT_EQ(3016, cb.GetResult(rv)); | 
 |     EXPECT_EQ(20480, start); | 
 |   } | 
 |   rv = entry->GetAvailableRange(3073, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(1523, cb.GetResult(rv)); | 
 |   EXPECT_EQ(3073, start); | 
 |   rv = entry->GetAvailableRange(4600, kSize, &start, cb.callback()); | 
 |   EXPECT_EQ(0, cb.GetResult(rv)); | 
 |   EXPECT_EQ(4600, start); | 
 |  | 
 |   // Now make another write and verify that there is no hole in between. | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 500 + kSize, buf1, kSize)); | 
 |   rv = entry->GetAvailableRange(1024, 10000, &start, cb.callback()); | 
 |   EXPECT_EQ(7 * 1024 + 500, cb.GetResult(rv)); | 
 |   EXPECT_EQ(1024, start); | 
 |   EXPECT_EQ(kSize, ReadSparseData(entry, kSize, buf2, kSize)); | 
 |   EXPECT_EQ(0, memcmp(buf2->data(), buf1->data() + kSize - 500, 500)); | 
 |   EXPECT_EQ(0, memcmp(buf2->data() + 500, buf1->data(), kSize - 500)); | 
 |  | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, PartialSparseEntry) { | 
 |   InitCache(); | 
 |   PartialSparseEntry(); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, MemoryPartialSparseEntry) { | 
 |   SetMemoryOnlyMode(); | 
 |   InitCache(); | 
 |   PartialSparseEntry(); | 
 | } | 
 |  | 
 | // Tests that corrupt sparse children are removed automatically. | 
 | TEST_F(DiskCacheEntryTest, CleanupSparseEntry) { | 
 |   InitCache(); | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 4 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf1(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf1->data(), kSize, false); | 
 |  | 
 |   const int k1Meg = 1024 * 1024; | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 8192, buf1, kSize)); | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 8192, buf1, kSize)); | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, 2 * k1Meg + 8192, buf1, kSize)); | 
 |   entry->Close(); | 
 |   EXPECT_EQ(4, cache_->GetEntryCount()); | 
 |  | 
 |   void* iter = NULL; | 
 |   int count = 0; | 
 |   std::string child_key[2]; | 
 |   while (OpenNextEntry(&iter, &entry) == net::OK) { | 
 |     ASSERT_TRUE(entry != NULL); | 
 |     // Writing to an entry will alter the LRU list and invalidate the iterator. | 
 |     if (entry->GetKey() != key && count < 2) | 
 |       child_key[count++] = entry->GetKey(); | 
 |     entry->Close(); | 
 |   } | 
 |   for (int i = 0; i < 2; i++) { | 
 |     ASSERT_EQ(net::OK, OpenEntry(child_key[i], &entry)); | 
 |     // Overwrite the header's magic and signature. | 
 |     EXPECT_EQ(12, WriteData(entry, 2, 0, buf1, 12, false)); | 
 |     entry->Close(); | 
 |   } | 
 |  | 
 |   EXPECT_EQ(4, cache_->GetEntryCount()); | 
 |   ASSERT_EQ(net::OK, OpenEntry(key, &entry)); | 
 |  | 
 |   // Two children should be gone. One while reading and one while writing. | 
 |   EXPECT_EQ(0, ReadSparseData(entry, 2 * k1Meg + 8192, buf1, kSize)); | 
 |   EXPECT_EQ(kSize, WriteSparseData(entry, k1Meg + 16384, buf1, kSize)); | 
 |   EXPECT_EQ(0, ReadSparseData(entry, k1Meg + 8192, buf1, kSize)); | 
 |  | 
 |   // We never touched this one. | 
 |   EXPECT_EQ(kSize, ReadSparseData(entry, 8192, buf1, kSize)); | 
 |   entry->Close(); | 
 |  | 
 |   // We re-created one of the corrupt children. | 
 |   EXPECT_EQ(3, cache_->GetEntryCount()); | 
 | } | 
 |  | 
 | TEST_F(DiskCacheEntryTest, CancelSparseIO) { | 
 |   UseCurrentThread(); | 
 |   InitCache(); | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   const int kSize = 40 * 1024; | 
 |   scoped_refptr<net::IOBuffer> buf(new net::IOBuffer(kSize)); | 
 |   CacheTestFillBuffer(buf->data(), kSize, false); | 
 |  | 
 |   // This will open and write two "real" entries. | 
 |   net::TestCompletionCallback cb1, cb2, cb3, cb4, cb5; | 
 |   int rv = entry->WriteSparseData( | 
 |       1024 * 1024 - 4096, buf, kSize, cb1.callback()); | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, rv); | 
 |  | 
 |   int64 offset = 0; | 
 |   rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback()); | 
 |   rv = cb5.GetResult(rv); | 
 |   if (!cb1.have_result()) { | 
 |     // We may or may not have finished writing to the entry. If we have not, | 
 |     // we cannot start another operation at this time. | 
 |     EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, rv); | 
 |   } | 
 |  | 
 |   // We cancel the pending operation, and register multiple notifications. | 
 |   entry->CancelSparseIO(); | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb2.callback())); | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb3.callback())); | 
 |   entry->CancelSparseIO();  // Should be a no op at this point. | 
 |   EXPECT_EQ(net::ERR_IO_PENDING, entry->ReadyForSparseIO(cb4.callback())); | 
 |  | 
 |   if (!cb1.have_result()) { | 
 |     EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, | 
 |               entry->ReadSparseData(offset, buf, kSize, | 
 |                                     net::CompletionCallback())); | 
 |     EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED, | 
 |               entry->WriteSparseData(offset, buf, kSize, | 
 |                                      net::CompletionCallback())); | 
 |   } | 
 |  | 
 |   // Now see if we receive all notifications. Note that we should not be able | 
 |   // to write everything (unless the timing of the system is really weird). | 
 |   rv = cb1.WaitForResult(); | 
 |   EXPECT_TRUE(rv == 4096 || rv == kSize); | 
 |   EXPECT_EQ(net::OK, cb2.WaitForResult()); | 
 |   EXPECT_EQ(net::OK, cb3.WaitForResult()); | 
 |   EXPECT_EQ(net::OK, cb4.WaitForResult()); | 
 |  | 
 |   rv = entry->GetAvailableRange(offset, kSize, &offset, cb5.callback()); | 
 |   EXPECT_EQ(0, cb5.GetResult(rv)); | 
 |   entry->Close(); | 
 | } | 
 |  | 
 | // Tests that we perform sanity checks on an entry's key. Note that there are | 
 | // other tests that exercise sanity checks by using saved corrupt files. | 
 | TEST_F(DiskCacheEntryTest, KeySanityCheck) { | 
 |   UseCurrentThread(); | 
 |   InitCache(); | 
 |   std::string key("the first key"); | 
 |   disk_cache::Entry* entry; | 
 |   ASSERT_EQ(net::OK, CreateEntry(key, &entry)); | 
 |  | 
 |   disk_cache::EntryImpl* entry_impl = | 
 |       static_cast<disk_cache::EntryImpl*>(entry); | 
 |   disk_cache::EntryStore* store = entry_impl->entry()->Data(); | 
 |  | 
 |   // We have reserved space for a short key (one block), let's say that the key | 
 |   // takes more than one block, and remove the NULLs after the actual key. | 
 |   store->key_len = 800; | 
 |   memset(store->key + key.size(), 'k', sizeof(store->key) - key.size()); | 
 |   entry_impl->entry()->set_modified(); | 
 |   entry->Close(); | 
 |  | 
 |   // We have a corrupt entry. Now reload it. We should NOT read beyond the | 
 |   // allocated buffer here. | 
 |   ASSERT_NE(net::OK, OpenEntry(key, &entry)); | 
 |   DisableIntegrityCheck(); | 
 | } |