blob: aca59cb793429a7db0c880a38d498363613b1a97 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/congestion_control/cubic.h"
#include "net/quic/test_tools/mock_clock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace testing {
class CubicPeer : public Cubic {
public:
explicit CubicPeer(QuicClock* clock)
: Cubic(clock) {
}
using Cubic::CubeRoot;
};
class CubicTest : public ::testing::Test {
protected:
CubicTest()
: one_ms_(QuicTime::Delta::FromMilliseconds(1)),
hundred_ms_(QuicTime::Delta::FromMilliseconds(100)) {
}
void SetUp() {
cubic_.reset(new CubicPeer(&clock_));
}
const QuicTime::Delta one_ms_;
const QuicTime::Delta hundred_ms_;
MockClock clock_;
scoped_ptr<CubicPeer> cubic_;
};
TEST_F(CubicTest, CubeRootLow) {
for (uint32 i = 1; i < 256; ++i) {
uint64 cube = i * i * i;
uint8 cube_root = cubic_->CubeRoot(cube);
EXPECT_EQ(i, cube_root);
}
}
TEST_F(CubicTest, CubeRootHigh) {
// Test the range we will opperate in, 1300 to 130 000.
// We expect some loss in accuracy, accepting +-0.2%.
for (uint64 i = 1300; i < 20000; i += 100) {
uint64 cube = i * i * i;
uint32 cube_root = cubic_->CubeRoot(cube);
uint32 margin = cube_root >> 9; // Calculate 0.2% roughly by
// dividing by 512.
EXPECT_LE(i - margin, cube_root);
EXPECT_GE(i + margin, cube_root);
}
for (uint64 i = 20000; i < 130000; i *= 2) {
uint64 cube = i * i * i;
uint32 cube_root = cubic_->CubeRoot(cube);
uint32 margin = cube_root >> 9;
EXPECT_LE(i - margin, cube_root);
EXPECT_GE(i + margin, cube_root);
}
}
TEST_F(CubicTest, AboveOrgin) {
// Convex growth.
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 10;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min));
current_cwnd = expected_cwnd;
// Normal TCP phase.
for (int i = 0; i < 48; ++i) {
for (uint32 n = 1; n < current_cwnd; ++n) {
// Call once per ACK.
EXPECT_EQ(current_cwnd,
cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min));
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min);
EXPECT_EQ(expected_cwnd, current_cwnd);
expected_cwnd++;
}
// Cubic phase.
for (int j = 48; j < 100; ++j) {
for (uint32 n = 1; n < current_cwnd; ++n) {
// Call once per ACK.
EXPECT_EQ(current_cwnd,
cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min));
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min);
}
float elapsed_time_s = 10.0f + 0.1f; // We need to add the RTT here.
expected_cwnd = 11 + (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410)
/ 1024;
EXPECT_EQ(expected_cwnd, current_cwnd);
}
TEST_F(CubicTest, LossEvents) {
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 422;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min));
expected_cwnd = current_cwnd * 717 / 1024;
EXPECT_EQ(expected_cwnd,
cubic_->CongestionWindowAfterPacketLoss(current_cwnd));
expected_cwnd = current_cwnd * 717 / 1024;
EXPECT_EQ(expected_cwnd,
cubic_->CongestionWindowAfterPacketLoss(current_cwnd));
}
TEST_F(CubicTest, BelowOrgin) {
// Concave growth.
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 422;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min));
expected_cwnd = current_cwnd * 717 / 1024;
EXPECT_EQ(expected_cwnd,
cubic_->CongestionWindowAfterPacketLoss(current_cwnd));
current_cwnd = expected_cwnd;
// First update after epoch.
current_cwnd = cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min);
// Cubic phase.
for (int i = 0; i < 54; ++i) {
for (uint32 n = 1; n < current_cwnd; ++n) {
// Call once per ACK.
EXPECT_EQ(current_cwnd,
cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min));
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_->CongestionWindowAfterAck(current_cwnd, rtt_min);
}
expected_cwnd = 422;
EXPECT_EQ(expected_cwnd, current_cwnd);
}
} // namespace testing
} // namespace net