| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <limits.h> |
| #include <stdio.h> |
| |
| #include "./vpx_dsp_rtcd.h" |
| #include "./vpx_scale_rtcd.h" |
| #include "block.h" |
| #include "onyx_int.h" |
| #include "vpx_dsp/variance.h" |
| #include "encodeintra.h" |
| #include "vp8/common/common.h" |
| #include "vp8/common/setupintrarecon.h" |
| #include "vp8/common/systemdependent.h" |
| #include "mcomp.h" |
| #include "firstpass.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "encodemb.h" |
| #include "vp8/common/extend.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp8/common/swapyv12buffer.h" |
| #include "rdopt.h" |
| #include "vp8/common/quant_common.h" |
| #include "encodemv.h" |
| #include "encodeframe.h" |
| |
| /* #define OUTPUT_FPF 1 */ |
| |
| extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); |
| |
| #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] |
| extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; |
| |
| extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; |
| |
| #define IIFACTOR 1.5 |
| #define IIKFACTOR1 1.40 |
| #define IIKFACTOR2 1.5 |
| #define RMAX 14.0 |
| #define GF_RMAX 48.0 |
| |
| #define KF_MB_INTRA_MIN 300 |
| #define GF_MB_INTRA_MIN 200 |
| |
| #define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) |
| |
| #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
| #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
| |
| #define NEW_BOOST 1 |
| |
| static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; |
| static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; |
| |
| |
| static const int cq_level[QINDEX_RANGE] = |
| { |
| 0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, |
| 9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, |
| 20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, |
| 32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, |
| 44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, |
| 57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, |
| 71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, |
| 86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 |
| }; |
| |
| static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); |
| |
| /* Resets the first pass file to the given position using a relative seek |
| * from the current position |
| */ |
| static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) |
| { |
| cpi->twopass.stats_in = Position; |
| } |
| |
| static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) |
| { |
| if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
| return EOF; |
| |
| *next_frame = *cpi->twopass.stats_in; |
| return 1; |
| } |
| |
| /* Read frame stats at an offset from the current position */ |
| static int read_frame_stats( VP8_COMP *cpi, |
| FIRSTPASS_STATS *frame_stats, |
| int offset ) |
| { |
| FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; |
| |
| /* Check legality of offset */ |
| if ( offset >= 0 ) |
| { |
| if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) |
| return EOF; |
| } |
| else if ( offset < 0 ) |
| { |
| if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) |
| return EOF; |
| } |
| |
| *frame_stats = fps_ptr[offset]; |
| return 1; |
| } |
| |
| static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) |
| { |
| if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
| return EOF; |
| |
| *fps = *cpi->twopass.stats_in; |
| cpi->twopass.stats_in = |
| (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); |
| return 1; |
| } |
| |
| static void output_stats(const VP8_COMP *cpi, |
| struct vpx_codec_pkt_list *pktlist, |
| FIRSTPASS_STATS *stats) |
| { |
| struct vpx_codec_cx_pkt pkt; |
| (void)cpi; |
| pkt.kind = VPX_CODEC_STATS_PKT; |
| pkt.data.twopass_stats.buf = stats; |
| pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| |
| /* TEMP debug code */ |
| #if OUTPUT_FPF |
| |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "a"); |
| |
| fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" |
| " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
| " %12.0f %12.0f %12.4f\n", |
| stats->frame, |
| stats->intra_error, |
| stats->coded_error, |
| stats->ssim_weighted_pred_err, |
| stats->pcnt_inter, |
| stats->pcnt_motion, |
| stats->pcnt_second_ref, |
| stats->pcnt_neutral, |
| stats->MVr, |
| stats->mvr_abs, |
| stats->MVc, |
| stats->mvc_abs, |
| stats->MVrv, |
| stats->MVcv, |
| stats->mv_in_out_count, |
| stats->new_mv_count, |
| stats->count, |
| stats->duration); |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| static void zero_stats(FIRSTPASS_STATS *section) |
| { |
| section->frame = 0.0; |
| section->intra_error = 0.0; |
| section->coded_error = 0.0; |
| section->ssim_weighted_pred_err = 0.0; |
| section->pcnt_inter = 0.0; |
| section->pcnt_motion = 0.0; |
| section->pcnt_second_ref = 0.0; |
| section->pcnt_neutral = 0.0; |
| section->MVr = 0.0; |
| section->mvr_abs = 0.0; |
| section->MVc = 0.0; |
| section->mvc_abs = 0.0; |
| section->MVrv = 0.0; |
| section->MVcv = 0.0; |
| section->mv_in_out_count = 0.0; |
| section->new_mv_count = 0.0; |
| section->count = 0.0; |
| section->duration = 1.0; |
| } |
| |
| static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) |
| { |
| section->frame += frame->frame; |
| section->intra_error += frame->intra_error; |
| section->coded_error += frame->coded_error; |
| section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
| section->pcnt_inter += frame->pcnt_inter; |
| section->pcnt_motion += frame->pcnt_motion; |
| section->pcnt_second_ref += frame->pcnt_second_ref; |
| section->pcnt_neutral += frame->pcnt_neutral; |
| section->MVr += frame->MVr; |
| section->mvr_abs += frame->mvr_abs; |
| section->MVc += frame->MVc; |
| section->mvc_abs += frame->mvc_abs; |
| section->MVrv += frame->MVrv; |
| section->MVcv += frame->MVcv; |
| section->mv_in_out_count += frame->mv_in_out_count; |
| section->new_mv_count += frame->new_mv_count; |
| section->count += frame->count; |
| section->duration += frame->duration; |
| } |
| |
| static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) |
| { |
| section->frame -= frame->frame; |
| section->intra_error -= frame->intra_error; |
| section->coded_error -= frame->coded_error; |
| section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->new_mv_count -= frame->new_mv_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| static void avg_stats(FIRSTPASS_STATS *section) |
| { |
| if (section->count < 1.0) |
| return; |
| |
| section->intra_error /= section->count; |
| section->coded_error /= section->count; |
| section->ssim_weighted_pred_err /= section->count; |
| section->pcnt_inter /= section->count; |
| section->pcnt_second_ref /= section->count; |
| section->pcnt_neutral /= section->count; |
| section->pcnt_motion /= section->count; |
| section->MVr /= section->count; |
| section->mvr_abs /= section->count; |
| section->MVc /= section->count; |
| section->mvc_abs /= section->count; |
| section->MVrv /= section->count; |
| section->MVcv /= section->count; |
| section->mv_in_out_count /= section->count; |
| section->duration /= section->count; |
| } |
| |
| /* Calculate a modified Error used in distributing bits between easier |
| * and harder frames |
| */ |
| static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err / |
| cpi->twopass.total_stats.count ); |
| double this_err = this_frame->ssim_weighted_pred_err; |
| double modified_err; |
| |
| if (this_err > av_err) |
| modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); |
| else |
| modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); |
| |
| return modified_err; |
| } |
| |
| static const double weight_table[256] = { |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, |
| 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, |
| 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, |
| 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 |
| }; |
| |
| static double simple_weight(YV12_BUFFER_CONFIG *source) |
| { |
| int i, j; |
| |
| unsigned char *src = source->y_buffer; |
| double sum_weights = 0.0; |
| |
| /* Loop throught the Y plane raw examining levels and creating a weight |
| * for the image |
| */ |
| i = source->y_height; |
| do |
| { |
| j = source->y_width; |
| do |
| { |
| sum_weights += weight_table[ *src]; |
| src++; |
| }while(--j); |
| src -= source->y_width; |
| src += source->y_stride; |
| }while(--i); |
| |
| sum_weights /= (source->y_height * source->y_width); |
| |
| return sum_weights; |
| } |
| |
| |
| /* This function returns the current per frame maximum bitrate target */ |
| static int frame_max_bits(VP8_COMP *cpi) |
| { |
| /* Max allocation for a single frame based on the max section guidelines |
| * passed in and how many bits are left |
| */ |
| int max_bits; |
| |
| /* For CBR we need to also consider buffer fullness. |
| * If we are running below the optimal level then we need to gradually |
| * tighten up on max_bits. |
| */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); |
| |
| /* For CBR base this on the target average bits per frame plus the |
| * maximum sedction rate passed in by the user |
| */ |
| max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
| |
| /* If our buffer is below the optimum level */ |
| if (buffer_fullness_ratio < 1.0) |
| { |
| /* The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. */ |
| int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; |
| |
| max_bits = (int)(max_bits * buffer_fullness_ratio); |
| |
| /* Lowest value we will set ... which should allow the buffer to |
| * refill. |
| */ |
| if (max_bits < min_max_bits) |
| max_bits = min_max_bits; |
| } |
| } |
| /* VBR */ |
| else |
| { |
| /* For VBR base this on the bits and frames left plus the |
| * two_pass_vbrmax_section rate passed in by the user |
| */ |
| max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
| } |
| |
| /* Trap case where we are out of bits */ |
| if (max_bits < 0) |
| max_bits = 0; |
| |
| return max_bits; |
| } |
| |
| void vp8_init_first_pass(VP8_COMP *cpi) |
| { |
| zero_stats(&cpi->twopass.total_stats); |
| } |
| |
| void vp8_end_first_pass(VP8_COMP *cpi) |
| { |
| output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); |
| } |
| |
| static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, |
| YV12_BUFFER_CONFIG * raw_buffer, |
| int * raw_motion_err, |
| YV12_BUFFER_CONFIG * recon_buffer, |
| int * best_motion_err, int recon_yoffset) |
| { |
| MACROBLOCKD * const xd = & x->e_mbd; |
| BLOCK *b = &x->block[0]; |
| BLOCKD *d = &x->e_mbd.block[0]; |
| |
| unsigned char *src_ptr = (*(b->base_src) + b->src); |
| int src_stride = b->src_stride; |
| unsigned char *raw_ptr; |
| int raw_stride = raw_buffer->y_stride; |
| unsigned char *ref_ptr; |
| int ref_stride = x->e_mbd.pre.y_stride; |
| (void)cpi; |
| |
| /* Set up pointers for this macro block raw buffer */ |
| raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset |
| + d->offset); |
| vpx_mse16x16(src_ptr, src_stride, raw_ptr, raw_stride, |
| (unsigned int *)(raw_motion_err)); |
| |
| /* Set up pointers for this macro block recon buffer */ |
| xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
| ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset ); |
| vpx_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, |
| (unsigned int *)(best_motion_err)); |
| } |
| |
| static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, |
| int_mv *ref_mv, MV *best_mv, |
| YV12_BUFFER_CONFIG *recon_buffer, |
| int *best_motion_err, int recon_yoffset ) |
| { |
| MACROBLOCKD *const xd = & x->e_mbd; |
| BLOCK *b = &x->block[0]; |
| BLOCKD *d = &x->e_mbd.block[0]; |
| int num00; |
| |
| int_mv tmp_mv; |
| int_mv ref_mv_full; |
| |
| int tmp_err; |
| int step_param = 3; /* Dont search over full range for first pass */ |
| int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| int n; |
| vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; |
| int new_mv_mode_penalty = 256; |
| |
| /* override the default variance function to use MSE */ |
| v_fn_ptr.vf = vpx_mse16x16; |
| |
| /* Set up pointers for this macro block recon buffer */ |
| xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
| |
| /* Initial step/diamond search centred on best mv */ |
| tmp_mv.as_int = 0; |
| ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; |
| ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; |
| tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, |
| x->sadperbit16, &num00, &v_fn_ptr, |
| x->mvcost, ref_mv); |
| if ( tmp_err < INT_MAX-new_mv_mode_penalty ) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) |
| { |
| *best_motion_err = tmp_err; |
| best_mv->row = tmp_mv.as_mv.row; |
| best_mv->col = tmp_mv.as_mv.col; |
| } |
| |
| /* Further step/diamond searches as necessary */ |
| n = num00; |
| num00 = 0; |
| |
| while (n < further_steps) |
| { |
| n++; |
| |
| if (num00) |
| num00--; |
| else |
| { |
| tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, |
| step_param + n, x->sadperbit16, |
| &num00, &v_fn_ptr, x->mvcost, |
| ref_mv); |
| if ( tmp_err < INT_MAX-new_mv_mode_penalty ) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) |
| { |
| *best_motion_err = tmp_err; |
| best_mv->row = tmp_mv.as_mv.row; |
| best_mv->col = tmp_mv.as_mv.col; |
| } |
| } |
| } |
| } |
| |
| void vp8_first_pass(VP8_COMP *cpi) |
| { |
| int mb_row, mb_col; |
| MACROBLOCK *const x = & cpi->mb; |
| VP8_COMMON *const cm = & cpi->common; |
| MACROBLOCKD *const xd = & x->e_mbd; |
| |
| int recon_yoffset, recon_uvoffset; |
| YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
| YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
| YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
| int recon_y_stride = lst_yv12->y_stride; |
| int recon_uv_stride = lst_yv12->uv_stride; |
| int64_t intra_error = 0; |
| int64_t coded_error = 0; |
| |
| int sum_mvr = 0, sum_mvc = 0; |
| int sum_mvr_abs = 0, sum_mvc_abs = 0; |
| int sum_mvrs = 0, sum_mvcs = 0; |
| int mvcount = 0; |
| int intercount = 0; |
| int second_ref_count = 0; |
| int intrapenalty = 256; |
| int neutral_count = 0; |
| int new_mv_count = 0; |
| int sum_in_vectors = 0; |
| uint32_t lastmv_as_int = 0; |
| |
| int_mv zero_ref_mv; |
| |
| zero_ref_mv.as_int = 0; |
| |
| vp8_clear_system_state(); |
| |
| x->src = * cpi->Source; |
| xd->pre = *lst_yv12; |
| xd->dst = *new_yv12; |
| |
| x->partition_info = x->pi; |
| |
| xd->mode_info_context = cm->mi; |
| |
| if(!cm->use_bilinear_mc_filter) |
| { |
| xd->subpixel_predict = vp8_sixtap_predict4x4; |
| xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; |
| xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; |
| xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; |
| } |
| else |
| { |
| xd->subpixel_predict = vp8_bilinear_predict4x4; |
| xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; |
| xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; |
| xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; |
| } |
| |
| vp8_build_block_offsets(x); |
| |
| /* set up frame new frame for intra coded blocks */ |
| vp8_setup_intra_recon(new_yv12); |
| vp8cx_frame_init_quantizer(cpi); |
| |
| /* Initialise the MV cost table to the defaults */ |
| { |
| int flag[2] = {1, 1}; |
| vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
| memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); |
| vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); |
| } |
| |
| /* for each macroblock row in image */ |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| int_mv best_ref_mv; |
| |
| best_ref_mv.as_int = 0; |
| |
| /* reset above block coeffs */ |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * 8); |
| |
| /* Set up limit values for motion vectors to prevent them extending |
| * outside the UMV borders |
| */ |
| x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); |
| |
| |
| /* for each macroblock col in image */ |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| int this_error; |
| int gf_motion_error = INT_MAX; |
| int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| |
| xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; |
| xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; |
| xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| |
| /* Copy current mb to a buffer */ |
| vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); |
| |
| /* do intra 16x16 prediction */ |
| this_error = vp8_encode_intra(cpi, x, use_dc_pred); |
| |
| /* "intrapenalty" below deals with situations where the intra |
| * and inter error scores are very low (eg a plain black frame) |
| * We do not have special cases in first pass for 0,0 and |
| * nearest etc so all inter modes carry an overhead cost |
| * estimate fot the mv. When the error score is very low this |
| * causes us to pick all or lots of INTRA modes and throw lots |
| * of key frames. This penalty adds a cost matching that of a |
| * 0,0 mv to the intra case. |
| */ |
| this_error += intrapenalty; |
| |
| /* Cumulative intra error total */ |
| intra_error += (int64_t)this_error; |
| |
| /* Set up limit values for motion vectors to prevent them |
| * extending outside the UMV borders |
| */ |
| x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); |
| |
| /* Other than for the first frame do a motion search */ |
| if (cm->current_video_frame > 0) |
| { |
| BLOCKD *d = &x->e_mbd.block[0]; |
| MV tmp_mv = {0, 0}; |
| int tmp_err; |
| int motion_error = INT_MAX; |
| int raw_motion_error = INT_MAX; |
| |
| /* Simple 0,0 motion with no mv overhead */ |
| zz_motion_search( cpi, x, cpi->last_frame_unscaled_source, |
| &raw_motion_error, lst_yv12, &motion_error, |
| recon_yoffset ); |
| d->bmi.mv.as_mv.row = 0; |
| d->bmi.mv.as_mv.col = 0; |
| |
| if (raw_motion_error < cpi->oxcf.encode_breakout) |
| goto skip_motion_search; |
| |
| /* Test last reference frame using the previous best mv as the |
| * starting point (best reference) for the search |
| */ |
| first_pass_motion_search(cpi, x, &best_ref_mv, |
| &d->bmi.mv.as_mv, lst_yv12, |
| &motion_error, recon_yoffset); |
| |
| /* If the current best reference mv is not centred on 0,0 |
| * then do a 0,0 based search as well |
| */ |
| if (best_ref_mv.as_int) |
| { |
| tmp_err = INT_MAX; |
| first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, |
| lst_yv12, &tmp_err, recon_yoffset); |
| |
| if ( tmp_err < motion_error ) |
| { |
| motion_error = tmp_err; |
| d->bmi.mv.as_mv.row = tmp_mv.row; |
| d->bmi.mv.as_mv.col = tmp_mv.col; |
| } |
| } |
| |
| /* Experimental search in a second reference frame ((0,0) |
| * based only) |
| */ |
| if (cm->current_video_frame > 1) |
| { |
| first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); |
| |
| if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) |
| { |
| second_ref_count++; |
| } |
| |
| /* Reset to last frame as reference buffer */ |
| xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; |
| xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; |
| xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; |
| } |
| |
| skip_motion_search: |
| /* Intra assumed best */ |
| best_ref_mv.as_int = 0; |
| |
| if (motion_error <= this_error) |
| { |
| /* Keep a count of cases where the inter and intra were |
| * very close and very low. This helps with scene cut |
| * detection for example in cropped clips with black bars |
| * at the sides or top and bottom. |
| */ |
| if( (((this_error-intrapenalty) * 9) <= |
| (motion_error*10)) && |
| (this_error < (2*intrapenalty)) ) |
| { |
| neutral_count++; |
| } |
| |
| d->bmi.mv.as_mv.row *= 8; |
| d->bmi.mv.as_mv.col *= 8; |
| this_error = motion_error; |
| vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); |
| vp8_encode_inter16x16y(x); |
| sum_mvr += d->bmi.mv.as_mv.row; |
| sum_mvr_abs += abs(d->bmi.mv.as_mv.row); |
| sum_mvc += d->bmi.mv.as_mv.col; |
| sum_mvc_abs += abs(d->bmi.mv.as_mv.col); |
| sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; |
| sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; |
| intercount++; |
| |
| best_ref_mv.as_int = d->bmi.mv.as_int; |
| |
| /* Was the vector non-zero */ |
| if (d->bmi.mv.as_int) |
| { |
| mvcount++; |
| |
| /* Was it different from the last non zero vector */ |
| if ( d->bmi.mv.as_int != lastmv_as_int ) |
| new_mv_count++; |
| lastmv_as_int = d->bmi.mv.as_int; |
| |
| /* Does the Row vector point inwards or outwards */ |
| if (mb_row < cm->mb_rows / 2) |
| { |
| if (d->bmi.mv.as_mv.row > 0) |
| sum_in_vectors--; |
| else if (d->bmi.mv.as_mv.row < 0) |
| sum_in_vectors++; |
| } |
| else if (mb_row > cm->mb_rows / 2) |
| { |
| if (d->bmi.mv.as_mv.row > 0) |
| sum_in_vectors++; |
| else if (d->bmi.mv.as_mv.row < 0) |
| sum_in_vectors--; |
| } |
| |
| /* Does the Row vector point inwards or outwards */ |
| if (mb_col < cm->mb_cols / 2) |
| { |
| if (d->bmi.mv.as_mv.col > 0) |
| sum_in_vectors--; |
| else if (d->bmi.mv.as_mv.col < 0) |
| sum_in_vectors++; |
| } |
| else if (mb_col > cm->mb_cols / 2) |
| { |
| if (d->bmi.mv.as_mv.col > 0) |
| sum_in_vectors++; |
| else if (d->bmi.mv.as_mv.col < 0) |
| sum_in_vectors--; |
| } |
| } |
| } |
| } |
| |
| coded_error += (int64_t)this_error; |
| |
| /* adjust to the next column of macroblocks */ |
| x->src.y_buffer += 16; |
| x->src.u_buffer += 8; |
| x->src.v_buffer += 8; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += 8; |
| } |
| |
| /* adjust to the next row of mbs */ |
| x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
| x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| |
| /* extend the recon for intra prediction */ |
| vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); |
| vp8_clear_system_state(); |
| } |
| |
| vp8_clear_system_state(); |
| { |
| double weight = 0.0; |
| |
| FIRSTPASS_STATS fps; |
| |
| fps.frame = cm->current_video_frame ; |
| fps.intra_error = (double)(intra_error >> 8); |
| fps.coded_error = (double)(coded_error >> 8); |
| weight = simple_weight(cpi->Source); |
| |
| |
| if (weight < 0.1) |
| weight = 0.1; |
| |
| fps.ssim_weighted_pred_err = fps.coded_error * weight; |
| |
| fps.pcnt_inter = 0.0; |
| fps.pcnt_motion = 0.0; |
| fps.MVr = 0.0; |
| fps.mvr_abs = 0.0; |
| fps.MVc = 0.0; |
| fps.mvc_abs = 0.0; |
| fps.MVrv = 0.0; |
| fps.MVcv = 0.0; |
| fps.mv_in_out_count = 0.0; |
| fps.new_mv_count = 0.0; |
| fps.count = 1.0; |
| |
| fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; |
| fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; |
| fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; |
| |
| if (mvcount > 0) |
| { |
| fps.MVr = (double)sum_mvr / (double)mvcount; |
| fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; |
| fps.MVc = (double)sum_mvc / (double)mvcount; |
| fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; |
| fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; |
| fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; |
| fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); |
| fps.new_mv_count = new_mv_count; |
| |
| fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; |
| } |
| |
| /* TODO: handle the case when duration is set to 0, or something less |
| * than the full time between subsequent cpi->source_time_stamps |
| */ |
| fps.duration = (double)(cpi->source->ts_end |
| - cpi->source->ts_start); |
| |
| /* don't want to do output stats with a stack variable! */ |
| memcpy(&cpi->twopass.this_frame_stats, |
| &fps, |
| sizeof(FIRSTPASS_STATS)); |
| output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); |
| accumulate_stats(&cpi->twopass.total_stats, &fps); |
| } |
| |
| /* Copy the previous Last Frame into the GF buffer if specific |
| * conditions for doing so are met |
| */ |
| if ((cm->current_video_frame > 0) && |
| (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && |
| ((cpi->twopass.this_frame_stats.intra_error / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > |
| 2.0)) |
| { |
| vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
| } |
| |
| /* swap frame pointers so last frame refers to the frame we just |
| * compressed |
| */ |
| vp8_swap_yv12_buffer(lst_yv12, new_yv12); |
| vp8_yv12_extend_frame_borders(lst_yv12); |
| |
| /* Special case for the first frame. Copy into the GF buffer as a |
| * second reference. |
| */ |
| if (cm->current_video_frame == 0) |
| { |
| vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
| } |
| |
| |
| /* use this to see what the first pass reconstruction looks like */ |
| if (0) |
| { |
| char filename[512]; |
| FILE *recon_file; |
| sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); |
| |
| if (cm->current_video_frame == 0) |
| recon_file = fopen(filename, "wb"); |
| else |
| recon_file = fopen(filename, "ab"); |
| |
| (void) fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, |
| recon_file); |
| fclose(recon_file); |
| } |
| |
| cm->current_video_frame++; |
| |
| } |
| extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; |
| |
| /* Estimate a cost per mb attributable to overheads such as the coding of |
| * modes and motion vectors. |
| * Currently simplistic in its assumptions for testing. |
| */ |
| |
| static double bitcost( double prob ) |
| { |
| if (prob > 0.000122) |
| return -log(prob) / log(2.0); |
| else |
| return 13.0; |
| } |
| static int64_t estimate_modemvcost(VP8_COMP *cpi, |
| FIRSTPASS_STATS * fpstats) |
| { |
| int mv_cost; |
| int64_t mode_cost; |
| |
| double av_pct_inter = fpstats->pcnt_inter / fpstats->count; |
| double av_pct_motion = fpstats->pcnt_motion / fpstats->count; |
| double av_intra = (1.0 - av_pct_inter); |
| |
| double zz_cost; |
| double motion_cost; |
| double intra_cost; |
| |
| zz_cost = bitcost(av_pct_inter - av_pct_motion); |
| motion_cost = bitcost(av_pct_motion); |
| intra_cost = bitcost(av_intra); |
| |
| /* Estimate of extra bits per mv overhead for mbs |
| * << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb |
| */ |
| mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; |
| |
| /* Crude estimate of overhead cost from modes |
| * << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb |
| */ |
| mode_cost = (int64_t)((((av_pct_inter - av_pct_motion) * zz_cost) + |
| (av_pct_motion * motion_cost) + |
| (av_intra * intra_cost)) * cpi->common.MBs) * 512; |
| |
| return mv_cost + mode_cost; |
| } |
| |
| static double calc_correction_factor( double err_per_mb, |
| double err_devisor, |
| double pt_low, |
| double pt_high, |
| int Q ) |
| { |
| double power_term; |
| double error_term = err_per_mb / err_devisor; |
| double correction_factor; |
| |
| /* Adjustment based on Q to power term. */ |
| power_term = pt_low + (Q * 0.01); |
| power_term = (power_term > pt_high) ? pt_high : power_term; |
| |
| /* Adjustments to error term */ |
| /* TBD */ |
| |
| /* Calculate correction factor */ |
| correction_factor = pow(error_term, power_term); |
| |
| /* Clip range */ |
| correction_factor = |
| (correction_factor < 0.05) |
| ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; |
| |
| return correction_factor; |
| } |
| |
| static int estimate_max_q(VP8_COMP *cpi, |
| FIRSTPASS_STATS * fpstats, |
| int section_target_bandwitdh, |
| int overhead_bits ) |
| { |
| int Q; |
| int num_mbs = cpi->common.MBs; |
| int target_norm_bits_per_mb; |
| |
| double section_err = (fpstats->coded_error / fpstats->count); |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| double speed_correction = 1.0; |
| int overhead_bits_per_mb; |
| |
| if (section_target_bandwitdh <= 0) |
| return cpi->twopass.maxq_max_limit; /* Highest value allowed */ |
| |
| target_norm_bits_per_mb = |
| (section_target_bandwitdh < (1 << 20)) |
| ? (512 * section_target_bandwitdh) / num_mbs |
| : 512 * (section_target_bandwitdh / num_mbs); |
| |
| /* Calculate a corrective factor based on a rolling ratio of bits spent |
| * vs target bits |
| */ |
| if ((cpi->rolling_target_bits > 0) && |
| (cpi->active_worst_quality < cpi->worst_quality)) |
| { |
| double rolling_ratio; |
| |
| rolling_ratio = (double)cpi->rolling_actual_bits / |
| (double)cpi->rolling_target_bits; |
| |
| if (rolling_ratio < 0.95) |
| cpi->twopass.est_max_qcorrection_factor -= 0.005; |
| else if (rolling_ratio > 1.05) |
| cpi->twopass.est_max_qcorrection_factor += 0.005; |
| |
| cpi->twopass.est_max_qcorrection_factor = |
| (cpi->twopass.est_max_qcorrection_factor < 0.1) |
| ? 0.1 |
| : (cpi->twopass.est_max_qcorrection_factor > 10.0) |
| ? 10.0 : cpi->twopass.est_max_qcorrection_factor; |
| } |
| |
| /* Corrections for higher compression speed settings |
| * (reduced compression expected) |
| */ |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| /* Estimate of overhead bits per mb */ |
| /* Correction to overhead bits for min allowed Q. */ |
| overhead_bits_per_mb = overhead_bits / num_mbs; |
| overhead_bits_per_mb = (int)(overhead_bits_per_mb * |
| pow( 0.98, (double)cpi->twopass.maxq_min_limit )); |
| |
| /* Try and pick a max Q that will be high enough to encode the |
| * content at the given rate. |
| */ |
| for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) |
| { |
| int bits_per_mb_at_this_q; |
| |
| /* Error per MB based correction factor */ |
| err_correction_factor = |
| calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); |
| |
| bits_per_mb_at_this_q = |
| vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; |
| |
| bits_per_mb_at_this_q = (int)(.5 + err_correction_factor |
| * speed_correction * cpi->twopass.est_max_qcorrection_factor |
| * cpi->twopass.section_max_qfactor |
| * (double)bits_per_mb_at_this_q); |
| |
| /* Mode and motion overhead */ |
| /* As Q rises in real encode loop rd code will force overhead down |
| * We make a crude adjustment for this here as *.98 per Q step. |
| */ |
| overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| /* Restriction on active max q for constrained quality mode. */ |
| if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && |
| (Q < cpi->cq_target_quality) ) |
| { |
| Q = cpi->cq_target_quality; |
| } |
| |
| /* Adjust maxq_min_limit and maxq_max_limit limits based on |
| * average q observed in clip for non kf/gf.arf frames |
| * Give average a chance to settle though. |
| */ |
| if ( (cpi->ni_frames > |
| ((int)cpi->twopass.total_stats.count >> 8)) && |
| (cpi->ni_frames > 150) ) |
| { |
| cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) |
| ? (cpi->ni_av_qi + 32) : cpi->worst_quality; |
| cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) |
| ? (cpi->ni_av_qi - 32) : cpi->best_quality; |
| } |
| |
| return Q; |
| } |
| |
| /* For cq mode estimate a cq level that matches the observed |
| * complexity and data rate. |
| */ |
| static int estimate_cq( VP8_COMP *cpi, |
| FIRSTPASS_STATS * fpstats, |
| int section_target_bandwitdh, |
| int overhead_bits ) |
| { |
| int Q; |
| int num_mbs = cpi->common.MBs; |
| int target_norm_bits_per_mb; |
| |
| double section_err = (fpstats->coded_error / fpstats->count); |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| double speed_correction = 1.0; |
| double clip_iiratio; |
| double clip_iifactor; |
| int overhead_bits_per_mb; |
| |
| if (0) |
| { |
| FILE *f = fopen("epmp.stt", "a"); |
| fprintf(f, "%10.2f\n", err_per_mb ); |
| fclose(f); |
| } |
| |
| target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
| ? (512 * section_target_bandwitdh) / num_mbs |
| : 512 * (section_target_bandwitdh / num_mbs); |
| |
| /* Estimate of overhead bits per mb */ |
| overhead_bits_per_mb = overhead_bits / num_mbs; |
| |
| /* Corrections for higher compression speed settings |
| * (reduced compression expected) |
| */ |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| /* II ratio correction factor for clip as a whole */ |
| clip_iiratio = cpi->twopass.total_stats.intra_error / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); |
| clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); |
| if (clip_iifactor < 0.80) |
| clip_iifactor = 0.80; |
| |
| /* Try and pick a Q that can encode the content at the given rate. */ |
| for (Q = 0; Q < MAXQ; Q++) |
| { |
| int bits_per_mb_at_this_q; |
| |
| /* Error per MB based correction factor */ |
| err_correction_factor = |
| calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); |
| |
| bits_per_mb_at_this_q = |
| vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; |
| |
| bits_per_mb_at_this_q = |
| (int)( .5 + err_correction_factor * |
| speed_correction * |
| clip_iifactor * |
| (double)bits_per_mb_at_this_q); |
| |
| /* Mode and motion overhead */ |
| /* As Q rises in real encode loop rd code will force overhead down |
| * We make a crude adjustment for this here as *.98 per Q step. |
| */ |
| overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| /* Clip value to range "best allowed to (worst allowed - 1)" */ |
| Q = cq_level[Q]; |
| if ( Q >= cpi->worst_quality ) |
| Q = cpi->worst_quality - 1; |
| if ( Q < cpi->best_quality ) |
| Q = cpi->best_quality; |
| |
| return Q; |
| } |
| |
| static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) |
| { |
| int Q; |
| int num_mbs = cpi->common.MBs; |
| int target_norm_bits_per_mb; |
| |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| double speed_correction = 1.0; |
| |
| target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); |
| |
| /* Corrections for higher compression speed settings |
| * (reduced compression expected) |
| */ |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| /* Try and pick a Q that can encode the content at the given rate. */ |
| for (Q = 0; Q < MAXQ; Q++) |
| { |
| int bits_per_mb_at_this_q; |
| |
| /* Error per MB based correction factor */ |
| err_correction_factor = |
| calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); |
| |
| bits_per_mb_at_this_q = |
| (int)( .5 + ( err_correction_factor * |
| speed_correction * |
| cpi->twopass.est_max_qcorrection_factor * |
| (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) ); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| return Q; |
| } |
| |
| /* Estimate a worst case Q for a KF group */ |
| static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) |
| { |
| int Q; |
| int num_mbs = cpi->common.MBs; |
| int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; |
| int bits_per_mb_at_this_q; |
| |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| double speed_correction = 1.0; |
| double current_spend_ratio = 1.0; |
| |
| double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; |
| double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; |
| |
| double iiratio_correction_factor = 1.0; |
| |
| double combined_correction_factor; |
| |
| /* Trap special case where the target is <= 0 */ |
| if (target_norm_bits_per_mb <= 0) |
| return MAXQ * 2; |
| |
| /* Calculate a corrective factor based on a rolling ratio of bits spent |
| * vs target bits |
| * This is clamped to the range 0.1 to 10.0 |
| */ |
| if (cpi->long_rolling_target_bits <= 0) |
| current_spend_ratio = 10.0; |
| else |
| { |
| current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; |
| current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; |
| } |
| |
| /* Calculate a correction factor based on the quality of prediction in |
| * the sequence as indicated by intra_inter error score ratio (IIRatio) |
| * The idea here is to favour subsampling in the hardest sections vs |
| * the easyest. |
| */ |
| iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); |
| |
| if (iiratio_correction_factor < 0.5) |
| iiratio_correction_factor = 0.5; |
| |
| /* Corrections for higher compression speed settings |
| * (reduced compression expected) |
| */ |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| /* Combine the various factors calculated above */ |
| combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; |
| |
| /* Try and pick a Q that should be high enough to encode the content at |
| * the given rate. |
| */ |
| for (Q = 0; Q < MAXQ; Q++) |
| { |
| /* Error per MB based correction factor */ |
| err_correction_factor = |
| calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); |
| |
| bits_per_mb_at_this_q = |
| (int)(.5 + ( err_correction_factor * |
| combined_correction_factor * |
| (double)vp8_bits_per_mb[INTER_FRAME][Q]) ); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| /* If we could not hit the target even at Max Q then estimate what Q |
| * would have been required |
| */ |
| while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) |
| { |
| |
| bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); |
| Q++; |
| } |
| |
| if (0) |
| { |
| FILE *f = fopen("estkf_q.stt", "a"); |
| fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, |
| target_norm_bits_per_mb, err_per_mb, err_correction_factor, |
| current_spend_ratio, group_iiratio, iiratio_correction_factor, |
| (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); |
| fclose(f); |
| } |
| |
| return Q; |
| } |
| |
| void vp8_init_second_pass(VP8_COMP *cpi) |
| { |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS *start_pos; |
| |
| double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| zero_stats(&cpi->twopass.total_stats); |
| zero_stats(&cpi->twopass.total_left_stats); |
| |
| if (!cpi->twopass.stats_in_end) |
| return; |
| |
| cpi->twopass.total_stats = *cpi->twopass.stats_in_end; |
| cpi->twopass.total_left_stats = cpi->twopass.total_stats; |
| |
| /* each frame can have a different duration, as the frame rate in the |
| * source isn't guaranteed to be constant. The frame rate prior to |
| * the first frame encoded in the second pass is a guess. However the |
| * sum duration is not. Its calculated based on the actual durations of |
| * all frames from the first pass. |
| */ |
| vp8_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); |
| |
| cpi->output_framerate = cpi->framerate; |
| cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; |
| cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); |
| |
| /* Calculate a minimum intra value to be used in determining the IIratio |
| * scores used in the second pass. We have this minimum to make sure |
| * that clips that are static but "low complexity" in the intra domain |
| * are still boosted appropriately for KF/GF/ARF |
| */ |
| cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
| cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
| |
| /* Scan the first pass file and calculate an average Intra / Inter error |
| * score ratio for the sequence |
| */ |
| { |
| double sum_iiratio = 0.0; |
| double IIRatio; |
| |
| start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ |
| |
| while (input_stats(cpi, &this_frame) != EOF) |
| { |
| IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); |
| IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; |
| sum_iiratio += IIRatio; |
| } |
| |
| cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); |
| |
| /* Reset file position */ |
| reset_fpf_position(cpi, start_pos); |
| } |
| |
| /* Scan the first pass file and calculate a modified total error based |
| * upon the bias/power function used to allocate bits |
| */ |
| { |
| start_pos = cpi->twopass.stats_in; /* Note starting "file" position */ |
| |
| cpi->twopass.modified_error_total = 0.0; |
| cpi->twopass.modified_error_used = 0.0; |
| |
| while (input_stats(cpi, &this_frame) != EOF) |
| { |
| cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); |
| } |
| cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; |
| |
| reset_fpf_position(cpi, start_pos); /* Reset file position */ |
| |
| } |
| } |
| |
| void vp8_end_second_pass(VP8_COMP *cpi) |
| { |
| (void)cpi; |
| } |
| |
| /* This function gives and estimate of how badly we believe the prediction |
| * quality is decaying from frame to frame. |
| */ |
| static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) |
| { |
| double prediction_decay_rate; |
| double motion_decay; |
| double motion_pct = next_frame->pcnt_motion; |
| (void)cpi; |
| |
| /* Initial basis is the % mbs inter coded */ |
| prediction_decay_rate = next_frame->pcnt_inter; |
| |
| /* High % motion -> somewhat higher decay rate */ |
| motion_decay = (1.0 - (motion_pct / 20.0)); |
| if (motion_decay < prediction_decay_rate) |
| prediction_decay_rate = motion_decay; |
| |
| /* Adjustment to decay rate based on speed of motion */ |
| { |
| double this_mv_rabs; |
| double this_mv_cabs; |
| double distance_factor; |
| |
| this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); |
| this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); |
| |
| distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + |
| (this_mv_cabs * this_mv_cabs)) / 250.0; |
| distance_factor = ((distance_factor > 1.0) |
| ? 0.0 : (1.0 - distance_factor)); |
| if (distance_factor < prediction_decay_rate) |
| prediction_decay_rate = distance_factor; |
| } |
| |
| return prediction_decay_rate; |
| } |
| |
| /* Function to test for a condition where a complex transition is followed |
| * by a static section. For example in slide shows where there is a fade |
| * between slides. This is to help with more optimal kf and gf positioning. |
| */ |
| static int detect_transition_to_still( |
| VP8_COMP *cpi, |
| int frame_interval, |
| int still_interval, |
| double loop_decay_rate, |
| double decay_accumulator ) |
| { |
| int trans_to_still = 0; |
| |
| /* Break clause to detect very still sections after motion |
| * For example a static image after a fade or other transition |
| * instead of a clean scene cut. |
| */ |
| if ( (frame_interval > MIN_GF_INTERVAL) && |
| (loop_decay_rate >= 0.999) && |
| (decay_accumulator < 0.9) ) |
| { |
| int j; |
| FIRSTPASS_STATS * position = cpi->twopass.stats_in; |
| FIRSTPASS_STATS tmp_next_frame; |
| double decay_rate; |
| |
| /* Look ahead a few frames to see if static condition persists... */ |
| for ( j = 0; j < still_interval; j++ ) |
| { |
| if (EOF == input_stats(cpi, &tmp_next_frame)) |
| break; |
| |
| decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); |
| if ( decay_rate < 0.999 ) |
| break; |
| } |
| /* Reset file position */ |
| reset_fpf_position(cpi, position); |
| |
| /* Only if it does do we signal a transition to still */ |
| if ( j == still_interval ) |
| trans_to_still = 1; |
| } |
| |
| return trans_to_still; |
| } |
| |
| /* This function detects a flash through the high relative pcnt_second_ref |
| * score in the frame following a flash frame. The offset passed in should |
| * reflect this |
| */ |
| static int detect_flash( VP8_COMP *cpi, int offset ) |
| { |
| FIRSTPASS_STATS next_frame; |
| |
| int flash_detected = 0; |
| |
| /* Read the frame data. */ |
| /* The return is 0 (no flash detected) if not a valid frame */ |
| if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) |
| { |
| /* What we are looking for here is a situation where there is a |
| * brief break in prediction (such as a flash) but subsequent frames |
| * are reasonably well predicted by an earlier (pre flash) frame. |
| * The recovery after a flash is indicated by a high pcnt_second_ref |
| * comapred to pcnt_inter. |
| */ |
| if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && |
| (next_frame.pcnt_second_ref >= 0.5 ) ) |
| { |
| flash_detected = 1; |
| |
| /*if (1) |
| { |
| FILE *f = fopen("flash.stt", "a"); |
| fprintf(f, "%8.0f %6.2f %6.2f\n", |
| next_frame.frame, |
| next_frame.pcnt_inter, |
| next_frame.pcnt_second_ref); |
| fclose(f); |
| }*/ |
| } |
| } |
| |
| return flash_detected; |
| } |
| |
| /* Update the motion related elements to the GF arf boost calculation */ |
| static void accumulate_frame_motion_stats( |
| VP8_COMP *cpi, |
| FIRSTPASS_STATS * this_frame, |
| double * this_frame_mv_in_out, |
| double * mv_in_out_accumulator, |
| double * abs_mv_in_out_accumulator, |
| double * mv_ratio_accumulator ) |
| { |
| double this_frame_mvr_ratio; |
| double this_frame_mvc_ratio; |
| double motion_pct; |
| (void)cpi; |
| |
| /* Accumulate motion stats. */ |
| motion_pct = this_frame->pcnt_motion; |
| |
| /* Accumulate Motion In/Out of frame stats */ |
| *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
| *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
| *abs_mv_in_out_accumulator += |
| fabs(this_frame->mv_in_out_count * motion_pct); |
| |
| /* Accumulate a measure of how uniform (or conversely how random) |
| * the motion field is. (A ratio of absmv / mv) |
| */ |
| if (motion_pct > 0.05) |
| { |
| this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / |
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
| |
| this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / |
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
| |
| *mv_ratio_accumulator += |
| (this_frame_mvr_ratio < this_frame->mvr_abs) |
| ? (this_frame_mvr_ratio * motion_pct) |
| : this_frame->mvr_abs * motion_pct; |
| |
| *mv_ratio_accumulator += |
| (this_frame_mvc_ratio < this_frame->mvc_abs) |
| ? (this_frame_mvc_ratio * motion_pct) |
| : this_frame->mvc_abs * motion_pct; |
| |
| } |
| } |
| |
| /* Calculate a baseline boost number for the current frame. */ |
| static double calc_frame_boost( |
| VP8_COMP *cpi, |
| FIRSTPASS_STATS * this_frame, |
| double this_frame_mv_in_out ) |
| { |
| double frame_boost; |
| |
| /* Underlying boost factor is based on inter intra error ratio */ |
| if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) |
| frame_boost = (IIFACTOR * this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
| else |
| frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
| |
| /* Increase boost for frames where new data coming into frame |
| * (eg zoom out). Slightly reduce boost if there is a net balance |
| * of motion out of the frame (zoom in). |
| * The range for this_frame_mv_in_out is -1.0 to +1.0 |
| */ |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| /* In extreme case boost is halved */ |
| else |
| frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
| |
| /* Clip to maximum */ |
| if (frame_boost > GF_RMAX) |
| frame_boost = GF_RMAX; |
| |
| return frame_boost; |
| } |
| |
| #if NEW_BOOST |
| static int calc_arf_boost( |
| VP8_COMP *cpi, |
| int offset, |
| int f_frames, |
| int b_frames, |
| int *f_boost, |
| int *b_boost ) |
| { |
| FIRSTPASS_STATS this_frame; |
| |
| int i; |
| double boost_score = 0.0; |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double r; |
| int flash_detected = 0; |
| |
| /* Search forward from the proposed arf/next gf position */ |
| for ( i = 0; i < f_frames; i++ ) |
| { |
| if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) |
| break; |
| |
| /* Update the motion related elements to the boost calculation */ |
| accumulate_frame_motion_stats( cpi, &this_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); |
| |
| /* Calculate the baseline boost number for this frame */ |
| r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); |
| |
| /* We want to discount the the flash frame itself and the recovery |
| * frame that follows as both will have poor scores. |
| */ |
| flash_detected = detect_flash(cpi, (i+offset)) || |
| detect_flash(cpi, (i+offset+1)); |
| |
| /* Cumulative effect of prediction quality decay */ |
| if ( !flash_detected ) |
| { |
| decay_accumulator = |
| decay_accumulator * |
| get_prediction_decay_rate(cpi, &this_frame); |
| decay_accumulator = |
| decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
| } |
| boost_score += (decay_accumulator * r); |
| |
| /* Break out conditions. */ |
| if ( (!flash_detected) && |
| ((mv_ratio_accumulator > 100.0) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) ) ) |
| { |
| break; |
| } |
| } |
| |
| *f_boost = (int)(boost_score * 100.0) >> 4; |
| |
| /* Reset for backward looking loop */ |
| boost_score = 0.0; |
| mv_ratio_accumulator = 0.0; |
| decay_accumulator = 1.0; |
| this_frame_mv_in_out = 0.0; |
| mv_in_out_accumulator = 0.0; |
| abs_mv_in_out_accumulator = 0.0; |
| |
| /* Search forward from the proposed arf/next gf position */ |
| for ( i = -1; i >= -b_frames; i-- ) |
| { |
| if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) |
| break; |
| |
| /* Update the motion related elements to the boost calculation */ |
| accumulate_frame_motion_stats( cpi, &this_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); |
| |
| /* Calculate the baseline boost number for this frame */ |
| r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); |
| |
| /* We want to discount the the flash frame itself and the recovery |
| * frame that follows as both will have poor scores. |
| */ |
| flash_detected = detect_flash(cpi, (i+offset)) || |
| detect_flash(cpi, (i+offset+1)); |
| |
| /* Cumulative effect of prediction quality decay */ |
| if ( !flash_detected ) |
| { |
| decay_accumulator = |
| decay_accumulator * |
| get_prediction_decay_rate(cpi, &this_frame); |
| decay_accumulator = |
| decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
| } |
| |
| boost_score += (decay_accumulator * r); |
| |
| /* Break out conditions. */ |
| if ( (!flash_detected) && |
| ((mv_ratio_accumulator > 100.0) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) ) ) |
| { |
| break; |
| } |
| } |
| *b_boost = (int)(boost_score * 100.0) >> 4; |
| |
| return (*f_boost + *b_boost); |
| } |
| #endif |
| |
| /* Analyse and define a gf/arf group . */ |
| static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS *start_pos; |
| int i; |
| double r; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double gf_group_err = 0.0; |
| double gf_first_frame_err = 0.0; |
| double mod_frame_err = 0.0; |
| |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| |
| double loop_decay_rate = 1.00; /* Starting decay rate */ |
| |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double mod_err_per_mb_accumulator = 0.0; |
| |
| int max_bits = frame_max_bits(cpi); /* Max for a single frame */ |
| |
| unsigned int allow_alt_ref = |
| cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; |
| |
| int alt_boost = 0; |
| int f_boost = 0; |
| int b_boost = 0; |
| int flash_detected; |
| |
| cpi->twopass.gf_group_bits = 0; |
| cpi->twopass.gf_decay_rate = 0; |
| |
| vp8_clear_system_state(); |
| |
| start_pos = cpi->twopass.stats_in; |
| |
| memset(&next_frame, 0, sizeof(next_frame)); /* assure clean */ |
| |
| /* Load stats for the current frame. */ |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| |
| /* Note the error of the frame at the start of the group (this will be |
| * the GF frame error if we code a normal gf |
| */ |
| gf_first_frame_err = mod_frame_err; |
| |
| /* Special treatment if the current frame is a key frame (which is also |
| * a gf). If it is then its error score (and hence bit allocation) need |
| * to be subtracted out from the calculation for the GF group |
| */ |
| if (cpi->common.frame_type == KEY_FRAME) |
| gf_group_err -= gf_first_frame_err; |
| |
| /* Scan forward to try and work out how many frames the next gf group |
| * should contain and what level of boost is appropriate for the GF |
| * or ARF that will be coded with the group |
| */ |
| i = 0; |
| |
| while (((i < cpi->twopass.static_scene_max_gf_interval) || |
| ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && |
| (i < cpi->twopass.frames_to_key)) |
| { |
| i++; |
| |
| /* Accumulate error score of frames in this gf group */ |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| |
| gf_group_err += mod_frame_err; |
| |
| mod_err_per_mb_accumulator += |
| mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); |
| |
| if (EOF == input_stats(cpi, &next_frame)) |
| break; |
| |
| /* Test for the case where there is a brief flash but the prediction |
| * quality back to an earlier frame is then restored. |
| */ |
| flash_detected = detect_flash(cpi, 0); |
| |
| /* Update the motion related elements to the boost calculation */ |
| accumulate_frame_motion_stats( cpi, &next_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); |
| |
| /* Calculate a baseline boost number for this frame */ |
| r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); |
| |
| /* Cumulative effect of prediction quality decay */ |
| if ( !flash_detected ) |
| { |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| decay_accumulator = |
| decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
| } |
| boost_score += (decay_accumulator * r); |
| |
| /* Break clause to detect very still sections after motion |
| * For example a staic image after a fade or other transition. |
| */ |
| if ( detect_transition_to_still( cpi, i, 5, |
| loop_decay_rate, |
| decay_accumulator ) ) |
| { |
| allow_alt_ref = 0; |
| boost_score = old_boost_score; |
| break; |
| } |
| |
| /* Break out conditions. */ |
| if ( |
| /* Break at cpi->max_gf_interval unless almost totally static */ |
| (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || |
| ( |
| /* Dont break out with a very short interval */ |
| (i > MIN_GF_INTERVAL) && |
| /* Dont break out very close to a key frame */ |
| ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && |
| ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && |
| (!flash_detected) && |
| ((mv_ratio_accumulator > 100.0) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) || |
| ((boost_score - old_boost_score) < 2.0)) |
| ) ) |
| { |
| boost_score = old_boost_score; |
| break; |
| } |
| |
| memcpy(this_frame, &next_frame, sizeof(*this_frame)); |
| |
| old_boost_score = boost_score; |
| } |
| |
| cpi->twopass.gf_decay_rate = |
| (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; |
| |
| /* When using CBR apply additional buffer related upper limits */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| double max_boost; |
| |
| /* For cbr apply buffer related limits */ |
| if (cpi->drop_frames_allowed) |
| { |
| int64_t df_buffer_level = cpi->oxcf.drop_frames_water_mark * |
| (cpi->oxcf.optimal_buffer_level / 100); |
| |
| if (cpi->buffer_level > df_buffer_level) |
| max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| else |
| max_boost = 0.0; |
| } |
| else if (cpi->buffer_level > 0) |
| { |
| max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| } |
| else |
| { |
| max_boost = 0.0; |
| } |
| |
| if (boost_score > max_boost) |
| boost_score = max_boost; |
| } |
| |
| /* Dont allow conventional gf too near the next kf */ |
| if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) |
| { |
| while (i < cpi->twopass.frames_to_key) |
| { |
| i++; |
| |
| if (EOF == input_stats(cpi, this_frame)) |
| break; |
| |
| if (i < cpi->twopass.frames_to_key) |
| { |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| gf_group_err += mod_frame_err; |
| } |
| } |
| } |
| |
| cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; |
| |
| #if NEW_BOOST |
| /* Alterrnative boost calculation for alt ref */ |
| alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); |
| #endif |
| |
| /* Should we use the alternate refernce frame */ |
| if (allow_alt_ref && |
| (i >= MIN_GF_INTERVAL) && |
| /* dont use ARF very near next kf */ |
| (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && |
| #if NEW_BOOST |
| ((next_frame.pcnt_inter > 0.75) || |
| (next_frame.pcnt_second_ref > 0.5)) && |
| ((mv_in_out_accumulator / (double)i > -0.2) || |
| (mv_in_out_accumulator > -2.0)) && |
| (b_boost > 100) && |
| (f_boost > 100) ) |
| #else |
| (next_frame.pcnt_inter > 0.75) && |
| ((mv_in_out_accumulator / (double)i > -0.2) || |
| (mv_in_out_accumulator > -2.0)) && |
| (cpi->gfu_boost > 100) && |
| (cpi->twopass.gf_decay_rate <= |
| (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) |
| #endif |
| { |
| int Boost; |
| int allocation_chunks; |
| int Q = (cpi->oxcf.fixed_q < 0) |
| ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
| int tmp_q; |
| int arf_frame_bits = 0; |
| int group_bits; |
| |
| #if NEW_BOOST |
| cpi->gfu_boost = alt_boost; |
| #endif |
| |
| /* Estimate the bits to be allocated to the group as a whole */ |
| if ((cpi->twopass.kf_group_bits > 0) && |
| (cpi->twopass.kf_group_error_left > 0)) |
| { |
| group_bits = (int)((double)cpi->twopass.kf_group_bits * |
| (gf_group_err / (double)cpi->twopass.kf_group_error_left)); |
| } |
| else |
| group_bits = 0; |
| |
| /* Boost for arf frame */ |
| #if NEW_BOOST |
| Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
| #else |
| Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
| #endif |
| Boost += (i * 50); |
| |
| /* Set max and minimum boost and hence minimum allocation */ |
| if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) |
| Boost = ((cpi->baseline_gf_interval + 1) * 200); |
| else if (Boost < 125) |
| Boost = 125; |
| |
| allocation_chunks = (i * 100) + Boost; |
| |
| /* Normalize Altboost and allocations chunck down to prevent overflow */ |
| while (Boost > 1000) |
| { |
| Boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| /* Calculate the number of bits to be spent on the arf based on the |
| * boost number |
| */ |
| arf_frame_bits = (int)((double)Boost * (group_bits / |
| (double)allocation_chunks)); |
| |
| /* Estimate if there are enough bits available to make worthwhile use |
| * of an arf. |
| */ |
| tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); |
| |
| /* Only use an arf if it is likely we will be able to code |
| * it at a lower Q than the surrounding frames. |
| */ |
| if (tmp_q < cpi->worst_quality) |
| { |
| int half_gf_int; |
| int frames_after_arf; |
| int frames_bwd = cpi->oxcf.arnr_max_frames - 1; |
| int frames_fwd = cpi->oxcf.arnr_max_frames - 1; |
| |
| cpi->source_alt_ref_pending = 1; |
| |
| /* |
| * For alt ref frames the error score for the end frame of the |
| * group (the alt ref frame) should not contribute to the group |
| * total and hence the number of bit allocated to the group. |
| * Rather it forms part of the next group (it is the GF at the |
| * start of the next group) |
| * gf_group_err -= mod_frame_err; |
| * |
| * For alt ref frames alt ref frame is technically part of the |
| * GF frame for the next group but we always base the error |
| * calculation and bit allocation on the current group of frames. |
| * |
| * Set the interval till the next gf or arf. |
| * For ARFs this is the number of frames to be coded before the |
| * future frame that is coded as an ARF. |
| * The future frame itself is part of the next group |
| */ |
| cpi->baseline_gf_interval = i; |
| |
| /* |
| * Define the arnr filter width for this group of frames: |
| * We only filter frames that lie within a distance of half |
| * the GF interval from the ARF frame. We also have to trap |
| * cases where the filter extends beyond the end of clip. |
| * Note: this_frame->frame has been updated in the loop |
| * so it now points at the ARF frame. |
| */ |
| half_gf_int = cpi->baseline_gf_interval >> 1; |
| frames_after_arf = (int)(cpi->twopass.total_stats.count - |
| this_frame->frame - 1); |
| |
| switch (cpi->oxcf.arnr_type) |
| { |
| case 1: /* Backward filter */ |
| frames_fwd = 0; |
| if (frames_bwd > half_gf_int) |
| frames_bwd = half_gf_int; |
| break; |
| |
| case 2: /* Forward filter */ |
| if (frames_fwd > half_gf_int) |
| frames_fwd = half_gf_int; |
| if (frames_fwd > frames_after_arf) |
| frames_fwd = frames_after_arf; |
| frames_bwd = 0; |
| break; |
| |
| case 3: /* Centered filter */ |
| default: |
| frames_fwd >>= 1; |
| if (frames_fwd > frames_after_arf) |
| frames_fwd = frames_after_arf; |
| if (frames_fwd > half_gf_int) |
| frames_fwd = half_gf_int; |
| |
| frames_bwd = frames_fwd; |
| |
| /* For even length filter there is one more frame backward |
| * than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. |
| */ |
| if (frames_bwd < half_gf_int) |
| frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; |
| break; |
| } |
| |
| cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; |
| } |
| else |
| { |
| cpi->source_alt_ref_pending = 0; |
| cpi->baseline_gf_interval = i; |
| } |
| } |
| else |
| { |
| cpi->source_alt_ref_pending = 0; |
| cpi->baseline_gf_interval = i; |
| } |
| |
| /* |
| * Now decide how many bits should be allocated to the GF group as a |
| * proportion of those remaining in the kf group. |
| * The final key frame group in the clip is treated as a special case |
| * where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. |
| * This is also important for short clips where there may only be one |
| * key frame. |
| */ |
| if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - |
| cpi->common.current_video_frame)) |
| { |
| cpi->twopass.kf_group_bits = |
| (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; |
| } |
| |
| /* Calculate the bits to be allocated to the group as a whole */ |
| if ((cpi->twopass.kf_group_bits > 0) && |
| (cpi->twopass.kf_group_error_left > 0)) |
| { |
| cpi->twopass.gf_group_bits = |
| (int64_t)(cpi->twopass.kf_group_bits * |
| (gf_group_err / cpi->twopass.kf_group_error_left)); |
| } |
| else |
| cpi->twopass.gf_group_bits = 0; |
| |
| cpi->twopass.gf_group_bits = |
| (cpi->twopass.gf_group_bits < 0) |
| ? 0 |
| : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) |
| ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; |
| |
| /* Clip cpi->twopass.gf_group_bits based on user supplied data rate |
| * variability limit (cpi->oxcf.two_pass_vbrmax_section) |
| */ |
| if (cpi->twopass.gf_group_bits > |
| (int64_t)max_bits * cpi->baseline_gf_interval) |
| cpi->twopass.gf_group_bits = |
| (int64_t)max_bits * cpi->baseline_gf_interval; |
| |
| /* Reset the file position */ |
| reset_fpf_position(cpi, start_pos); |
| |
| /* Update the record of error used so far (only done once per gf group) */ |
| cpi->twopass.modified_error_used += gf_group_err; |
| |
| /* Assign bits to the arf or gf. */ |
| for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { |
| int Boost; |
| int allocation_chunks; |
| int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
| int gf_bits; |
| |
| /* For ARF frames */ |
| if (cpi->source_alt_ref_pending && i == 0) |
| { |
| #if NEW_BOOST |
| Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; |
| #else |
| Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
| #endif |
| Boost += (cpi->baseline_gf_interval * 50); |
| |
| /* Set max and minimum boost and hence minimum allocation */ |
| if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) |
| Boost = ((cpi->baseline_gf_interval + 1) * 200); |
| else if (Boost < 125) |
| Boost = 125; |
| |
| allocation_chunks = |
| ((cpi->baseline_gf_interval + 1) * 100) + Boost; |
| } |
| /* Else for standard golden frames */ |
| else |
| { |
| /* boost based on inter / intra ratio of subsequent frames */ |
| Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; |
| |
| /* Set max and minimum boost and hence minimum allocation */ |
| if (Boost > (cpi->baseline_gf_interval * 150)) |
| Boost = (cpi->baseline_gf_interval * 150); |
| else if (Boost < 125) |
| Boost = 125; |
| |
| allocation_chunks = |
| (cpi->baseline_gf_interval * 100) + (Boost - 100); |
| } |
| |
| /* Normalize Altboost and allocations chunck down to prevent overflow */ |
| while (Boost > 1000) |
| { |
| Boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| /* Calculate the number of bits to be spent on the gf or arf based on |
| * the boost number |
| */ |
| gf_bits = (int)((double)Boost * |
| (cpi->twopass.gf_group_bits / |
| (double)allocation_chunks)); |
| |
| /* If the frame that is to be boosted is simpler than the average for |
| * the gf/arf group then use an alternative calculation |
| * based on the error score of the frame itself |
| */ |
| if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) |
| { |
| double alt_gf_grp_bits; |
| int alt_gf_bits; |
| |
| alt_gf_grp_bits = |
| (double)cpi->twopass.kf_group_bits * |
| (mod_frame_err * (double)cpi->baseline_gf_interval) / |
| DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); |
| |
| alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / |
| (double)allocation_chunks)); |
| |
| if (gf_bits > alt_gf_bits) |
| { |
| gf_bits = alt_gf_bits; |
| } |
| } |
| /* Else if it is harder than other frames in the group make sure it at |
| * least receives an allocation in keeping with its relative error |
| * score, otherwise it may be worse off than an "un-boosted" frame |
| */ |
| else |
| { |
| int alt_gf_bits = |
| (int)((double)cpi->twopass.kf_group_bits * |
| mod_frame_err / |
| DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); |
| |
| if (alt_gf_bits > gf_bits) |
| { |
| gf_bits = alt_gf_bits; |
| } |
| } |
| |
| /* Apply an additional limit for CBR */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| if (cpi->twopass.gf_bits > (int)(cpi->buffer_level >> 1)) |
| cpi->twopass.gf_bits = (int)(cpi->buffer_level >> 1); |
| } |
| |
| /* Dont allow a negative value for gf_bits */ |
| if (gf_bits < 0) |
| gf_bits = 0; |
| |
| /* Add in minimum for a frame */ |
| gf_bits += cpi->min_frame_bandwidth; |
| |
| if (i == 0) |
| { |
| cpi->twopass.gf_bits = gf_bits; |
| } |
| if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) |
| { |
| /* Per frame bit target for this frame */ |
| cpi->per_frame_bandwidth = gf_bits; |
| } |
| } |
| |
| { |
| /* Adjust KF group bits and error remainin */ |
| cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; |
| cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; |
| |
| if (cpi->twopass.kf_group_bits < 0) |
| cpi->twopass.kf_group_bits = 0; |
| |
| /* Note the error score left in the remaining frames of the group. |
| * For normal GFs we want to remove the error score for the first |
| * frame of the group (except in Key frame case where this has |
| * already happened) |
| */ |
| if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) |
| cpi->twopass.gf_group_error_left = (int)(gf_group_err - |
| gf_first_frame_err); |
| else |
| cpi->twopass.gf_group_error_left = (int) gf_group_err; |
| |
| cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; |
| |
| if (cpi->twopass.gf_group_bits < 0) |
| cpi->twopass.gf_group_bits = 0; |
| |
| /* This condition could fail if there are two kfs very close together |
| * despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the |
| * calculation of cpi->twopass.alt_extra_bits. |
| */ |
| if ( cpi->baseline_gf_interval >= 3 ) |
| { |
| #if NEW_BOOST |
| int boost = (cpi->source_alt_ref_pending) |
| ? b_boost : cpi->gfu_boost; |
| #else |
| int boost = cpi->gfu_boost; |
| #endif |
| if ( boost >= 150 ) |
| { |
| int pct_extra; |
| |
| pct_extra = (boost - 100) / 50; |
| pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
| |
| cpi->twopass.alt_extra_bits = |
| (int)(cpi->twopass.gf_group_bits * pct_extra) / 100; |
| cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; |
| cpi->twopass.alt_extra_bits /= |
| ((cpi->baseline_gf_interval-1)>>1); |
| } |
| else |
| cpi->twopass.alt_extra_bits = 0; |
| } |
| else |
| cpi->twopass.alt_extra_bits = 0; |
| } |
| |
| /* Adjustments based on a measure of complexity of the section */ |
| if (cpi->common.frame_type != KEY_FRAME) |
| { |
| FIRSTPASS_STATS sectionstats; |
| double Ratio; |
| |
| zero_stats(§ionstats); |
| reset_fpf_position(cpi, start_pos); |
| |
| for (i = 0 ; i < cpi->baseline_gf_interval ; i++) |
| { |
| input_stats(cpi, &next_frame); |
| accumulate_stats(§ionstats, &next_frame); |
| } |
| |
| avg_stats(§ionstats); |
| |
| cpi->twopass.section_intra_rating = (unsigned int) |
| (sectionstats.intra_error / |
| DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
| |
| Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
| cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
| |
| if (cpi->twopass.section_max_qfactor < 0.80) |
| cpi->twopass.section_max_qfactor = 0.80; |
| |
| reset_fpf_position(cpi, start_pos); |
| } |
| } |
| |
| /* Allocate bits to a normal frame that is neither a gf an arf or a key frame. */ |
| static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| int target_frame_size; |
| |
| double modified_err; |
| double err_fraction; |
| |
| int max_bits = frame_max_bits(cpi); /* Max for a single frame */ |
| |
| /* Calculate modified prediction error used in bit allocation */ |
| modified_err = calculate_modified_err(cpi, this_frame); |
| |
| /* What portion of the remaining GF group error is used by this frame */ |
| if (cpi->twopass.gf_group_error_left > 0) |
| err_fraction = modified_err / cpi->twopass.gf_group_error_left; |
| else |
| err_fraction = 0.0; |
| |
| /* How many of those bits available for allocation should we give it? */ |
| target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); |
| |
| /* Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) |
| * at the top end. |
| */ |
| if (target_frame_size < 0) |
| target_frame_size = 0; |
| else |
| { |
| if (target_frame_size > max_bits) |
| target_frame_size = max_bits; |
| |
| if (target_frame_size > cpi->twopass.gf_group_bits) |
| target_frame_size = (int)cpi->twopass.gf_group_bits; |
| } |
| |
| /* Adjust error and bits remaining */ |
| cpi->twopass.gf_group_error_left -= (int)modified_err; |
| cpi->twopass.gf_group_bits -= target_frame_size; |
| |
| if (cpi->twopass.gf_group_bits < 0) |
| cpi->twopass.gf_group_bits = 0; |
| |
| /* Add in the minimum number of bits that is set aside for every frame. */ |
| target_frame_size += cpi->min_frame_bandwidth; |
| |
| /* Every other frame gets a few extra bits */ |
| if ( (cpi->frames_since_golden & 0x01) && |
| (cpi->frames_till_gf_update_due > 0) ) |
| { |
| target_frame_size += cpi->twopass.alt_extra_bits; |
| } |
| |
| /* Per frame bit target for this frame */ |
| cpi->per_frame_bandwidth = target_frame_size; |
| } |
| |
| void vp8_second_pass(VP8_COMP *cpi) |
| { |
| int tmp_q; |
| int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); |
| |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS this_frame_copy; |
| |
| double this_frame_intra_error; |
| double this_frame_coded_error; |
| |
| int overhead_bits; |
| |
| vp8_zero(this_frame); |
| |
| if (!cpi->twopass.stats_in) |
| { |
| return ; |
| } |
| |
| vp8_clear_system_state(); |
| |
| if (EOF == input_stats(cpi, &this_frame)) |
| return; |
| |
| this_frame_intra_error = this_frame.intra_error; |
| this_frame_coded_error = this_frame.coded_error; |
| |
| /* keyframe and section processing ! */ |
| if (cpi->twopass.frames_to_key == 0) |
| { |
| /* Define next KF group and assign bits to it */ |
| memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| find_next_key_frame(cpi, &this_frame_copy); |
| |
| /* Special case: Error error_resilient_mode mode does not make much |
| * sense for two pass but with its current meaning this code is |
| * designed to stop outlandish behaviour if someone does set it when |
| * using two pass. It effectively disables GF groups. This is |
| * temporary code until we decide what should really happen in this |
| * case. |
| */ |
| if (cpi->oxcf.error_resilient_mode) |
| { |
| cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; |
| cpi->twopass.gf_group_error_left = |
| (int)cpi->twopass.kf_group_error_left; |
| cpi->baseline_gf_interval = cpi->twopass.frames_to_key; |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| cpi->source_alt_ref_pending = 0; |
| } |
| |
| } |
| |
| /* Is this a GF / ARF (Note that a KF is always also a GF) */ |
| if (cpi->frames_till_gf_update_due == 0) |
| { |
| /* Define next gf group and assign bits to it */ |
| memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| define_gf_group(cpi, &this_frame_copy); |
| |
| /* If we are going to code an altref frame at the end of the group |
| * and the current frame is not a key frame.... If the previous |
| * group used an arf this frame has already benefited from that arf |
| * boost and it should not be given extra bits If the previous |
| * group was NOT coded using arf we may want to apply some boost to |
| * this GF as well |
| */ |
| if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) |
| { |
| /* Assign a standard frames worth of bits from those allocated |
| * to the GF group |
| */ |
| int bak = cpi->per_frame_bandwidth; |
| memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| cpi->per_frame_bandwidth = bak; |
| } |
| } |
| |
| /* Otherwise this is an ordinary frame */ |
| else |
| { |
| /* Special case: Error error_resilient_mode mode does not make much |
| * sense for two pass but with its current meaning but this code is |
| * designed to stop outlandish behaviour if someone does set it |
| * when using two pass. It effectively disables GF groups. This is |
| * temporary code till we decide what should really happen in this |
| * case. |
| */ |
| if (cpi->oxcf.error_resilient_mode) |
| { |
| cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; |
| |
| if (cpi->common.frame_type != KEY_FRAME) |
| { |
| /* Assign bits from those allocated to the GF group */ |
| memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| } |
| } |
| else |
| { |
| /* Assign bits from those allocated to the GF group */ |
| memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| } |
| } |
| |
| /* Keep a globally available copy of this and the next frame's iiratio. */ |
| cpi->twopass.this_iiratio = (unsigned int)(this_frame_intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); |
| { |
| FIRSTPASS_STATS next_frame; |
| if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) |
| { |
| cpi->twopass.next_iiratio = (unsigned int)(next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| } |
| } |
| |
| /* Set nominal per second bandwidth for this frame */ |
| cpi->target_bandwidth = (int) |
| (cpi->per_frame_bandwidth * cpi->output_framerate); |
| if (cpi->target_bandwidth < 0) |
| cpi->target_bandwidth = 0; |
| |
| |
| /* Account for mv, mode and other overheads. */ |
| overhead_bits = (int)estimate_modemvcost( |
| cpi, &cpi->twopass.total_left_stats ); |
| |
| /* Special case code for first frame. */ |
| if (cpi->common.current_video_frame == 0) |
| { |
| cpi->twopass.est_max_qcorrection_factor = 1.0; |
| |
| /* Set a cq_level in constrained quality mode. */ |
| if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) |
| { |
| int est_cq; |
| |
| est_cq = |
| estimate_cq( cpi, |
| &cpi->twopass.total_left_stats, |
| (int)(cpi->twopass.bits_left / frames_left), |
| overhead_bits ); |
| |
| cpi->cq_target_quality = cpi->oxcf.cq_level; |
| if ( est_cq > cpi->cq_target_quality ) |
| cpi->cq_target_quality = est_cq; |
| } |
| |
| /* guess at maxq needed in 2nd pass */ |
| cpi->twopass.maxq_max_limit = cpi->worst_quality; |
| cpi->twopass.maxq_min_limit = cpi->best_quality; |
| |
| tmp_q = estimate_max_q( |
| cpi, |
| &cpi->twopass.total_left_stats, |
| (int)(cpi->twopass.bits_left / frames_left), |
| overhead_bits ); |
| |
| /* Limit the maxq value returned subsequently. |
| * This increases the risk of overspend or underspend if the initial |
| * estimate for the clip is bad, but helps prevent excessive |
| * variation in Q, especially near the end of a clip |
| * where for example a small overspend may cause Q to crash |
| */ |
| cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) |
| ? (tmp_q + 32) : cpi->worst_quality; |
| cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) |
| ? (tmp_q - 32) : cpi->best_quality; |
| |
| cpi->active_worst_quality = tmp_q; |
| cpi->ni_av_qi = tmp_q; |
| } |
| |
| /* The last few frames of a clip almost always have to few or too many |
| * bits and for the sake of over exact rate control we dont want to make |
| * radical adjustments to the allowed quantizer range just to use up a |
| * few surplus bits or get beneath the target rate. |
| */ |
| else if ( (cpi->common.current_video_frame < |
| (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) && |
| ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < |
| (unsigned int)cpi->twopass.total_stats.count) ) |
| { |
| if (frames_left < 1) |
| frames_left = 1; |
| |
| tmp_q = estimate_max_q( |
| cpi, |
| &cpi->twopass.total_left_stats, |
| (int)(cpi->twopass.bits_left / frames_left), |
| overhead_bits ); |
| |
| /* Move active_worst_quality but in a damped way */ |
| if (tmp_q > cpi->active_worst_quality) |
| cpi->active_worst_quality ++; |
| else if (tmp_q < cpi->active_worst_quality) |
| cpi->active_worst_quality --; |
| |
| cpi->active_worst_quality = |
| ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; |
| } |
| |
| cpi->twopass.frames_to_key --; |
| |
| /* Update the total stats remaining sturcture */ |
| subtract_stats(&cpi->twopass.total_left_stats, &this_frame ); |
| } |
| |
| |
| static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) |
| { |
| int is_viable_kf = 0; |
| |
| /* Does the frame satisfy the primary criteria of a key frame |
| * If so, then examine how well it predicts subsequent frames |
| */ |
| if ((this_frame->pcnt_second_ref < 0.10) && |
| (next_frame->pcnt_second_ref < 0.10) && |
| ((this_frame->pcnt_inter < 0.05) || |
| ( |
| ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && |
| ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
| ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || |
| (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || |
| ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) |
| ) |
| ) |
| ) |
| ) |
| { |
| int i; |
| FIRSTPASS_STATS *start_pos; |
| |
| FIRSTPASS_STATS local_next_frame; |
| |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| double next_iiratio; |
| |
| memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); |
| |
| /* Note the starting file position so we can reset to it */ |
| start_pos = cpi->twopass.stats_in; |
| |
| /* Examine how well the key frame predicts subsequent frames */ |
| for (i = 0 ; i < 16; i++) |
| { |
| next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; |
| |
| if (next_iiratio > RMAX) |
| next_iiratio = RMAX; |
| |
| /* Cumulative effect of decay in prediction quality */ |
| if (local_next_frame.pcnt_inter > 0.85) |
| decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
| else |
| decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); |
| |
| /* Keep a running total */ |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| /* Test various breakout clauses */ |
| if ((local_next_frame.pcnt_inter < 0.05) || |
| (next_iiratio < 1.5) || |
| (((local_next_frame.pcnt_inter - |
| local_next_frame.pcnt_neutral) < 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 0.5) || |
| (local_next_frame.intra_error < 200) |
| ) |
| { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| |
| /* Get the next frame details */ |
| if (EOF == input_stats(cpi, &local_next_frame)) |
| break; |
| } |
| |
| /* If there is tolerable prediction for at least the next 3 frames |
| * then break out else discard this pottential key frame and move on |
| */ |
| if (boost_score > 5.0 && (i > 3)) |
| is_viable_kf = 1; |
| else |
| { |
| /* Reset the file position */ |
| reset_fpf_position(cpi, start_pos); |
| |
| is_viable_kf = 0; |
| } |
| } |
| |
| return is_viable_kf; |
| } |
| static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| int i,j; |
| FIRSTPASS_STATS last_frame; |
| FIRSTPASS_STATS first_frame; |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS *start_position; |
| |
| double decay_accumulator = 1.0; |
| double boost_score = 0; |
| double old_boost_score = 0.0; |
| double loop_decay_rate; |
| |
| double kf_mod_err = 0.0; |
| double kf_group_err = 0.0; |
| double kf_group_intra_err = 0.0; |
| double kf_group_coded_err = 0.0; |
| double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; |
| |
| memset(&next_frame, 0, sizeof(next_frame)); |
| |
| vp8_clear_system_state(); |
| start_position = cpi->twopass.stats_in; |
| |
| cpi->common.frame_type = KEY_FRAME; |
| |
| /* is this a forced key frame by interval */ |
| cpi->this_key_frame_forced = cpi->next_key_frame_forced; |
| |
| /* Clear the alt ref active flag as this can never be active on a key |
| * frame |
| */ |
| cpi->source_alt_ref_active = 0; |
| |
| /* Kf is always a gf so clear frames till next gf counter */ |
| cpi->frames_till_gf_update_due = 0; |
| |
| cpi->twopass.frames_to_key = 1; |
| |
| /* Take a copy of the initial frame details */ |
| memcpy(&first_frame, this_frame, sizeof(*this_frame)); |
| |
| cpi->twopass.kf_group_bits = 0; |
| cpi->twopass.kf_group_error_left = 0; |
| |
| kf_mod_err = calculate_modified_err(cpi, this_frame); |
| |
| /* find the next keyframe */ |
| i = 0; |
| while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) |
| { |
| /* Accumulate kf group error */ |
| kf_group_err += calculate_modified_err(cpi, this_frame); |
| |
| /* These figures keep intra and coded error counts for all frames |
| * including key frames in the group. The effect of the key frame |
| * itself can be subtracted out using the first_frame data |
| * collected above |
| */ |
| kf_group_intra_err += this_frame->intra_error; |
| kf_group_coded_err += this_frame->coded_error; |
| |
| /* Load the next frame's stats. */ |
| memcpy(&last_frame, this_frame, sizeof(*this_frame)); |
| input_stats(cpi, this_frame); |
| |
| /* Provided that we are not at the end of the file... */ |
| if (cpi->oxcf.auto_key |
| && lookup_next_frame_stats(cpi, &next_frame) != EOF) |
| { |
| /* Normal scene cut check */ |
| if ( ( i >= MIN_GF_INTERVAL ) && |
| test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) |
| { |
| break; |
| } |
| |
| /* How fast is prediction quality decaying */ |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| |
| /* We want to know something about the recent past... rather than |
| * as used elsewhere where we are concened with decay in prediction |
| * quality since the last GF or KF. |
| */ |
| recent_loop_decay[i%8] = loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < 8; j++) |
| { |
| decay_accumulator = decay_accumulator * recent_loop_decay[j]; |
| } |
| |
| /* Special check for transition or high motion followed by a |
| * static scene. |
| */ |
| if ( detect_transition_to_still( cpi, i, |
| ((int)(cpi->key_frame_frequency) - |
| (int)i), |
| loop_decay_rate, |
| decay_accumulator ) ) |
| { |
| break; |
| } |
| |
| |
| /* Step on to the next frame */ |
| cpi->twopass.frames_to_key ++; |
| |
| /* If we don't have a real key frame within the next two |
| * forcekeyframeevery intervals then break out of the loop. |
| */ |
| if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) |
| break; |
| } else |
| cpi->twopass.frames_to_key ++; |
| |
| i++; |
| } |
| |
| /* If there is a max kf interval set by the user we must obey it. |
| * We already breakout of the loop above at 2x max. |
| * This code centers the extra kf if the actual natural |
| * interval is between 1x and 2x |
| */ |
| if (cpi->oxcf.auto_key |
| && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) |
| { |
| FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; |
| FIRSTPASS_STATS tmp_frame; |
| |
| cpi->twopass.frames_to_key /= 2; |
| |
| /* Copy first frame details */ |
| memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); |
| |
| /* Reset to the start of the group */ |
| reset_fpf_position(cpi, start_position); |
| |
| kf_group_err = 0; |
| kf_group_intra_err = 0; |
| kf_group_coded_err = 0; |
| |
| /* Rescan to get the correct error data for the forced kf group */ |
| for( i = 0; i < cpi->twopass.frames_to_key; i++ ) |
| { |
| /* Accumulate kf group errors */ |
| kf_group_err += calculate_modified_err(cpi, &tmp_frame); |
| kf_group_intra_err += tmp_frame.intra_error; |
| kf_group_coded_err += tmp_frame.coded_error; |
| |
| /* Load a the next frame's stats */ |
| input_stats(cpi, &tmp_frame); |
| } |
| |
| /* Reset to the start of the group */ |
| reset_fpf_position(cpi, current_pos); |
| |
| cpi->next_key_frame_forced = 1; |
| } |
| else |
| cpi->next_key_frame_forced = 0; |
| |
| /* Special case for the last frame of the file */ |
| if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
| { |
| /* Accumulate kf group error */ |
| kf_group_err += calculate_modified_err(cpi, this_frame); |
| |
| /* These figures keep intra and coded error counts for all frames |
| * including key frames in the group. The effect of the key frame |
| * itself can be subtracted out using the first_frame data |
| * collected above |
| */ |
| kf_group_intra_err += this_frame->intra_error; |
| kf_group_coded_err += this_frame->coded_error; |
| } |
| |
| /* Calculate the number of bits that should be assigned to the kf group. */ |
| if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) |
| { |
| /* Max for a single normal frame (not key frame) */ |
| int max_bits = frame_max_bits(cpi); |
| |
| /* Maximum bits for the kf group */ |
| int64_t max_grp_bits; |
| |
| /* Default allocation based on bits left and relative |
| * complexity of the section |
| */ |
| cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * |
| ( kf_group_err / |
| cpi->twopass.modified_error_left )); |
| |
| /* Clip based on maximum per frame rate defined by the user. */ |
| max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; |
| if (cpi->twopass.kf_group_bits > max_grp_bits) |
| cpi->twopass.kf_group_bits = max_grp_bits; |
| |
| /* Additional special case for CBR if buffer is getting full. */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| int64_t opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; |
| int64_t buffer_lvl = cpi->buffer_level; |
| |
| /* If the buffer is near or above the optimal and this kf group is |
| * not being allocated much then increase the allocation a bit. |
| */ |
| if (buffer_lvl >= opt_buffer_lvl) |
| { |
| int64_t high_water_mark = (opt_buffer_lvl + |
| cpi->oxcf.maximum_buffer_size) >> 1; |
| |
| int64_t av_group_bits; |
| |
| /* Av bits per frame * number of frames */ |
| av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * |
| (int64_t)cpi->twopass.frames_to_key; |
| |
| /* We are at or above the maximum. */ |
| if (cpi->buffer_level >= high_water_mark) |
| { |
| int64_t min_group_bits; |
| |
| min_group_bits = av_group_bits + |
| (int64_t)(buffer_lvl - |
| high_water_mark); |
| |
| if (cpi->twopass.kf_group_bits < min_group_bits) |
| cpi->twopass.kf_group_bits = min_group_bits; |
| } |
| /* We are above optimal but below the maximum */ |
| else if (cpi->twopass.kf_group_bits < av_group_bits) |
| { |
| int64_t bits_below_av = av_group_bits - |
| cpi->twopass.kf_group_bits; |
| |
| cpi->twopass.kf_group_bits += |
| (int64_t)((double)bits_below_av * |
| (double)(buffer_lvl - opt_buffer_lvl) / |
| (double)(high_water_mark - opt_buffer_lvl)); |
| } |
| } |
| } |
| } |
| else |
| cpi->twopass.kf_group_bits = 0; |
| |
| /* Reset the first pass file position */ |
| reset_fpf_position(cpi, start_position); |
| |
| /* determine how big to make this keyframe based on how well the |
| * subsequent frames use inter blocks |
| */ |
| decay_accumulator = 1.0; |
| boost_score = 0.0; |
| |
| for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) |
| { |
| double r; |
| |
| if (EOF == input_stats(cpi, &next_frame)) |
| break; |
| |
| if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) |
| r = (IIKFACTOR2 * next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| else |
| r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| |
| if (r > RMAX) |
| r = RMAX; |
| |
| /* How fast is prediction quality decaying */ |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
| |
| boost_score += (decay_accumulator * r); |
| |
| if ((i > MIN_GF_INTERVAL) && |
| ((boost_score - old_boost_score) < 1.0)) |
| { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| } |
| |
| if (1) |
| { |
| FIRSTPASS_STATS sectionstats; |
| double Ratio; |
| |
| zero_stats(§ionstats); |
| reset_fpf_position(cpi, start_position); |
| |
| for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) |
| { |
| input_stats(cpi, &next_frame); |
| accumulate_stats(§ionstats, &next_frame); |
| } |
| |
| avg_stats(§ionstats); |
| |
| cpi->twopass.section_intra_rating = (unsigned int) |
| (sectionstats.intra_error |
| / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
| |
| Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
| cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
| |
| if (cpi->twopass.section_max_qfactor < 0.80) |
| cpi->twopass.section_max_qfactor = 0.80; |
| } |
| |
| /* When using CBR apply additional buffer fullness related upper limits */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| double max_boost; |
| |
| if (cpi->drop_frames_allowed) |
| { |
| int df_buffer_level = (int)(cpi->oxcf.drop_frames_water_mark |
| * (cpi->oxcf.optimal_buffer_level / 100)); |
| |
| if (cpi->buffer_level > df_buffer_level) |
| max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| else |
| max_boost = 0.0; |
| } |
| else if (cpi->buffer_level > 0) |
| { |
| max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| } |
| else |
| { |
| max_boost = 0.0; |
| } |
| |
| if (boost_score > max_boost) |
| boost_score = max_boost; |
| } |
| |
| /* Reset the first pass file position */ |
| reset_fpf_position(cpi, start_position); |
| |
| /* Work out how many bits to allocate for the key frame itself */ |
| if (1) |
| { |
| int kf_boost = (int)boost_score; |
| int allocation_chunks; |
| int Counter = cpi->twopass.frames_to_key; |
| int alt_kf_bits; |
| YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; |
| /* Min boost based on kf interval */ |
| #if 0 |
| |
| while ((kf_boost < 48) && (Counter > 0)) |
| { |
| Counter -= 2; |
| kf_boost ++; |
| } |
| |
| #endif |
| |
| if (kf_boost < 48) |
| { |
| kf_boost += ((Counter + 1) >> 1); |
| |
| if (kf_boost > 48) kf_boost = 48; |
| } |
| |
| /* bigger frame sizes need larger kf boosts, smaller frames smaller |
| * boosts... |
| */ |
| if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) |
| kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); |
| else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) |
| kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); |
| |
| /* Min KF boost */ |
| kf_boost = (int)((double)kf_boost * 100.0) >> 4; /* Scale 16 to 100 */ |
| if (kf_boost < 250) |
| kf_boost = 250; |
| |
| /* |
| * We do three calculations for kf size. |
| * The first is based on the error score for the whole kf group. |
| * The second (optionaly) on the key frames own error if this is |
| * smaller than the average for the group. |
| * The final one insures that the frame receives at least the |
| * allocation it would have received based on its own error score vs |
| * the error score remaining |
| * Special case if the sequence appears almost totaly static |
| * as measured by the decay accumulator. In this case we want to |
| * spend almost all of the bits on the key frame. |
| * cpi->twopass.frames_to_key-1 because key frame itself is taken |
| * care of by kf_boost. |
| */ |
| if ( decay_accumulator >= 0.99 ) |
| { |
| allocation_chunks = |
| ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; |
| } |
| else |
| { |
| allocation_chunks = |
| ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; |
| } |
| |
| /* Normalize Altboost and allocations chunck down to prevent overflow */ |
| while (kf_boost > 1000) |
| { |
| kf_boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; |
| |
| /* Calculate the number of bits to be spent on the key frame */ |
| cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); |
| |
| /* Apply an additional limit for CBR */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| if (cpi->twopass.kf_bits > (int)((3 * cpi->buffer_level) >> 2)) |
| cpi->twopass.kf_bits = (int)((3 * cpi->buffer_level) >> 2); |
| } |
| |
| /* If the key frame is actually easier than the average for the |
| * kf group (which does sometimes happen... eg a blank intro frame) |
| * Then use an alternate calculation based on the kf error score |
| * which should give a smaller key frame. |
| */ |
| if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) |
| { |
| double alt_kf_grp_bits = |
| ((double)cpi->twopass.bits_left * |
| (kf_mod_err * (double)cpi->twopass.frames_to_key) / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); |
| |
| alt_kf_bits = (int)((double)kf_boost * |
| (alt_kf_grp_bits / (double)allocation_chunks)); |
| |
| if (cpi->twopass.kf_bits > alt_kf_bits) |
| { |
| cpi->twopass.kf_bits = alt_kf_bits; |
| } |
| } |
| /* Else if it is much harder than other frames in the group make sure |
| * it at least receives an allocation in keeping with its relative |
| * error score |
| */ |
| else |
| { |
| alt_kf_bits = |
| (int)((double)cpi->twopass.bits_left * |
| (kf_mod_err / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); |
| |
| if (alt_kf_bits > cpi->twopass.kf_bits) |
| { |
| cpi->twopass.kf_bits = alt_kf_bits; |
| } |
| } |
| |
| cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; |
| /* Add in the minimum frame allowance */ |
| cpi->twopass.kf_bits += cpi->min_frame_bandwidth; |
| |
| /* Peer frame bit target for this frame */ |
| cpi->per_frame_bandwidth = cpi->twopass.kf_bits; |
| |
| /* Convert to a per second bitrate */ |
| cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * |
| cpi->output_framerate); |
| } |
| |
| /* Note the total error score of the kf group minus the key frame itself */ |
| cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
| |
| /* Adjust the count of total modified error left. The count of bits left |
| * is adjusted elsewhere based on real coded frame sizes |
| */ |
| cpi->twopass.modified_error_left -= kf_group_err; |
| |
| if (cpi->oxcf.allow_spatial_resampling) |
| { |
| int resample_trigger = 0; |
| int last_kf_resampled = 0; |
| int kf_q; |
| int scale_val = 0; |
| int hr, hs, vr, vs; |
| int new_width = cpi->oxcf.Width; |
| int new_height = cpi->oxcf.Height; |
| |
| int projected_buffer_level; |
| int tmp_q; |
| |
| double projected_bits_perframe; |
| double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); |
| double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; |
| double bits_per_frame; |
| double av_bits_per_frame; |
| double effective_size_ratio; |
| |
| if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) |
| last_kf_resampled = 1; |
| |
| /* Set back to unscaled by defaults */ |
| cpi->common.horiz_scale = NORMAL; |
| cpi->common.vert_scale = NORMAL; |
| |
| /* Calculate Average bits per frame. */ |
| av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate); |
| |
| /* CBR... Use the clip average as the target for deciding resample */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| bits_per_frame = av_bits_per_frame; |
| } |
| |
| /* In VBR we want to avoid downsampling in easy section unless we |
| * are under extreme pressure So use the larger of target bitrate |
| * for this section or average bitrate for sequence |
| */ |
| else |
| { |
| /* This accounts for how hard the section is... */ |
| bits_per_frame = (double) |
| (cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key); |
| |
| /* Dont turn to resampling in easy sections just because they |
| * have been assigned a small number of bits |
| */ |
| if (bits_per_frame < av_bits_per_frame) |
| bits_per_frame = av_bits_per_frame; |
| } |
| |
| /* bits_per_frame should comply with our minimum */ |
| if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) |
| bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| /* Work out if spatial resampling is necessary */ |
| kf_q = estimate_kf_group_q(cpi, err_per_frame, |
| (int)bits_per_frame, group_iiratio); |
| |
| /* If we project a required Q higher than the maximum allowed Q then |
| * make a guess at the actual size of frames in this section |
| */ |
| projected_bits_perframe = bits_per_frame; |
| tmp_q = kf_q; |
| |
| while (tmp_q > cpi->worst_quality) |
| { |
| projected_bits_perframe *= 1.04; |
| tmp_q--; |
| } |
| |
| /* Guess at buffer level at the end of the section */ |
| projected_buffer_level = (int) |
| (cpi->buffer_level - (int) |
| ((projected_bits_perframe - av_bits_per_frame) * |
| cpi->twopass.frames_to_key)); |
| |
| if (0) |
| { |
| FILE *f = fopen("Subsamle.stt", "a"); |
| fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); |
| fclose(f); |
| } |
| |
| /* The trigger for spatial resampling depends on the various |
| * parameters such as whether we are streaming (CBR) or VBR. |
| */ |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| /* Trigger resample if we are projected to fall below down |
| * sample level or resampled last time and are projected to |
| * remain below the up sample level |
| */ |
| if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || |
| (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) |
| resample_trigger = 1; |
| else |
| resample_trigger = 0; |
| } |
| else |
| { |
| int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->framerate)); |
| int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; |
| |
| /* If triggered last time the threshold for triggering again is |
| * reduced: |
| * |
| * Projected Q higher than allowed and Overspend > 5% of total |
| * bits |
| */ |
| if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || |
| ((kf_q > cpi->worst_quality) && |
| (over_spend > clip_bits / 20))) |
| resample_trigger = 1; |
| else |
| resample_trigger = 0; |
| |
| } |
| |
| if (resample_trigger) |
| { |
| while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) |
| { |
| scale_val ++; |
| |
| cpi->common.vert_scale = vscale_lookup[scale_val]; |
| cpi->common.horiz_scale = hscale_lookup[scale_val]; |
| |
| Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); |
| Scale2Ratio(cpi->common.vert_scale, &vr, &vs); |
| |
| new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; |
| new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; |
| |
| /* Reducing the area to 1/4 does not reduce the complexity |
| * (err_per_frame) to 1/4... effective_sizeratio attempts |
| * to provide a crude correction for this |
| */ |
| effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); |
| effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; |
| |
| /* Now try again and see what Q we get with the smaller |
| * image size |
| */ |
| kf_q = estimate_kf_group_q(cpi, |
| err_per_frame * effective_size_ratio, |
| (int)bits_per_frame, group_iiratio); |
| |
| if (0) |
| { |
| FILE *f = fopen("Subsamle.stt", "a"); |
| fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); |
| fclose(f); |
| } |
| } |
| } |
| |
| if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) |
| { |
| cpi->common.Width = new_width; |
| cpi->common.Height = new_height; |
| vp8_alloc_compressor_data(cpi); |
| } |
| } |
| } |