blob: 196ee220b5adba63c7126b53560b24a35e8f0fe1 [file] [log] [blame]
/*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
// Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf
// if necessary. Assumes path_end[leaf_index] and leaf_pos are correct.
// Results in a valid buf_ptr if the iterator can be legitimately
// dereferenced.
#ifndef _STLP_ROPEIMPL_H
#define _STLP_ROPEIMPL_H
#ifndef _STLP_INTERNAL_ROPE_H
# include <stl/_rope.h>
#endif
#ifndef _STLP_INTERNAL_CSTDIO
# include <stl/_cstdio.h>
#endif
#if !defined (_STLP_USE_NO_IOSTREAMS)
# ifndef _STLP_INTERNAL_OSTREAM_H
# include <stl/_ostream.h>
# endif
# ifndef _STLP_INTERNAL_ISTREAM
# include <stl/_istream.h>
# endif
#endif
#include <stl/_range_errors.h>
_STLP_BEGIN_NAMESPACE
#if defined ( _STLP_NESTED_TYPE_PARAM_BUG )
# define __allocator__ _Alloc
#else
# define __allocator__ allocator_type
#endif
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT, _Alloc>::_Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r->_M_tree_ptr._M_data, __pos),
_M_root_rope(__r) { _RopeRep::_S_ref(this->_M_root); }
template<class _CharT, class _Alloc>
_Rope_iterator<_CharT, _Alloc>::_Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos):
_Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr._M_data, __pos),
_M_root_rope(&__r) {
#if !defined (__DMC__)
_RopeRep::_S_ref(this->_M_root); if (!(__r.empty()))_S_setcache(*this);
#else
_Rope_iterator_base<_CharT, _Alloc>* __x = this;
_RopeRep::_S_ref(this->_M_root); if (!(__r.empty()))_S_setcache(*__x);
#endif
}
template<class _CharT, class _Alloc>
void _Rope_RopeRep<_CharT, _Alloc>::_M_free_c_string() {
_CharT* __cstr = _M_c_string;
if (0 != __cstr) {
size_t _p_size = _M_size._M_data + 1;
_STLP_STD::_Destroy_Range(__cstr, __cstr + _p_size);
_M_size.deallocate(__cstr, _p_size);
}
}
// Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf
// if necessary. Assumes _M_path_end[leaf_index] and leaf_pos are correct.
// Results in a valid buf_ptr if the iterator can be legitimately
// dereferenced.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setbuf(
_Rope_iterator_base<_CharT,_Alloc>& __x) {
const _RopeRep* __leaf = __x._M_path_end._M_data[__x._M_leaf_index];
size_t __leaf_pos = __x._M_leaf_pos;
size_t __pos = __x._M_current_pos;
switch(__leaf->_M_tag) {
case _RopeRep::_S_leaf:
typedef _Rope_RopeLeaf<_CharT, _Alloc> _RopeLeaf;
__x._M_buf_start = __STATIC_CAST(const _RopeLeaf*, __leaf)->_M_data;
__x._M_buf_ptr = __x._M_buf_start + (__pos - __leaf_pos);
__x._M_buf_end = __x._M_buf_start + __leaf->_M_size._M_data;
break;
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
size_t __len = _S_iterator_buf_len;
size_t __buf_start_pos = __leaf_pos;
size_t __leaf_end = __leaf_pos + __leaf->_M_size._M_data;
typedef _Rope_RopeFunction<_CharT, _Alloc> _RopeFunction;
char_producer<_CharT>* __fn = __STATIC_CAST(const _RopeFunction*, __leaf)->_M_fn;
if (__buf_start_pos + __len <= __pos) {
__buf_start_pos = __pos - __len/4;
if (__buf_start_pos + __len > __leaf_end) {
__buf_start_pos = __leaf_end - __len;
}
}
if (__buf_start_pos + __len > __leaf_end) {
__len = __leaf_end - __buf_start_pos;
}
(*__fn)(__buf_start_pos - __leaf_pos, __len, __x._M_tmp_buf._M_data);
__x._M_buf_ptr = __x._M_tmp_buf._M_data + (__pos - __buf_start_pos);
__x._M_buf_start = __x._M_tmp_buf._M_data;
__x._M_buf_end = __x._M_tmp_buf._M_data + __len;
}
break;
default:
_STLP_ASSERT(0)
;
}
}
// Set path and buffer inside a rope iterator. We assume that
// pos and root are already set.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache(
_Rope_iterator_base<_CharT,_Alloc>& __x) {
const _RopeRep* __path[_RopeRep::_S_max_rope_depth+1];
const _RopeRep* __curr_rope;
int __curr_depth = -1; /* index into path */
size_t __curr_start_pos = 0;
size_t __pos = __x._M_current_pos;
unsigned char __dirns = 0; // Bit vector marking right turns in the path
_STLP_ASSERT(__pos <= __x._M_root->_M_size._M_data)
if (__pos >= __x._M_root->_M_size._M_data) {
__x._M_buf_ptr = 0;
return;
}
__curr_rope = __x._M_root;
if (0 != __curr_rope->_M_c_string) {
/* Treat the root as a leaf. */
__x._M_buf_start = __curr_rope->_M_c_string;
__x._M_buf_end = __curr_rope->_M_c_string + __curr_rope->_M_size._M_data;
__x._M_buf_ptr = __curr_rope->_M_c_string + __pos;
__x._M_path_end._M_data[0] = __curr_rope;
__x._M_leaf_index = 0;
__x._M_leaf_pos = 0;
return;
}
for(;;) {
++__curr_depth;
_STLP_ASSERT(__curr_depth <= _RopeRep::_S_max_rope_depth)
__path[__curr_depth] = __curr_rope;
switch(__curr_rope->_M_tag) {
case _RopeRep::_S_leaf:
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
__x._M_leaf_pos = __curr_start_pos;
goto done;
case _RopeRep::_S_concat:
{
const _RopeConcat* __c = __STATIC_CAST(const _RopeConcat*, __curr_rope);
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size._M_data;
__dirns <<= 1;
if (__pos >= __curr_start_pos + __left_len) {
__dirns |= 1;
__curr_rope = __c->_M_right;
__curr_start_pos += __left_len;
} else {
__curr_rope = __left;
}
}
break;
}
}
done:
// Copy last section of path into _M_path_end.
{
int __i = -1;
int __j = __curr_depth + 1 - _S_path_cache_len;
if (__j < 0) __j = 0;
while (__j <= __curr_depth) {
__x._M_path_end._M_data[++__i] = __path[__j++];
}
__x._M_leaf_index = __i;
}
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
// Specialized version of the above. Assumes that
// the path cache is valid for the previous position.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache_for_incr(
_Rope_iterator_base<_CharT,_Alloc>& __x) {
int __current_index = __x._M_leaf_index;
const _RopeRep* __current_node = __x._M_path_end._M_data[__current_index];
size_t __len = __current_node->_M_size._M_data;
size_t __node_start_pos = __x._M_leaf_pos;
unsigned char __dirns = __x._M_path_directions;
const _RopeConcat* __c;
_STLP_ASSERT(__x._M_current_pos <= __x._M_root->_M_size._M_data)
if (__x._M_current_pos - __node_start_pos < __len) {
/* More stuff in this leaf, we just didn't cache it. */
_S_setbuf(__x);
return;
}
_STLP_ASSERT(__node_start_pos + __len == __x._M_current_pos)
// node_start_pos is starting position of last_node.
while (--__current_index >= 0) {
if (!(__dirns & 1) /* Path turned left */)
break;
__current_node = __x._M_path_end._M_data[__current_index];
__c = __STATIC_CAST(const _RopeConcat*, __current_node);
// Otherwise we were in the right child. Thus we should pop
// the concatenation node.
__node_start_pos -= __c->_M_left->_M_size._M_data;
__dirns >>= 1;
}
if (__current_index < 0) {
// We underflowed the cache. Punt.
_S_setcache(__x);
return;
}
__current_node = __x._M_path_end._M_data[__current_index];
__c = __STATIC_CAST(const _RopeConcat*, __current_node);
// current_node is a concatenation node. We are positioned on the first
// character in its right child.
// node_start_pos is starting position of current_node.
__node_start_pos += __c->_M_left->_M_size._M_data;
__current_node = __c->_M_right;
__x._M_path_end._M_data[++__current_index] = __current_node;
__dirns |= 1;
while (_RopeRep::_S_concat == __current_node->_M_tag) {
++__current_index;
if (_S_path_cache_len == __current_index) {
int __i;
for (__i = 0; __i < _S_path_cache_len-1; ++__i) {
__x._M_path_end._M_data[__i] = __x._M_path_end._M_data[__i+1];
}
--__current_index;
}
__current_node = __STATIC_CAST(const _RopeConcat*, __current_node)->_M_left;
__x._M_path_end._M_data[__current_index] = __current_node;
__dirns <<= 1;
// node_start_pos is unchanged.
}
__x._M_leaf_index = __current_index;
__x._M_leaf_pos = __node_start_pos;
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_M_incr(size_t __n) {
_M_current_pos += __n;
if (0 != _M_buf_ptr) {
size_t __chars_left = _M_buf_end - _M_buf_ptr;
if (__chars_left > __n) {
_M_buf_ptr += __n;
} else if (__chars_left == __n) {
_M_buf_ptr += __n;
_S_setcache_for_incr(*this);
} else {
_M_buf_ptr = 0;
}
}
}
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_M_decr(size_t __n) {
if (0 != _M_buf_ptr) {
size_t __chars_left = _M_buf_ptr - _M_buf_start;
if (__chars_left >= __n) {
_M_buf_ptr -= __n;
} else {
_M_buf_ptr = 0;
}
}
_M_current_pos -= __n;
}
template <class _CharT, class _Alloc>
void _Rope_iterator<_CharT,_Alloc>::_M_check() {
if (_M_root_rope->_M_tree_ptr._M_data != this->_M_root) {
// _Rope was modified. Get things fixed up.
_RopeRep::_S_unref(this->_M_root);
this->_M_root = _M_root_rope->_M_tree_ptr._M_data;
_RopeRep::_S_ref(this->_M_root);
this->_M_buf_ptr = 0;
}
}
// There are several reasons for not doing this with virtual destructors
// and a class specific delete operator:
// - A class specific delete operator can't easily get access to
// allocator instances if we need them.
// - Any virtual function would need a 4 or byte vtable pointer;
// this only requires a one byte tag per object.
template <class _CharT, class _Alloc>
void _Rope_RopeRep<_CharT,_Alloc>::_M_free_tree() {
switch (_M_tag) {
case _S_leaf:
{
typedef _Rope_RopeLeaf<_CharT, _Alloc> _RopeLeaf;
_RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, this);
_STLP_STD::_Destroy(__l); // ->_Rope_RopeLeaf<_CharT,_Alloc>::~_Rope_RopeLeaf();
_STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_size,
_RopeLeaf).deallocate(__l, 1);
break;
}
case _S_concat:
{
typedef _Rope_RopeConcatenation<_CharT, _Alloc> _RopeConcatenation;
_RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, this);
_STLP_STD::_Destroy(__c);
_STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_size,
_RopeConcatenation).deallocate(__c, 1);
break;
}
case _S_function:
{
typedef _Rope_RopeFunction<_CharT, _Alloc> _RopeFunction;
_RopeFunction* __f = __STATIC_CAST(_RopeFunction*, this);
_STLP_STD::_Destroy(__f);
_STLP_CREATE_ALLOCATOR(allocator_type, (const allocator_type&)_M_size,
_RopeFunction).deallocate(__f, 1);
break;
}
case _S_substringfn:
{
typedef _Rope_RopeSubstring<_CharT, _Alloc> _RopeSubstring;
_RopeSubstring* __rss = __STATIC_CAST(_RopeSubstring*, this);
_STLP_STD::_Destroy(__rss);
_STLP_CREATE_ALLOCATOR(allocator_type, (const allocator_type&)_M_size,
_RopeSubstring).deallocate(__rss, 1);
break;
}
}
}
# if defined ( _STLP_NESTED_TYPE_PARAM_BUG )
# define __RopeLeaf__ _Rope_RopeLeaf<_CharT,_Alloc>
# define __RopeRep__ _Rope_RopeRep<_CharT,_Alloc>
# define _RopeLeaf _Rope_RopeLeaf<_CharT,_Alloc>
# define _RopeRep _Rope_RopeRep<_CharT,_Alloc>
# define size_type size_t
# else
# define __RopeLeaf__ _STLP_TYPENAME_ON_RETURN_TYPE rope<_CharT,_Alloc>::_RopeLeaf
# define __RopeRep__ _STLP_TYPENAME_ON_RETURN_TYPE rope<_CharT,_Alloc>::_RopeRep
# endif
template <class _CharT, class _Alloc>
void rope<_CharT, _Alloc>::_M_throw_out_of_range() const {
__stl_throw_out_of_range("rope");
}
// Concatenate a C string onto a leaf rope by copying the rope data.
// Used for short ropes.
template <class _CharT, class _Alloc>
__RopeLeaf__*
rope<_CharT,_Alloc>::_S_leaf_concat_char_iter (
_RopeLeaf* __r, const _CharT* __iter, size_t __len) {
size_t __old_len = __r->_M_size._M_data;
_CharT* __new_data = __r->_M_size.allocate(_S_rounded_up_size(__old_len + __len));
_RopeLeaf* __result;
_STLP_PRIV __ucopy_n(__r->_M_data, __old_len, __new_data);
_STLP_PRIV __ucopy_n(__iter, __len, __new_data + __old_len);
_S_construct_null(__new_data + __old_len + __len);
_STLP_TRY {
__result = _S_new_RopeLeaf(__new_data, __old_len + __len, __r->get_allocator());
}
_STLP_UNWIND(_RopeRep::_S_free_string(__new_data, __old_len + __len,
__r->get_allocator()))
return __result;
}
template <class _CharT, class _Alloc>
void _Terminate_RopeLeaf(_Rope_RopeLeaf<_CharT,_Alloc> *__r,
size_t __size, const __true_type& /*basic char type*/) {
_S_construct_null(__r->_M_data + __size);
_STLP_ASSERT(__r->_M_c_string == __r->_M_data)
}
template <class _CharT, class _Alloc>
void _Terminate_RopeLeaf(_Rope_RopeLeaf<_CharT,_Alloc> *__r,
size_t, const __false_type& /*basic char type*/) {
if (__r->_M_c_string != __r->_M_data && 0 != __r->_M_c_string) {
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
}
// As above, but it's OK to clobber original if refcount is 1
template <class _CharT, class _Alloc>
__RopeLeaf__*
rope<_CharT,_Alloc>::_S_destr_leaf_concat_char_iter (_RopeLeaf* __r, const _CharT* __iter, size_t __len) {
//_STLP_ASSERT(__r->_M_ref_count >= 1)
if ( /* __r->_M_ref_count > 1 */ __r->_M_incr() > 2 ) { // - ptr
__r->_M_decr(); // - ptr
return _S_leaf_concat_char_iter(__r, __iter, __len);
}
__r->_M_decr(); // - ptr, __r->_M_ref_count == 1 or 0
size_t __old_len = __r->_M_size._M_data;
if (_S_rounded_up_size(__old_len) == _S_rounded_up_size(__old_len + __len)) {
// The space has been partially initialized for the standard
// character types. But that doesn't matter for those types.
_STLP_PRIV __ucopy_n(__iter, __len, __r->_M_data + __old_len);
_Terminate_RopeLeaf(__r, __old_len + __len, _IsBasicCharType());
__r->_M_size._M_data = __old_len + __len;
// _STLP_ASSERT(__r->_M_ref_count == 1)
// __r->_M_ref_count = 2;
__r->_M_incr(); // i.e. __r->_M_ref_count = 2
return __r;
} else {
_RopeLeaf* __result = _S_leaf_concat_char_iter(__r, __iter, __len);
//_STLP_ASSERT(__result->_M_ref_count == 1)
return __result;
}
}
// Assumes left and right are not 0.
// Does not increment (nor decrement on exception) child reference counts.
// Result has ref count 1.
template <class _CharT, class _Alloc>
__RopeRep__*
rope<_CharT,_Alloc>::_S_tree_concat (_RopeRep* __left, _RopeRep* __right) {
_RopeConcatenation* __result =
_S_new_RopeConcatenation(__left, __right, __left->get_allocator());
size_t __depth = __result->_M_depth;
_STLP_ASSERT(__left->get_allocator() == __right->get_allocator())
if (__depth > 20 && (__result->_M_size._M_data < 1000 ||
__depth > _RopeRep::_S_max_rope_depth)) {
_RopeRep* __balanced;
_STLP_TRY {
__balanced = _S_balance(__result);
// _STLP_ASSERT(__result == __balanced ||
// 1 == __result->_M_ref_count &&
// 1 == __balanced->_M_ref_count)
__result->_M_unref_nonnil();
}
_STLP_UNWIND((_STLP_CREATE_ALLOCATOR(allocator_type,(allocator_type&)__left->_M_size,
_RopeConcatenation).deallocate(__result,1)))
// In case of exception, we need to deallocate
// otherwise dangling result node. But caller
// still owns its children. Thus unref is
// inappropriate.
return __balanced;
} else {
return __result;
}
}
template <class _CharT, class _Alloc>
__RopeRep__*
rope<_CharT,_Alloc>::_S_concat_char_iter (_RopeRep* __r,
const _CharT*__s, size_t __slen) {
_RopeRep* __result;
if (0 == __slen) {
_S_ref(__r);
return __r;
}
if (0 == __r)
return _S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator());
if (_RopeRep::_S_leaf == __r->_M_tag &&
__r->_M_size._M_data + __slen <= _S_copy_max) {
__result = _S_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
// _STLP_ASSERT(1 == __result->_M_ref_count)
return __result;
}
if (_RopeRep::_S_concat == __r->_M_tag &&
_RopeRep::_S_leaf == ((_RopeConcatenation*)__r)->_M_right->_M_tag) {
_RopeLeaf* __right = (_RopeLeaf* )(((_RopeConcatenation* )__r)->_M_right);
if (__right->_M_size._M_data + __slen <= _S_copy_max) {
_RopeRep* __left = ((_RopeConcatenation*)__r)->_M_left;
_RopeRep* __nright = _S_leaf_concat_char_iter((_RopeLeaf*)__right, __s, __slen);
__left->_M_ref_nonnil();
_STLP_TRY {
__result = _S_tree_concat(__left, __nright);
}
_STLP_UNWIND(_S_unref(__left); _S_unref(__nright))
// _STLP_ASSERT(1 == __result->_M_ref_count)
return __result;
}
}
_RopeRep* __nright =
_S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator());
_STLP_TRY {
__r->_M_ref_nonnil();
__result = _S_tree_concat(__r, __nright);
}
_STLP_UNWIND(_S_unref(__r); _S_unref(__nright))
// _STLP_ASSERT(1 == __result->_M_ref_count)
return __result;
}
template <class _CharT, class _Alloc>
__RopeRep__*
rope<_CharT,_Alloc>::_S_destr_concat_char_iter(
_RopeRep* __r, const _CharT* __s, size_t __slen) {
_RopeRep* __result;
if (0 == __r)
return _S_RopeLeaf_from_unowned_char_ptr(__s, __slen,
__r->get_allocator());
// size_t __count = __r->_M_ref_count;
size_t __orig_size = __r->_M_size._M_data;
// _STLP_ASSERT(__count >= 1)
if ( /* __count > 1 */ __r->_M_incr() > 2 ) {
__r->_M_decr();
return _S_concat_char_iter(__r, __s, __slen);
}
if (0 == __slen) {
return __r;
}
__r->_M_decr();
if (__orig_size + __slen <= _S_copy_max && _RopeRep::_S_leaf == __r->_M_tag) {
return _S_destr_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
}
if (_RopeRep::_S_concat == __r->_M_tag) {
_RopeLeaf* __right = __STATIC_CAST(_RopeLeaf*, __STATIC_CAST(_RopeConcatenation*, __r)->_M_right);
if (_RopeRep::_S_leaf == __right->_M_tag &&
__right->_M_size._M_data + __slen <= _S_copy_max) {
_RopeRep* __new_right = _S_destr_leaf_concat_char_iter(__right, __s, __slen);
if (__right == __new_right) {
// _STLP_ASSERT(__new_right->_M_ref_count == 2)
// __new_right->_M_ref_count = 1;
__new_right->_M_decr();
} else {
// _STLP_ASSERT(__new_right->_M_ref_count >= 1)
__right->_M_unref_nonnil();
}
// _STLP_ASSERT(__r->_M_ref_count == 1)
// __r->_M_ref_count = 2; // One more than before.
__r->_M_incr();
__STATIC_CAST(_RopeConcatenation*, __r)->_M_right = __new_right;
// E.Musser : moved below
// __r->_M_size._M_data = __orig_size + __slen;
if (0 != __r->_M_c_string) {
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
__r->_M_size._M_data = __orig_size + __slen;
return __r;
}
}
_RopeRep* __right =
_S_RopeLeaf_from_unowned_char_ptr(__s, __slen, __r->get_allocator());
__r->_M_ref_nonnil();
_STLP_TRY {
__result = _S_tree_concat(__r, __right);
}
_STLP_UNWIND(_S_unref(__r); _S_unref(__right))
// _STLP_ASSERT(1 == __result->_M_ref_count)
return __result;
}
template <class _CharT, class _Alloc>
__RopeRep__*
rope<_CharT,_Alloc>::_S_concat_rep(_RopeRep* __left, _RopeRep* __right) {
if (0 == __left) {
_S_ref(__right);
return __right;
}
if (0 == __right) {
__left->_M_ref_nonnil();
return __left;
}
if (_RopeRep::_S_leaf == __right->_M_tag) {
if (_RopeRep::_S_leaf == __left->_M_tag) {
if (__right->_M_size._M_data + __left->_M_size._M_data <= _S_copy_max) {
return _S_leaf_concat_char_iter(__STATIC_CAST(_RopeLeaf*, __left),
__STATIC_CAST(_RopeLeaf*, __right)->_M_data,
__right->_M_size._M_data);
}
} else if (_RopeRep::_S_concat == __left->_M_tag &&
_RopeRep::_S_leaf == __STATIC_CAST(_RopeConcatenation*, __left)->_M_right->_M_tag) {
_RopeLeaf* __leftright =
__STATIC_CAST(_RopeLeaf*, __STATIC_CAST(_RopeConcatenation*, __left)->_M_right);
if (__leftright->_M_size._M_data + __right->_M_size._M_data <= _S_copy_max) {
_RopeRep* __leftleft = __STATIC_CAST(_RopeConcatenation*, __left)->_M_left;
_RopeRep* __rest = _S_leaf_concat_char_iter(__leftright,
__STATIC_CAST(_RopeLeaf*, __right)->_M_data,
__right->_M_size._M_data);
__leftleft->_M_ref_nonnil();
_STLP_TRY {
return _S_tree_concat(__leftleft, __rest);
}
_STLP_UNWIND(_S_unref(__leftleft); _S_unref(__rest))
}
}
}
__left->_M_ref_nonnil();
__right->_M_ref_nonnil();
_STLP_TRY {
return _S_tree_concat(__left, __right);
}
_STLP_UNWIND(_S_unref(__left); _S_unref(__right))
_STLP_RET_AFTER_THROW(0)
}
template <class _CharT, class _Alloc>
__RopeRep__*
rope<_CharT,_Alloc>::_S_substring(_RopeRep* __base,
size_t __start, size_t __endp1) {
if (0 == __base) return 0;
size_t __len = __base->_M_size._M_data;
size_t __adj_endp1;
const size_t __lazy_threshold = 128;
if (__endp1 >= __len) {
if (0 == __start) {
__base->_M_ref_nonnil();
return __base;
} else {
__adj_endp1 = __len;
}
} else {
__adj_endp1 = __endp1;
}
switch(__base->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, __base);
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
size_t __left_len = __left->_M_size._M_data;
_RopeRep* __result;
if (__adj_endp1 <= __left_len) {
return _S_substring(__left, __start, __endp1);
} else if (__start >= __left_len) {
return _S_substring(__right, __start - __left_len,
__adj_endp1 - __left_len);
}
_Self_destruct_ptr __left_result(_S_substring(__left, __start, __left_len));
_Self_destruct_ptr __right_result(_S_substring(__right, 0, __endp1 - __left_len));
_STLP_MPWFIX_TRY //*TY 06/01/2000 - mpw forgets to call dtor on __left_result and __right_result without this try block
__result = _S_concat_rep(__left_result, __right_result);
// _STLP_ASSERT(1 == __result->_M_ref_count)
return __result;
_STLP_MPWFIX_CATCH //*TY 06/01/2000 -
}
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, __base);
_RopeLeaf* __result;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) goto lazy;
const _CharT* __section = __l->_M_data + __start;
// We should sometimes create substring node instead.
__result = _S_RopeLeaf_from_unowned_char_ptr(__section, __result_len,
__base->get_allocator());
return __result;
}
case _RopeRep::_S_substringfn:
// Avoid introducing multiple layers of substring nodes.
{
_RopeSubstring* __old = __STATIC_CAST(_RopeSubstring*, __base);
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) {
_RopeSubstring* __result = _S_new_RopeSubstring(__old->_M_base,
__start + __old->_M_start,
__adj_endp1 - __start,
__base->get_allocator());
return __result;
} // *** else fall through: ***
}
case _RopeRep::_S_function:
{
_RopeFunction* __f = __STATIC_CAST(_RopeFunction*, __base);
if (__start >= __adj_endp1) return 0;
size_t __result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) goto lazy;
_CharT* __section = __base->_M_size.allocate(_S_rounded_up_size(__result_len));
_STLP_TRY {
(*(__f->_M_fn))(__start, __result_len, __section);
}
_STLP_UNWIND(_RopeRep::_S_free_string(__section,
__result_len, __base->get_allocator()))
_S_construct_null(__section + __result_len);
return _S_new_RopeLeaf(__section, __result_len,
__base->get_allocator());
}
}
/*NOTREACHED*/
_STLP_ASSERT(false)
lazy:
{
// Create substring node.
return _S_new_RopeSubstring(__base, __start, __adj_endp1 - __start,
__base->get_allocator());
}
}
template<class _CharT>
class _Rope_flatten_char_consumer : public _Rope_char_consumer<_CharT> {
private:
_CharT* _M_buf_ptr;
public:
_Rope_flatten_char_consumer(_CharT* __buffer) {
_M_buf_ptr = __buffer;
}
~_Rope_flatten_char_consumer() {}
bool operator() (const _CharT* __leaf, size_t __n) {
_STLP_PRIV __ucopy_n(__leaf, __n, _M_buf_ptr);
_M_buf_ptr += __n;
return true;
}
};
template<class _CharT>
class _Rope_find_char_char_consumer : public _Rope_char_consumer<_CharT> {
private:
_CharT _M_pattern;
public:
size_t _M_count; // Number of nonmatching characters
_Rope_find_char_char_consumer(_CharT __p)
: _M_pattern(__p), _M_count(0) {}
~_Rope_find_char_char_consumer() {}
bool operator() (const _CharT* __leaf, size_t __n) {
size_t __i;
for (__i = 0; __i < __n; ++__i) {
if (__leaf[__i] == _M_pattern) {
_M_count += __i; return false;
}
}
_M_count += __n; return true;
}
};
#if !defined (_STLP_USE_NO_IOSTREAMS)
template<class _CharT, class _Traits>
// Here _CharT is both the stream and rope character type.
class _Rope_insert_char_consumer : public _Rope_char_consumer<_CharT> {
private:
typedef basic_ostream<_CharT,_Traits> _Insert_ostream;
typedef _Rope_insert_char_consumer<_CharT,_Traits> _Self;
_Insert_ostream& _M_o;
//explicitely defined as private to avoid warnings:
_Self& operator = (_Self const&);
public:
_Rope_insert_char_consumer(_Insert_ostream& __writer)
: _M_o(__writer) {}
~_Rope_insert_char_consumer() {}
// Caller is presumed to own the ostream
bool operator() (const _CharT* __leaf, size_t __n);
// Returns true to continue traversal.
};
template<class _CharT, class _Traits>
bool _Rope_insert_char_consumer<_CharT, _Traits>::operator()
(const _CharT* __leaf, size_t __n) {
size_t __i;
// We assume that formatting is set up correctly for each element.
for (__i = 0; __i < __n; ++__i) _M_o.put(__leaf[__i]);
return true;
}
#endif /* !_STLP_USE_NO_IOSTREAMS */
template <class _CharT, class _Alloc, class _CharConsumer>
bool _S_apply_to_pieces(_CharConsumer& __c,
_Rope_RopeRep<_CharT, _Alloc> * __r,
size_t __begin, size_t __end) {
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
if (0 == __r) return true;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __conc = __STATIC_CAST(_RopeConcatenation*, __r);
_RopeRep* __left = __conc->_M_left;
size_t __left_len = __left->_M_size._M_data;
if (__begin < __left_len) {
size_t __left_end = (min) (__left_len, __end);
if (!_S_apply_to_pieces(__c, __left, __begin, __left_end))
return false;
}
if (__end > __left_len) {
_RopeRep* __right = __conc->_M_right;
size_t __right_start = (max)(__left_len, __begin);
if (!_S_apply_to_pieces(__c, __right,
__right_start - __left_len,
__end - __left_len)) {
return false;
}
}
}
return true;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, __r);
return __c(__l->_M_data + __begin, __end - __begin);
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
_RopeFunction* __f = __STATIC_CAST(_RopeFunction*, __r);
size_t __len = __end - __begin;
bool __result;
_CharT* __buffer = __r->get_allocator().allocate(__len);
_STLP_TRY {
(*(__f->_M_fn))(__begin, __len, __buffer);
__result = __c(__buffer, __len);
__r->get_allocator().deallocate(__buffer, __len);
}
_STLP_UNWIND((__r->get_allocator().deallocate(__buffer, __len)))
return __result;
}
default:
_STLP_ASSERT(false)
/*NOTREACHED*/
return false;
}
}
#if !defined (_STLP_USE_NO_IOSTREAMS)
template<class _CharT, class _Traits>
inline void _Rope_fill(basic_ostream<_CharT, _Traits>& __o, streamsize __n) {
char __f = __o.fill();
for (streamsize __i = 0; __i < __n; ++__i) __o.put(__f);
}
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& _S_io_get(basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r, const __true_type& /*_IsBasicCharType*/) {
streamsize __w = __o.width();
const bool __left = (__o.flags() & ios::left) != 0;
size_t __rope_len = __r.size();
_Rope_insert_char_consumer<_CharT, _Traits> __c(__o);
const bool __need_pad = (((sizeof(streamsize) > sizeof(size_t)) && (__STATIC_CAST(streamsize, __rope_len) < __w)) ||
((sizeof(streamsize) <= sizeof(size_t)) && (__rope_len < __STATIC_CAST(size_t, __w))));
streamsize __pad_len = __need_pad ? __w - __rope_len : 0;
if (!__left && __pad_len > 0) {
_Rope_fill(__o, __pad_len);
}
__r.apply_to_pieces(0, __rope_len, __c);
if (__left && __pad_len > 0) {
_Rope_fill(__o, __pad_len);
}
return __o;
}
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& _S_io_get(basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r, const __false_type& /*_IsBasicCharType*/) {
streamsize __w = __o.width();
size_t __rope_len = __r.size();
_Rope_insert_char_consumer<_CharT, _Traits> __c(__o);
__o.width(__w /__rope_len);
_STLP_TRY {
__r.apply_to_pieces(0, __rope_len, __c);
__o.width(__w);
}
_STLP_UNWIND(__o.width(__w))
return __o;
}
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r) {
typedef typename _IsIntegral<_CharT>::_Ret _Char_Is_Integral;
return _S_io_get(__o, __r, _Char_Is_Integral());
}
#endif /* NO_IOSTREAMS */
template <class _CharT, class _Alloc>
_CharT* rope<_CharT,_Alloc>::_S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer) {
_Rope_flatten_char_consumer<_CharT> __c(__buffer);
_S_apply_to_pieces(__c, __r, __start, __start + __len);
return(__buffer + __len);
}
template <class _CharT, class _Alloc>
size_t rope<_CharT,_Alloc>::find(_CharT __pattern, size_t __start) const {
_Rope_find_char_char_consumer<_CharT> __c(__pattern);
_S_apply_to_pieces(__c, _M_tree_ptr._M_data, __start, size());
size_type __result_pos = __start + __c._M_count;
#ifndef _STLP_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
#endif
return __result_pos;
}
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_flatten(_Rope_RopeRep<_CharT, _Alloc>* __r, _CharT* __buffer) {
if (0 == __r) return __buffer;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, __r);
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
_CharT* __rest = _S_flatten(__left, __buffer);
return _S_flatten(__right, __rest);
}
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = __STATIC_CAST(_RopeLeaf*, __r);
return _STLP_PRIV __ucopy_n(__l->_M_data, __l->_M_size._M_data, __buffer).second;
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
// We dont yet do anything with substring nodes.
// This needs to be fixed before ropefiles will work well.
{
_RopeFunction* __f = __STATIC_CAST(_RopeFunction*, __r);
(*(__f->_M_fn))(0, __f->_M_size._M_data, __buffer);
return __buffer + __f->_M_size._M_data;
}
default:
_STLP_ASSERT(false)
/*NOTREACHED*/
return 0;
}
}
#ifdef _STLP_DEBUG
// This needs work for _CharT != char
template <class _CharT, class _Alloc>
void rope<_CharT,_Alloc>::_S_dump(_RopeRep* __r, int __indent) {
for (int __i = 0; __i < __indent; ++__i) putchar(' ');
if (0 == __r) {
printf("NULL\n"); return;
}
if (_RopeRep::_S_concat == __r->_M_tag) {
_RopeConcatenation* __c = __STATIC_CAST(_RopeConcatenation*, __r);
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
printf("Concatenation %p (rc = %ld, depth = %d, len = %ld, %s balanced)\n",
__r, __r->_M_ref_count, __r->_M_depth, __r->_M_size._M_data,
__r->_M_is_balanced? "" : "not");
_S_dump(__left, __indent + 2);
_S_dump(__right, __indent + 2);
return;
}
else {
const char* __kind;
switch (__r->_M_tag) {
case _RopeRep::_S_leaf:
__kind = "Leaf";
break;
case _RopeRep::_S_function:
__kind = "Function";
break;
case _RopeRep::_S_substringfn:
__kind = "Function representing substring";
break;
default:
__kind = "(corrupted kind field!)";
}
printf("%s %p (rc = %ld, depth = %d, len = %ld) ",
__kind, __r, __r->_M_ref_count, __r->_M_depth, __r->_M_size._M_data);
if (sizeof(_CharT) == 1) {
const int __max_len = 40;
_Self_destruct_ptr __prefix(_S_substring(__r, 0, __max_len));
_CharT __buffer[__max_len + 1];
bool __too_big = __r->_M_size._M_data > __prefix->_M_size._M_data;
_S_flatten(__prefix, __buffer);
__buffer[__prefix->_M_size._M_data] = _STLP_DEFAULT_CONSTRUCTED(_CharT);
printf("%s%s\n", (char*)__buffer, __too_big? "...\n" : "\n");
} else {
printf("\n");
}
}
}
#endif /* _STLP_DEBUG */
# define __ROPE_TABLE_BODY = { \
/* 0 */1, /* 1 */2, /* 2 */3, /* 3 */5, /* 4 */8, /* 5 */13, /* 6 */21, \
/* 7 */34, /* 8 */55, /* 9 */89, /* 10 */144, /* 11 */233, /* 12 */377, \
/* 13 */610, /* 14 */987, /* 15 */1597, /* 16 */2584, /* 17 */4181, \
/* 18 */6765ul, /* 19 */10946ul, /* 20 */17711ul, /* 21 */28657ul, /* 22 */46368ul, \
/* 23 */75025ul, /* 24 */121393ul, /* 25 */196418ul, /* 26 */317811ul, \
/* 27 */514229ul, /* 28 */832040ul, /* 29 */1346269ul, /* 30 */2178309ul, \
/* 31 */3524578ul, /* 32 */5702887ul, /* 33 */9227465ul, /* 34 */14930352ul, \
/* 35 */24157817ul, /* 36 */39088169ul, /* 37 */63245986ul, /* 38 */102334155ul, \
/* 39 */165580141ul, /* 40 */267914296ul, /* 41 */433494437ul, \
/* 42 */701408733ul, /* 43 */1134903170ul, /* 44 */1836311903ul, \
/* 45 */2971215073ul }
template <class _CharT, class _Alloc>
const unsigned long
rope<_CharT,_Alloc>::_S_min_len[__ROPE_DEPTH_SIZE] __ROPE_TABLE_BODY;
# undef __ROPE_DEPTH_SIZE
# undef __ROPE_MAX_DEPTH
# undef __ROPE_TABLE_BODY
// These are Fibonacci numbers < 2**32.
template <class _CharT, class _Alloc>
__RopeRep__* rope<_CharT,_Alloc>::_S_balance(_RopeRep* __r) {
_RopeRep* __forest[_RopeRep::_S_max_rope_depth + 1] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0};
_RopeRep* __result = 0;
int __i;
// Invariant:
// The concatenation of forest in descending order is equal to __r.
// __forest[__i]._M_size._M_data >= _S_min_len[__i]
// __forest[__i]._M_depth = __i
// References from forest are included in refcount.
_STLP_TRY {
_S_add_to_forest(__r, __forest);
for (__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i)
if (0 != __forest[__i]) {
_Self_destruct_ptr __old(__result);
__result = _S_concat_rep(__forest[__i], __result);
__forest[__i]->_M_unref_nonnil();
# ifdef _STLP_USE_EXCEPTIONS
__forest[__i] = 0;
# endif
}
}
_STLP_UNWIND(for(__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i)
_S_unref(__forest[__i]))
if (__result->_M_depth > _RopeRep::_S_max_rope_depth) {
__stl_throw_range_error("rope too long");
}
return(__result);
}
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_add_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
if (__r -> _M_is_balanced) {
_S_add_leaf_to_forest(__r, __forest);
return;
}
_STLP_ASSERT(__r->_M_tag == _RopeRep::_S_concat)
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_S_add_to_forest(__c->_M_left, __forest);
_S_add_to_forest(__c->_M_right, __forest);
}
}
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
_RopeRep* __insertee; // included in refcount
_RopeRep* __too_tiny = 0; // included in refcount
int __i; // forest[0..__i-1] is empty
size_t __s = __r->_M_size._M_data;
for (__i = 0; __s >= _S_min_len[__i+1]/* not this bucket */; ++__i) {
if (0 != __forest[__i]) {
_Self_destruct_ptr __old(__too_tiny);
__too_tiny = _S_concat_and_set_balanced(__forest[__i], __too_tiny);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
}
}
{
_Self_destruct_ptr __old(__too_tiny);
__insertee = _S_concat_and_set_balanced(__too_tiny, __r);
}
// Too_tiny dead, and no longer included in refcount.
// Insertee is live and included.
_STLP_ASSERT(_S_is_almost_balanced(__insertee))
_STLP_ASSERT(__insertee->_M_depth <= __r->_M_depth + 1)
for (;; ++__i) {
if (0 != __forest[__i]) {
_Self_destruct_ptr __old(__insertee);
__insertee = _S_concat_and_set_balanced(__forest[__i], __insertee);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
_STLP_ASSERT(_S_is_almost_balanced(__insertee))
}
_STLP_ASSERT(_S_min_len[__i] <= __insertee->_M_size._M_data)
_STLP_ASSERT(__forest[__i] == 0)
if (__i == _RopeRep::_S_max_rope_depth ||
__insertee->_M_size._M_data < _S_min_len[__i+1]) {
__forest[__i] = __insertee;
// refcount is OK since __insertee is now dead.
return;
}
}
}
template <class _CharT, class _Alloc>
_CharT
rope<_CharT,_Alloc>::_S_fetch(_RopeRep* __r, size_type __i)
{
_CharT* __cstr = __r->_M_c_string;
_STLP_ASSERT(__i < __r->_M_size._M_data)
if (0 != __cstr) return __cstr[__i];
for(;;) {
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size._M_data;
if (__i >= __left_len) {
__i -= __left_len;
__r = __c->_M_right;
} else {
__r = __left;
}
}
break;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __l->_M_data[__i];
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
_CharT __result;
(*(__f->_M_fn))(__i, 1, &__result);
return __result;
}
}
}
#if defined(_STLP_NEED_UNREACHABLE_RETURN)
return 0;
#endif
}
// Return a uniquely referenced character slot for the given
// position, or 0 if that's not possible.
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_fetch_ptr(_RopeRep* __r, size_type __i)
{
_RopeRep* __clrstack[_RopeRep::_S_max_rope_depth];
size_t __csptr = 0;
for(;;) {
// if (__r->_M_ref_count > 1) return 0;
if ( __r->_M_incr() > 2 ) {
__r->_M_decr();
return 0;
}
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size._M_data;
if (__c->_M_c_string != 0) __clrstack[__csptr++] = __c;
if (__i >= __left_len) {
__i -= __left_len;
__r = __c->_M_right;
} else {
__r = __left;
}
}
break;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
if (__l->_M_c_string != __l->_M_data && __l->_M_c_string != 0)
__clrstack[__csptr++] = __l;
while (__csptr > 0) {
-- __csptr;
_RopeRep* __d = __clrstack[__csptr];
__d->_M_free_c_string();
__d->_M_c_string = 0;
}
return __l->_M_data + __i;
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
return 0;
}
}
#if defined(_STLP_NEED_UNREACHABLE_RETURN)
return 0;
#endif
}
// The following could be implemented trivially using
// lexicographical_compare_3way.
// We do a little more work to avoid dealing with rope iterators for
// flat strings.
template <class _CharT, class _Alloc>
int
rope<_CharT,_Alloc>::_S_compare (const _RopeRep* __left,
const _RopeRep* __right) {
size_t __left_len;
size_t __right_len;
if (0 == __right) return 0 != __left;
if (0 == __left) return -1;
__left_len = __left->_M_size._M_data;
__right_len = __right->_M_size._M_data;
if (_RopeRep::_S_leaf == __left->_M_tag) {
const _RopeLeaf* __l = __STATIC_CAST(const _RopeLeaf*, __left);
if (_RopeRep::_S_leaf == __right->_M_tag) {
const _RopeLeaf* __r = __STATIC_CAST(const _RopeLeaf*, __right);
return _STLP_PRIV __lexicographical_compare_3way(__l->_M_data, __l->_M_data + __left_len,
__r->_M_data, __r->_M_data + __right_len);
}
else {
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return _STLP_PRIV __lexicographical_compare_3way(__l->_M_data, __l->_M_data + __left_len,
__rstart, __rend);
}
}
else {
const_iterator __lstart(__left, 0);
const_iterator __lend(__left, __left_len);
if (_RopeRep::_S_leaf == __right->_M_tag) {
const _RopeLeaf* __r = __STATIC_CAST(const _RopeLeaf*, __right);
return _STLP_PRIV __lexicographical_compare_3way(__lstart, __lend,
__r->_M_data, __r->_M_data + __right_len);
}
else {
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return _STLP_PRIV __lexicographical_compare_3way(__lstart, __lend, __rstart, __rend);
}
}
}
// Assignment to reference proxies.
template <class _CharT, class _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>&
_Rope_char_ref_proxy<_CharT, _Alloc>::operator= (_CharT __c) {
_RopeRep* __old = _M_root->_M_tree_ptr._M_data;
// First check for the case in which everything is uniquely
// referenced. In that case we can do this destructively.
_CharT* __ptr = _My_rope::_S_fetch_ptr(__old, _M_pos);
if (0 != __ptr) {
*__ptr = __c;
return *this;
}
_Self_destruct_ptr __left(
_My_rope::_S_substring(__old, 0, _M_pos));
_Self_destruct_ptr __right(
_My_rope::_S_substring(__old, _M_pos+1, __old->_M_size._M_data));
_Self_destruct_ptr __result_left(
_My_rope::_S_destr_concat_char_iter(__left, &__c, 1));
// _STLP_ASSERT(__left == __result_left || 1 == __result_left->_M_ref_count)
_RopeRep* __result =
_My_rope::_S_concat_rep(__result_left, __right);
// _STLP_ASSERT(1 <= __result->_M_ref_count)
_RopeRep::_S_unref(__old);
_M_root->_M_tree_ptr._M_data = __result;
return *this;
}
template <class _CharT, class _Alloc>
_Rope_char_ptr_proxy<_CharT, _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>::operator& () const {
return _Rope_char_ptr_proxy<_CharT, _Alloc>(*this);
}
template<class _CharT, class _Alloc>
_CharT rope<_CharT,_Alloc>::_S_empty_c_str[1] = { _CharT() };
// # endif
#if !defined (_STLP_STATIC_CONST_INIT_BUG) && !defined (_STLP_NO_STATIC_CONST_DEFINITION)
template <class _CharT, class _Alloc>
const size_t rope<_CharT, _Alloc>::npos;
#endif
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT,_Alloc>::c_str() const {
if (0 == _M_tree_ptr._M_data) {
// Possibly redundant, but probably fast.
_S_empty_c_str[0] = _STLP_DEFAULT_CONSTRUCTED(_CharT);
return _S_empty_c_str;
}
_CharT* __old_c_string = _M_tree_ptr._M_data->_M_c_string;
if (0 != __old_c_string) return __old_c_string;
size_t __s = size();
_CharT* __result = _STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_tree_ptr, _CharT).allocate(__s + 1);
_S_flatten(_M_tree_ptr._M_data, __result);
_S_construct_null(__result + __s);
__old_c_string = __STATIC_CAST(_CharT*, _Atomic_swap_ptr(__REINTERPRET_CAST(void* _STLP_VOLATILE*, &(_M_tree_ptr._M_data->_M_c_string)),
__result));
if (0 != __old_c_string) {
// It must have been added in the interim. Hence it had to have been
// separately allocated. Deallocate the old copy, since we just
// replaced it.
_STLP_STD::_Destroy_Range(__old_c_string, __old_c_string + __s + 1);
_STLP_CREATE_ALLOCATOR(allocator_type,(const allocator_type&)_M_tree_ptr, _CharT).deallocate(__old_c_string, __s + 1);
}
return __result;
}
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT,_Alloc>::replace_with_c_str() {
if (0 == _M_tree_ptr._M_data) {
_S_empty_c_str[0] = _STLP_DEFAULT_CONSTRUCTED(_CharT);
return _S_empty_c_str;
}
_CharT* __old_c_string = _M_tree_ptr._M_data->_M_c_string;
if (_RopeRep::_S_leaf == _M_tree_ptr._M_data->_M_tag && 0 != __old_c_string) {
return __old_c_string;
}
size_t __s = size();
_CharT* __result = _M_tree_ptr.allocate(_S_rounded_up_size(__s));
_S_flatten(_M_tree_ptr._M_data, __result);
_S_construct_null(__result + __s);
_M_tree_ptr._M_data->_M_unref_nonnil();
_M_tree_ptr._M_data = _S_new_RopeLeaf(__result, __s, _M_tree_ptr);
return __result;
}
// Algorithm specializations. More should be added.
#if (!defined (_STLP_MSVC) || (_STLP_MSVC >= 1310)) && !defined (__DMC__)
// I couldn't get this to work with VC++
template<class _CharT,class _Alloc>
void _Rope_rotate(_Rope_iterator<_CharT,_Alloc> __first,
_Rope_iterator<_CharT,_Alloc> __middle,
_Rope_iterator<_CharT,_Alloc> __last) {
_STLP_ASSERT(__first.container() == __middle.container() &&
__middle.container() == __last.container())
rope<_CharT,_Alloc>& __r(__first.container());
rope<_CharT,_Alloc> __prefix = __r.substr(0, __first.index());
rope<_CharT,_Alloc> __suffix =
__r.substr(__last.index(), __r.size() - __last.index());
rope<_CharT,_Alloc> __part1 =
__r.substr(__middle.index(), __last.index() - __middle.index());
rope<_CharT,_Alloc> __part2 =
__r.substr(__first.index(), __middle.index() - __first.index());
__r = __prefix;
__r += __part1;
__r += __part2;
__r += __suffix;
}
# if 0
// Probably not useful for several reasons:
// - for SGIs 7.1 compiler and probably some others,
// this forces lots of rope<wchar_t, ...> instantiations, creating a
// code bloat and compile time problem. (Fixed in 7.2.)
// - wchar_t is 4 bytes wide on most UNIX platforms, making it unattractive
// for unicode strings. Unsigned short may be a better character
// type.
inline void rotate(
_Rope_iterator<wchar_t, allocator<char> > __first,
_Rope_iterator<wchar_t, allocator<char> > __middle,
_Rope_iterator<wchar_t, allocator<char> > __last) {
_Rope_rotate(__first, __middle, __last);
}
# endif
#endif /* _STLP_MSVC */
# undef __RopeLeaf__
# undef __RopeRep__
# undef __RopeLeaf
# undef __RopeRep
# undef size_type
_STLP_END_NAMESPACE
# endif /* ROPEIMPL_H */
// Local Variables:
// mode:C++
// End: