blob: cc391f75d926eda954d2fd0690529f7284812700 [file] [log] [blame]
/*
*
* Copyright (c) 1996,1997
* Silicon Graphics Computer Systems, Inc.
*
* Copyright (c) 1997
* Moscow Center for SPARC Technology
*
* Copyright (c) 1999
* Boris Fomitchev
*
* This material is provided "as is", with absolutely no warranty expressed
* or implied. Any use is at your own risk.
*
* Permission to use or copy this software for any purpose is hereby granted
* without fee, provided the above notices are retained on all copies.
* Permission to modify the code and to distribute modified code is granted,
* provided the above notices are retained, and a notice that the code was
* modified is included with the above copyright notice.
*
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
// rope<_CharT,_Alloc> is a sequence of _CharT.
// Ropes appear to be mutable, but update operations
// really copy enough of the data structure to leave the original
// valid. Thus ropes can be logically copied by just copying
// a pointer value.
#ifndef _STLP_INTERNAL_ROPE_H
#define _STLP_INTERNAL_ROPE_H
#ifndef _STLP_INTERNAL_ALGOBASE_H
# include <stl/_algobase.h>
#endif
#if !defined (_STLP_USE_NO_IOSTREAMS) && !defined (_STLP_INTERNAL_IOSFWD)
# include <stl/_iosfwd.h>
#endif
#ifndef _STLP_INTERNAL_ALLOC_H
# include <stl/_alloc.h>
#endif
#ifndef _STLP_INTERNAL_ITERATOR_H
# include <stl/_iterator.h>
#endif
#ifndef _STLP_INTERNAL_ALGO_H
# include <stl/_algo.h>
#endif
#ifndef _STLP_INTERNAL_FUNCTION_BASE_H
# include <stl/_function_base.h>
#endif
#ifndef _STLP_INTERNAL_NUMERIC_H
# include <stl/_numeric.h>
#endif
#ifndef _STLP_INTERNAL_HASH_FUN_H
# include <stl/_hash_fun.h>
#endif
#ifndef _STLP_CHAR_TRAITS_H
# include <stl/char_traits.h>
#endif
#ifndef _STLP_INTERNAL_THREADS_H
# include <stl/_threads.h>
#endif
#ifdef _STLP_SGI_THREADS
# include <mutex.h>
#endif
#ifndef _STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE
# define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) (_Alloc_traits<_Tp,__atype>::create_allocator(__a))
#else
# define _STLP_CREATE_ALLOCATOR(__atype,__a, _Tp) __stl_alloc_create(__a,(_Tp*)0)
#endif
_STLP_BEGIN_NAMESPACE
// First a lot of forward declarations. The standard seems to require
// much stricter "declaration before use" than many of the implementations
// that preceded it.
template<class _CharT, _STLP_DFL_TMPL_PARAM(_Alloc, allocator<_CharT>) > class rope;
template<class _CharT, class _Alloc> struct _Rope_RopeConcatenation;
template<class _CharT, class _Alloc> struct _Rope_RopeRep;
template<class _CharT, class _Alloc> struct _Rope_RopeLeaf;
template<class _CharT, class _Alloc> struct _Rope_RopeFunction;
template<class _CharT, class _Alloc> struct _Rope_RopeSubstring;
template<class _CharT, class _Alloc> class _Rope_iterator;
template<class _CharT, class _Alloc> class _Rope_const_iterator;
template<class _CharT, class _Alloc> class _Rope_char_ref_proxy;
template<class _CharT, class _Alloc> class _Rope_char_ptr_proxy;
_STLP_MOVE_TO_PRIV_NAMESPACE
template <class _CharT>
struct _BasicCharType { typedef __false_type _Ret; };
_STLP_TEMPLATE_NULL
struct _BasicCharType<char> { typedef __true_type _Ret; };
#ifdef _STLP_HAS_WCHAR_T
_STLP_TEMPLATE_NULL
struct _BasicCharType<wchar_t> { typedef __true_type _Ret; };
#endif
// Some helpers, so we can use the power algorithm on ropes.
// See below for why this isn't local to the implementation.
// This uses a nonstandard refcount convention.
// The result has refcount 0.
template<class _CharT, class _Alloc>
struct _Rope_Concat_fn
: public binary_function<rope<_CharT,_Alloc>, rope<_CharT,_Alloc>,
rope<_CharT,_Alloc> > {
rope<_CharT,_Alloc> operator() (const rope<_CharT,_Alloc>& __x,
const rope<_CharT,_Alloc>& __y) {
return __x + __y;
}
};
template <class _CharT, class _Alloc>
inline
rope<_CharT,_Alloc>
__identity_element(_Rope_Concat_fn<_CharT, _Alloc>)
{ return rope<_CharT,_Alloc>(); }
_STLP_MOVE_TO_STD_NAMESPACE
// Store an eos
template <class _CharT>
inline void _S_construct_null_aux(_CharT *__p, const __true_type&)
{ *__p = 0; }
template <class _CharT>
inline void _S_construct_null_aux(_CharT *__p, const __false_type&)
{ _STLP_STD::_Construct(__p); }
template <class _CharT>
inline void _S_construct_null(_CharT *__p) {
typedef typename _IsIntegral<_CharT>::_Ret _Char_Is_Integral;
_S_construct_null_aux(__p, _Char_Is_Integral());
}
// char_producers are logically functions that generate a section of
// a string. These can be converted to ropes. The resulting rope
// invokes the char_producer on demand. This allows, for example,
// files to be viewed as ropes without reading the entire file.
template <class _CharT>
class char_producer {
public:
virtual ~char_producer() {}
virtual void operator()(size_t __start_pos, size_t __len,
_CharT* __buffer) = 0;
// Buffer should really be an arbitrary output iterator.
// That way we could flatten directly into an ostream, etc.
// This is thoroughly impossible, since iterator types don't
// have runtime descriptions.
};
// Sequence buffers:
//
// Sequence must provide an append operation that appends an
// array to the sequence. Sequence buffers are useful only if
// appending an entire array is cheaper than appending element by element.
// This is true for many string representations.
// This should perhaps inherit from ostream<sequence::value_type>
// and be implemented correspondingly, so that they can be used
// for formatted. For the sake of portability, we don't do this yet.
//
// For now, sequence buffers behave as output iterators. But they also
// behave a little like basic_ostringstream<sequence::value_type> and a
// little like containers.
template<class _Sequence
# if !(defined (_STLP_NON_TYPE_TMPL_PARAM_BUG) || \
defined ( _STLP_NO_DEFAULT_NON_TYPE_PARAM ))
, size_t _Buf_sz = 100
# if defined(__sgi) && !defined(__GNUC__)
# define __TYPEDEF_WORKAROUND
,class _V = typename _Sequence::value_type
# endif /* __sgi */
# endif /* _STLP_NON_TYPE_TMPL_PARAM_BUG */
>
// The 3rd parameter works around a common compiler bug.
class sequence_buffer : public iterator <output_iterator_tag, void, void, void, void> {
public:
# ifndef __TYPEDEF_WORKAROUND
typedef typename _Sequence::value_type value_type;
typedef sequence_buffer<_Sequence
# if !(defined (_STLP_NON_TYPE_TMPL_PARAM_BUG) || \
defined ( _STLP_NO_DEFAULT_NON_TYPE_PARAM ))
, _Buf_sz
> _Self;
# else /* _STLP_NON_TYPE_TMPL_PARAM_BUG */
> _Self;
enum { _Buf_sz = 100};
# endif /* _STLP_NON_TYPE_TMPL_PARAM_BUG */
// # endif
# else /* __TYPEDEF_WORKAROUND */
typedef _V value_type;
typedef sequence_buffer<_Sequence, _Buf_sz, _V> _Self;
# endif /* __TYPEDEF_WORKAROUND */
protected:
_Sequence* _M_prefix;
value_type _M_buffer[_Buf_sz];
size_t _M_buf_count;
public:
void flush() {
_M_prefix->append(_M_buffer, _M_buffer + _M_buf_count);
_M_buf_count = 0;
}
~sequence_buffer() { flush(); }
sequence_buffer() : _M_prefix(0), _M_buf_count(0) {}
sequence_buffer(const _Self& __x) {
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
_STLP_STD::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
}
sequence_buffer(_Self& __x) {
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
}
sequence_buffer(_Sequence& __s) : _M_prefix(&__s), _M_buf_count(0) {}
_Self& operator= (_Self& __x) {
__x.flush();
_M_prefix = __x._M_prefix;
_M_buf_count = 0;
return *this;
}
_Self& operator= (const _Self& __x) {
_M_prefix = __x._M_prefix;
_M_buf_count = __x._M_buf_count;
_STLP_STD::copy(__x._M_buffer, __x._M_buffer + __x._M_buf_count, _M_buffer);
return *this;
}
void push_back(value_type __x) {
if (_M_buf_count < _Buf_sz) {
_M_buffer[_M_buf_count] = __x;
++_M_buf_count;
} else {
flush();
_M_buffer[0] = __x;
_M_buf_count = 1;
}
}
void append(const value_type *__s, size_t __len) {
if (__len + _M_buf_count <= _Buf_sz) {
size_t __i = _M_buf_count;
size_t __j = 0;
for (; __j < __len; __i++, __j++) {
_M_buffer[__i] = __s[__j];
}
_M_buf_count += __len;
} else if (0 == _M_buf_count) {
_M_prefix->append(__s, __s + __len);
} else {
flush();
append(__s, __len);
}
}
_Self& write(const value_type *__s, size_t __len) {
append(__s, __len);
return *this;
}
_Self& put(value_type __x) {
push_back(__x);
return *this;
}
_Self& operator=(const value_type& __rhs) {
push_back(__rhs);
return *this;
}
_Self& operator*() { return *this; }
_Self& operator++() { return *this; }
_Self& operator++(int) { return *this; }
};
// The following should be treated as private, at least for now.
template<class _CharT>
class _Rope_char_consumer {
#if !defined (_STLP_MEMBER_TEMPLATES)
public:
//Without member templates we have to use run-time parameterization.
// The symmetry with char_producer is accidental and temporary.
virtual ~_Rope_char_consumer() {}
virtual bool operator()(const _CharT* __buffer, size_t __len) = 0;
#endif
};
//
// What follows should really be local to rope. Unfortunately,
// that doesn't work, since it makes it impossible to define generic
// equality on rope iterators. According to the draft standard, the
// template parameters for such an equality operator cannot be inferred
// from the occurence of a member class as a parameter.
// (SGI compilers in fact allow this, but the __result wouldn't be
// portable.)
// Similarly, some of the static member functions are member functions
// only to avoid polluting the global namespace, and to circumvent
// restrictions on type inference for template functions.
//
//
// The internal data structure for representing a rope. This is
// private to the implementation. A rope is really just a pointer
// to one of these.
//
// A few basic functions for manipulating this data structure
// are members of _RopeRep. Most of the more complex algorithms
// are implemented as rope members.
//
// Some of the static member functions of _RopeRep have identically
// named functions in rope that simply invoke the _RopeRep versions.
//
template<class _CharT, class _Alloc>
struct _Rope_RopeRep
: public _Refcount_Base
{
typedef _Rope_RopeRep<_CharT, _Alloc> _Self;
public:
//
// GAB: 11/09/05
//
// "__ROPE_DEPTH_SIZE" is set to one more then the "__ROPE_MAX_DEPTH".
// This was originally just an addition of "__ROPE_MAX_DEPTH + 1"
// but this addition causes the sunpro compiler to complain about
// multiple declarations during the initialization of "_S_min_len".
// Changed to be a fixed value and the sunpro compiler appears to
// be happy???
//
# define __ROPE_MAX_DEPTH 45
# define __ROPE_DEPTH_SIZE 46 // __ROPE_MAX_DEPTH + 1
enum { _S_max_rope_depth = __ROPE_MAX_DEPTH };
enum _Tag {_S_leaf, _S_concat, _S_substringfn, _S_function};
// Apparently needed by VC++
// The data fields of leaves are allocated with some
// extra space, to accomodate future growth and for basic
// character types, to hold a trailing eos character.
enum { _S_alloc_granularity = 8 };
_Tag _M_tag:8;
bool _M_is_balanced:8;
_STLP_FORCE_ALLOCATORS(_CharT, _Alloc)
typedef _Alloc allocator_type;
allocator_type get_allocator() const { return allocator_type(_M_size); }
unsigned char _M_depth;
_CharT* _STLP_VOLATILE _M_c_string;
_STLP_PRIV _STLP_alloc_proxy<size_t, _CharT, allocator_type> _M_size;
#ifdef _STLP_NO_ARROW_OPERATOR
_Rope_RopeRep() : _Refcount_Base(1), _M_size(allocator_type(), 0) {
# if defined (_STLP_CHECK_RUNTIME_COMPATIBILITY)
_STLP_CHECK_RUNTIME_COMPATIBILITY();
# endif
}
#endif
/* Flattened version of string, if needed. */
/* typically 0. */
/* If it's not 0, then the memory is owned */
/* by this node. */
/* In the case of a leaf, this may point to */
/* the same memory as the data field. */
_Rope_RopeRep(_Tag __t, unsigned char __d, bool __b, size_t _p_size,
allocator_type __a) :
_Refcount_Base(1),
_M_tag(__t), _M_is_balanced(__b), _M_depth(__d), _M_c_string(0), _M_size(__a, _p_size) {
#if defined (_STLP_CHECK_RUNTIME_COMPATIBILITY)
_STLP_CHECK_RUNTIME_COMPATIBILITY();
#endif
}
typedef _STLP_TYPENAME _STLP_PRIV _BasicCharType<_CharT>::_Ret _IsBasicCharType;
#if 0
/* Please tell why this code is necessary if you uncomment it.
* Problem with it is that rope implementation expect that _S_rounded_up_size(n)
* returns a size > n in order to store the terminating null charater. When
* instanciation type is not a char or wchar_t this is not guaranty resulting in
* memory overrun.
*/
static size_t _S_rounded_up_size_aux(size_t __n, __true_type const& /*_IsBasicCharType*/) {
// Allow slop for in-place expansion.
return (__n + _S_alloc_granularity) & ~(_S_alloc_granularity - 1);
}
static size_t _S_rounded_up_size_aux(size_t __n, __false_type const& /*_IsBasicCharType*/) {
// Allow slop for in-place expansion.
return (__n + _S_alloc_granularity - 1) & ~(_S_alloc_granularity - 1);
}
#endif
// fbp : moved from RopeLeaf
static size_t _S_rounded_up_size(size_t __n)
//{ return _S_rounded_up_size_aux(__n, _IsBasicCharType()); }
{ return (__n + _S_alloc_granularity) & ~(_S_alloc_granularity - 1); }
static void _S_free_string( _CharT* __s, size_t __len,
allocator_type __a) {
_STLP_STD::_Destroy_Range(__s, __s + __len);
// This has to be a static member, so this gets a bit messy
# ifndef _STLP_DONT_SUPPORT_REBIND_MEMBER_TEMPLATE
__a.deallocate(__s, _S_rounded_up_size(__len)); //*ty 03/24/2001 - restored not to use __stl_alloc_rebind() since it is not defined under _STLP_MEMBER_TEMPLATE_CLASSES
# else
__stl_alloc_rebind (__a, (_CharT*)0).deallocate(__s, _S_rounded_up_size(__len));
# endif
}
// Deallocate data section of a leaf.
// This shouldn't be a member function.
// But its hard to do anything else at the
// moment, because it's templatized w.r.t.
// an allocator.
// Does nothing if __GC is defined.
void _M_free_c_string();
void _M_free_tree();
// Deallocate t. Assumes t is not 0.
void _M_unref_nonnil() {
if (_M_decr() == 0) _M_free_tree();
}
void _M_ref_nonnil() {
_M_incr();
}
static void _S_unref(_Self* __t) {
if (0 != __t) {
__t->_M_unref_nonnil();
}
}
static void _S_ref(_Self* __t) {
if (0 != __t) __t->_M_incr();
}
//static void _S_free_if_unref(_Self* __t) {
// if (0 != __t && 0 == __t->_M_ref_count) __t->_M_free_tree();
//}
};
template<class _CharT, class _Alloc>
struct _Rope_RopeLeaf : public _Rope_RopeRep<_CharT,_Alloc> {
public:
_CharT* _M_data; /* Not necessarily 0 terminated. */
/* The allocated size is */
/* _S_rounded_up_size(size), except */
/* in the GC case, in which it */
/* doesn't matter. */
private:
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
typedef typename _RopeRep::_IsBasicCharType _IsBasicCharType;
void _M_init(__true_type const& /*_IsBasicCharType*/) {
this->_M_c_string = _M_data;
}
void _M_init(__false_type const& /*_IsBasicCharType*/) {}
public:
_STLP_FORCE_ALLOCATORS(_CharT, _Alloc)
typedef typename _RopeRep::allocator_type allocator_type;
_Rope_RopeLeaf( _CharT* __d, size_t _p_size, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_leaf, 0, true, _p_size, __a),
_M_data(__d) {
_STLP_ASSERT(_p_size > 0)
_M_init(_IsBasicCharType());
}
# ifdef _STLP_NO_ARROW_OPERATOR
_Rope_RopeLeaf() {}
_Rope_RopeLeaf(const _Rope_RopeLeaf<_CharT, _Alloc>& ) {}
# endif
// The constructor assumes that d has been allocated with
// the proper allocator and the properly padded size.
// In contrast, the destructor deallocates the data:
~_Rope_RopeLeaf() {
if (_M_data != this->_M_c_string) {
this->_M_free_c_string();
}
_RopeRep::_S_free_string(_M_data, this->_M_size._M_data, this->get_allocator());
}
};
template<class _CharT, class _Alloc>
struct _Rope_RopeConcatenation : public _Rope_RopeRep<_CharT, _Alloc> {
private:
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
public:
_RopeRep* _M_left;
_RopeRep* _M_right;
_STLP_FORCE_ALLOCATORS(_CharT, _Alloc)
typedef typename _RopeRep::allocator_type allocator_type;
_Rope_RopeConcatenation(_RopeRep* __l, _RopeRep* __r, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_concat,
(max)(__l->_M_depth, __r->_M_depth) + 1, false,
__l->_M_size._M_data + __r->_M_size._M_data, __a), _M_left(__l), _M_right(__r)
{}
# ifdef _STLP_NO_ARROW_OPERATOR
_Rope_RopeConcatenation() {}
_Rope_RopeConcatenation(const _Rope_RopeConcatenation<_CharT, _Alloc>&) {}
# endif
~_Rope_RopeConcatenation() {
this->_M_free_c_string();
_M_left->_M_unref_nonnil();
_M_right->_M_unref_nonnil();
}
};
template <class _CharT, class _Alloc>
struct _Rope_RopeFunction : public _Rope_RopeRep<_CharT, _Alloc> {
private:
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
public:
char_producer<_CharT>* _M_fn;
/*
* Char_producer is owned by the
* rope and should be explicitly
* deleted when the rope becomes
* inaccessible.
*/
bool _M_delete_when_done;
_STLP_FORCE_ALLOCATORS(_CharT, _Alloc)
typedef typename _Rope_RopeRep<_CharT,_Alloc>::allocator_type allocator_type;
# ifdef _STLP_NO_ARROW_OPERATOR
_Rope_RopeFunction() {}
_Rope_RopeFunction(const _Rope_RopeFunction<_CharT, _Alloc>& ) {}
# endif
_Rope_RopeFunction(char_producer<_CharT>* __f, size_t _p_size,
bool __d, allocator_type __a)
: _Rope_RopeRep<_CharT,_Alloc>(_RopeRep::_S_function, 0, true, _p_size, __a), _M_fn(__f)
, _M_delete_when_done(__d)
{ _STLP_ASSERT(_p_size > 0) }
~_Rope_RopeFunction() {
this->_M_free_c_string();
if (_M_delete_when_done) {
delete _M_fn;
}
}
};
/*
* Substring results are usually represented using just
* concatenation nodes. But in the case of very long flat ropes
* or ropes with a functional representation that isn't practical.
* In that case, we represent the __result as a special case of
* RopeFunction, whose char_producer points back to the rope itself.
* In all cases except repeated substring operations and
* deallocation, we treat the __result as a RopeFunction.
*/
template<class _CharT, class _Alloc>
struct _Rope_RopeSubstring : public char_producer<_CharT>, public _Rope_RopeFunction<_CharT,_Alloc> {
public:
// XXX this whole class should be rewritten.
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
_RopeRep *_M_base; // not 0
size_t _M_start;
/* virtual */ void operator()(size_t __start_pos, size_t __req_len,
_CharT* __buffer) {
typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
switch (_M_base->_M_tag) {
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
char_producer<_CharT>* __fn =
__STATIC_CAST(_RopeFunction*, _M_base)->_M_fn;
_STLP_ASSERT(__start_pos + __req_len <= this->_M_size._M_data)
_STLP_ASSERT(_M_start + this->_M_size._M_data <= _M_base->_M_size._M_data)
(*__fn)(__start_pos + _M_start, __req_len, __buffer);
}
break;
case _RopeRep::_S_leaf:
{
_CharT* __s =
__STATIC_CAST(_RopeLeaf*, _M_base)->_M_data;
_STLP_PRIV __ucopy_n(__s + __start_pos + _M_start, __req_len, __buffer);
}
break;
default:
_STLP_ASSERT(false)
;
}
}
_STLP_FORCE_ALLOCATORS(_CharT, _Alloc)
typedef typename _RopeRep::allocator_type allocator_type;
_Rope_RopeSubstring(_RopeRep* __b, size_t __s, size_t __l, allocator_type __a)
: _Rope_RopeFunction<_CharT,_Alloc>(this, __l, false, __a),
_M_base(__b), _M_start(__s) {
_STLP_ASSERT(__l > 0)
_STLP_ASSERT(__s + __l <= __b->_M_size._M_data)
_M_base->_M_ref_nonnil();
this->_M_tag = _RopeRep::_S_substringfn;
}
virtual ~_Rope_RopeSubstring()
{ _M_base->_M_unref_nonnil(); }
};
/*
* Self-destructing pointers to Rope_rep.
* These are not conventional smart pointers. Their
* only purpose in life is to ensure that unref is called
* on the pointer either at normal exit or if an exception
* is raised. It is the caller's responsibility to
* adjust reference counts when these pointers are initialized
* or assigned to. (This convention significantly reduces
* the number of potentially expensive reference count
* updates.)
*/
template<class _CharT, class _Alloc>
struct _Rope_self_destruct_ptr {
_Rope_RopeRep<_CharT,_Alloc>* _M_ptr;
~_Rope_self_destruct_ptr()
{ _Rope_RopeRep<_CharT,_Alloc>::_S_unref(_M_ptr); }
# ifdef _STLP_USE_EXCEPTIONS
_Rope_self_destruct_ptr() : _M_ptr(0) {}
# else
_Rope_self_destruct_ptr() {}
# endif
_Rope_self_destruct_ptr(_Rope_RopeRep<_CharT,_Alloc>* __p) : _M_ptr(__p) {}
_Rope_RopeRep<_CharT,_Alloc>& operator*() { return *_M_ptr; }
_Rope_RopeRep<_CharT,_Alloc>* operator->() { return _M_ptr; }
operator _Rope_RopeRep<_CharT,_Alloc>*() { return _M_ptr; }
_Rope_self_destruct_ptr<_CharT, _Alloc>&
operator= (_Rope_RopeRep<_CharT,_Alloc>* __x)
{ _M_ptr = __x; return *this; }
};
/*
* Dereferencing a nonconst iterator has to return something
* that behaves almost like a reference. It's not possible to
* return an actual reference since assignment requires extra
* work. And we would get into the same problems as with the
* CD2 version of basic_string.
*/
template<class _CharT, class _Alloc>
class _Rope_char_ref_proxy {
typedef _Rope_char_ref_proxy<_CharT, _Alloc> _Self;
friend class rope<_CharT,_Alloc>;
friend class _Rope_iterator<_CharT,_Alloc>;
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
typedef rope<_CharT,_Alloc> _My_rope;
size_t _M_pos;
_CharT _M_current;
bool _M_current_valid;
_My_rope* _M_root; // The whole rope.
public:
_Rope_char_ref_proxy(_My_rope* __r, size_t __p) :
_M_pos(__p), _M_current_valid(false), _M_root(__r) {}
_Rope_char_ref_proxy(const _Self& __x) :
_M_pos(__x._M_pos), _M_current_valid(false), _M_root(__x._M_root) {}
// Don't preserve cache if the reference can outlive the
// expression. We claim that's not possible without calling
// a copy constructor or generating reference to a proxy
// reference. We declare the latter to have undefined semantics.
_Rope_char_ref_proxy(_My_rope* __r, size_t __p, _CharT __c)
: _M_pos(__p), _M_current(__c), _M_current_valid(true), _M_root(__r) {}
inline operator _CharT () const;
_Self& operator= (_CharT __c);
_Rope_char_ptr_proxy<_CharT, _Alloc> operator& () const;
_Self& operator= (const _Self& __c) {
return operator=((_CharT)__c);
}
};
#ifdef _STLP_FUNCTION_TMPL_PARTIAL_ORDER
template<class _CharT, class __Alloc>
inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a,
_Rope_char_ref_proxy <_CharT, __Alloc > __b) {
_CharT __tmp = __a;
__a = __b;
__b = __tmp;
}
#else
// There is no really acceptable way to handle this. The default
// definition of swap doesn't work for proxy references.
// It can't really be made to work, even with ugly hacks, since
// the only unusual operation it uses is the copy constructor, which
// is needed for other purposes. We provide a macro for
// full specializations, and instantiate the most common case.
# define _ROPE_SWAP_SPECIALIZATION(_CharT, __Alloc) \
inline void swap(_Rope_char_ref_proxy <_CharT, __Alloc > __a, \
_Rope_char_ref_proxy <_CharT, __Alloc > __b) { \
_CharT __tmp = __a; \
__a = __b; \
__b = __tmp; \
}
_ROPE_SWAP_SPECIALIZATION(char, allocator<char>)
# ifndef _STLP_NO_WCHAR_T
_ROPE_SWAP_SPECIALIZATION(wchar_t, allocator<wchar_t>)
# endif
#endif /* !_STLP_FUNCTION_TMPL_PARTIAL_ORDER */
template<class _CharT, class _Alloc>
class _Rope_char_ptr_proxy {
// XXX this class should be rewritten.
public:
typedef _Rope_char_ptr_proxy<_CharT, _Alloc> _Self;
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
size_t _M_pos;
rope<_CharT,_Alloc>* _M_root; // The whole rope.
_Rope_char_ptr_proxy(const _Rope_char_ref_proxy<_CharT,_Alloc>& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
_Rope_char_ptr_proxy(const _Self& __x)
: _M_pos(__x._M_pos), _M_root(__x._M_root) {}
_Rope_char_ptr_proxy() {}
_Rope_char_ptr_proxy(_CharT* __x) : _M_pos(0), _M_root(0) {
_STLP_ASSERT(0 == __x)
}
_Self& operator= (const _Self& __x) {
_M_pos = __x._M_pos;
_M_root = __x._M_root;
return *this;
}
_Rope_char_ref_proxy<_CharT,_Alloc> operator*() const {
return _Rope_char_ref_proxy<_CharT,_Alloc>(_M_root, _M_pos);
}
};
/*
* Rope iterators:
* Unlike in the C version, we cache only part of the stack
* for rope iterators, since they must be efficiently copyable.
* When we run out of cache, we have to reconstruct the iterator
* value.
* Pointers from iterators are not included in reference counts.
* Iterators are assumed to be thread private. Ropes can
* be shared.
*/
template<class _CharT, class _Alloc>
class _Rope_iterator_base
/* : public random_access_iterator<_CharT, ptrdiff_t> */
{
friend class rope<_CharT,_Alloc>;
typedef _Rope_iterator_base<_CharT, _Alloc> _Self;
typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcat;
public:
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
enum { _S_path_cache_len = 4 }; // Must be <= 9 because of _M_path_direction.
enum { _S_iterator_buf_len = 15 };
size_t _M_current_pos;
// The whole rope.
_RopeRep* _M_root;
// Starting position for current leaf
size_t _M_leaf_pos;
// Buffer possibly containing current char.
_CharT* _M_buf_start;
// Pointer to current char in buffer, != 0 ==> buffer valid.
_CharT* _M_buf_ptr;
// One past __last valid char in buffer.
_CharT* _M_buf_end;
// What follows is the path cache. We go out of our
// way to make this compact.
// Path_end contains the bottom section of the path from
// the root to the current leaf.
struct {
# if defined (__BORLANDC__) && (__BORLANDC__ < 0x560)
_RopeRep const*_M_data[4];
# else
_RopeRep const*_M_data[_S_path_cache_len];
# endif
} _M_path_end;
// Last valid __pos in path_end;
// _M_path_end[0] ... _M_path_end[_M_leaf_index-1]
// point to concatenation nodes.
int _M_leaf_index;
// (_M_path_directions >> __i) & 1 is 1
// if we got from _M_path_end[leaf_index - __i - 1]
// to _M_path_end[leaf_index - __i] by going to the
// __right. Assumes path_cache_len <= 9.
unsigned char _M_path_directions;
// Short buffer for surrounding chars.
// This is useful primarily for
// RopeFunctions. We put the buffer
// here to avoid locking in the
// multithreaded case.
// The cached path is generally assumed to be valid
// only if the buffer is valid.
struct {
# if defined (__BORLANDC__) && (__BORLANDC__ < 0x560)
_CharT _M_data[15];
# else
_CharT _M_data[_S_iterator_buf_len];
# endif
} _M_tmp_buf;
// Set buffer contents given path cache.
static void _S_setbuf(_Rope_iterator_base<_CharT, _Alloc>& __x);
// Set buffer contents and path cache.
static void _S_setcache(_Rope_iterator_base<_CharT, _Alloc>& __x);
// As above, but assumes path cache is valid for previous posn.
static void _S_setcache_for_incr(_Rope_iterator_base<_CharT, _Alloc>& __x);
_Rope_iterator_base() {}
_Rope_iterator_base(_RopeRep* __root, size_t __pos)
: _M_current_pos(__pos),_M_root(__root), _M_buf_ptr(0) {}
void _M_incr(size_t __n);
void _M_decr(size_t __n);
public:
size_t index() const { return _M_current_pos; }
private:
void _M_copy_buf(const _Self& __x) {
_M_tmp_buf = __x._M_tmp_buf;
if (__x._M_buf_start == __x._M_tmp_buf._M_data) {
_M_buf_start = _M_tmp_buf._M_data;
_M_buf_end = _M_buf_start + (__x._M_buf_end - __x._M_buf_start);
_M_buf_ptr = _M_buf_start + (__x._M_buf_ptr - __x._M_buf_start);
} else {
_M_buf_end = __x._M_buf_end;
}
}
public:
_Rope_iterator_base(const _Self& __x) :
_M_current_pos(__x._M_current_pos),
_M_root(__x._M_root),
_M_leaf_pos( __x._M_leaf_pos ),
_M_buf_start(__x._M_buf_start),
_M_buf_ptr(__x._M_buf_ptr),
_M_path_end(__x._M_path_end),
_M_leaf_index(__x._M_leaf_index),
_M_path_directions(__x._M_path_directions)
{
if (0 != __x._M_buf_ptr) {
_M_copy_buf(__x);
}
}
_Self& operator = (const _Self& __x)
{
_M_current_pos = __x._M_current_pos;
_M_root = __x._M_root;
_M_buf_start = __x._M_buf_start;
_M_buf_ptr = __x._M_buf_ptr;
_M_path_end = __x._M_path_end;
_M_leaf_index = __x._M_leaf_index;
_M_path_directions = __x._M_path_directions;
_M_leaf_pos = __x._M_leaf_pos;
if (0 != __x._M_buf_ptr) {
_M_copy_buf(__x);
}
return *this;
}
};
template<class _CharT, class _Alloc> class _Rope_iterator;
template<class _CharT, class _Alloc>
class _Rope_const_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
friend class rope<_CharT,_Alloc>;
typedef _Rope_const_iterator<_CharT, _Alloc> _Self;
typedef _Rope_iterator_base<_CharT,_Alloc> _Base;
// protected:
public:
# ifndef _STLP_HAS_NO_NAMESPACES
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
// The one from the base class may not be directly visible.
# endif
_Rope_const_iterator(const _RopeRep* __root, size_t __pos):
_Rope_iterator_base<_CharT,_Alloc>(__CONST_CAST(_RopeRep*,__root), __pos)
// Only nonconst iterators modify root ref count
{}
public:
typedef _CharT reference; // Really a value. Returning a reference
// Would be a mess, since it would have
// to be included in refcount.
typedef const _CharT* pointer;
typedef _CharT value_type;
typedef ptrdiff_t difference_type;
typedef random_access_iterator_tag iterator_category;
public:
_Rope_const_iterator() {}
_Rope_const_iterator(const _Self& __x) :
_Rope_iterator_base<_CharT,_Alloc>(__x) { }
_Rope_const_iterator(const _Rope_iterator<_CharT,_Alloc>& __x):
_Rope_iterator_base<_CharT,_Alloc>(__x) {}
_Rope_const_iterator(const rope<_CharT,_Alloc>& __r, size_t __pos) :
_Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr._M_data, __pos) {}
_Self& operator= (const _Self& __x) {
_Base::operator=(__x);
return *this;
}
reference operator*() {
if (0 == this->_M_buf_ptr)
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || __GNUC_MINOR__ >= 7))
this->_S_setcache(*this);
#elif !defined (__DMC__)
_S_setcache(*this);
#else
{ _Rope_iterator_base<_CharT, _Alloc>* __x = this; _S_setcache(*__x); }
#endif
return *(this->_M_buf_ptr);
}
_Self& operator++()
{
if ( this->_M_buf_ptr != 0 ) {
_CharT *__next = this->_M_buf_ptr + 1;
if ( __next < this->_M_buf_end ) {
this->_M_buf_ptr = __next;
++this->_M_current_pos;
return *this;
}
}
this->_M_incr(1);
return *this;
}
_Self& operator+=(ptrdiff_t __n) {
if (__n >= 0) {
this->_M_incr(__n);
} else {
this->_M_decr(-__n);
}
return *this;
}
_Self& operator--() {
this->_M_decr(1);
return *this;
}
_Self& operator-=(ptrdiff_t __n) {
if (__n >= 0) {
this->_M_decr(__n);
} else {
this->_M_incr(-__n);
}
return *this;
}
_Self operator++(int) {
size_t __old_pos = this->_M_current_pos;
this->_M_incr(1);
return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos);
// This makes a subsequent dereference expensive.
// Perhaps we should instead copy the iterator
// if it has a valid cache?
}
_Self operator--(int) {
size_t __old_pos = this->_M_current_pos;
this->_M_decr(1);
return _Rope_const_iterator<_CharT,_Alloc>(this->_M_root, __old_pos);
}
inline reference operator[](size_t __n);
};
template<class _CharT, class _Alloc>
class _Rope_iterator : public _Rope_iterator_base<_CharT,_Alloc> {
friend class rope<_CharT,_Alloc>;
typedef _Rope_iterator<_CharT, _Alloc> _Self;
typedef _Rope_iterator_base<_CharT,_Alloc> _Base;
typedef _Rope_RopeRep<_CharT,_Alloc> _RopeRep;
public:
rope<_CharT,_Alloc>* _M_root_rope;
// root is treated as a cached version of this,
// and is used to detect changes to the underlying
// rope.
// Root is included in the reference count.
// This is necessary so that we can detect changes reliably.
// Unfortunately, it requires careful bookkeeping for the
// nonGC case.
_Rope_iterator(rope<_CharT,_Alloc>* __r, size_t __pos);
void _M_check();
public:
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
typedef _Rope_char_ref_proxy<_CharT,_Alloc>* pointer;
typedef _CharT value_type;
typedef ptrdiff_t difference_type;
typedef random_access_iterator_tag iterator_category;
public:
~_Rope_iterator() { //*TY 5/6/00 - added dtor to balance reference count
_RopeRep::_S_unref(this->_M_root);
}
rope<_CharT,_Alloc>& container() { return *_M_root_rope; }
_Rope_iterator() {
this->_M_root = 0; // Needed for reference counting.
}
_Rope_iterator(const _Self& __x) :
_Rope_iterator_base<_CharT,_Alloc>(__x) {
_M_root_rope = __x._M_root_rope;
_RopeRep::_S_ref(this->_M_root);
}
_Rope_iterator(rope<_CharT,_Alloc>& __r, size_t __pos);
_Self& operator= (const _Self& __x) {
_RopeRep* __old = this->_M_root;
_RopeRep::_S_ref(__x._M_root);
_Base::operator=(__x);
_M_root_rope = __x._M_root_rope;
_RopeRep::_S_unref(__old);
return *this;
}
reference operator*() {
_M_check();
if (0 == this->_M_buf_ptr) {
return reference(_M_root_rope, this->_M_current_pos);
} else {
return reference(_M_root_rope, this->_M_current_pos, *(this->_M_buf_ptr));
}
}
_Self& operator++() {
this->_M_incr(1);
return *this;
}
_Self& operator+=(ptrdiff_t __n) {
if (__n >= 0) {
this->_M_incr(__n);
} else {
this->_M_decr(-__n);
}
return *this;
}
_Self& operator--() {
this->_M_decr(1);
return *this;
}
_Self& operator-=(ptrdiff_t __n) {
if (__n >= 0) {
this->_M_decr(__n);
} else {
this->_M_incr(-__n);
}
return *this;
}
_Self operator++(int) {
size_t __old_pos = this->_M_current_pos;
this->_M_incr(1);
return _Self(_M_root_rope, __old_pos);
}
_Self operator--(int) {
size_t __old_pos = this->_M_current_pos;
this->_M_decr(1);
return _Self(_M_root_rope, __old_pos);
}
reference operator[](ptrdiff_t __n) {
return reference(_M_root_rope, this->_M_current_pos + __n);
}
};
# ifdef _STLP_USE_OLD_HP_ITERATOR_QUERIES
template <class _CharT, class _Alloc>
inline random_access_iterator_tag
iterator_category(const _Rope_iterator<_CharT,_Alloc>&) { return random_access_iterator_tag();}
template <class _CharT, class _Alloc>
inline _CharT* value_type(const _Rope_iterator<_CharT,_Alloc>&) { return 0; }
template <class _CharT, class _Alloc>
inline ptrdiff_t* distance_type(const _Rope_iterator<_CharT,_Alloc>&) { return 0; }
template <class _CharT, class _Alloc>
inline random_access_iterator_tag
iterator_category(const _Rope_const_iterator<_CharT,_Alloc>&) { return random_access_iterator_tag(); }
template <class _CharT, class _Alloc>
inline _CharT* value_type(const _Rope_const_iterator<_CharT,_Alloc>&) { return 0; }
template <class _CharT, class _Alloc>
inline ptrdiff_t* distance_type(const _Rope_const_iterator<_CharT,_Alloc>&) { return 0; }
#endif /* _STLP_USE_OLD_HP_ITERATOR_QUERIES */
template <class _CharT, class _Alloc, class _CharConsumer>
bool _S_apply_to_pieces(_CharConsumer& __c,
_Rope_RopeRep<_CharT, _Alloc> *__r,
size_t __begin, size_t __end);
// begin and end are assumed to be in range.
template <class _CharT, class _Alloc>
class rope
#if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND)
: public __stlport_class<rope<_CharT, _Alloc> >
#endif
{
typedef rope<_CharT,_Alloc> _Self;
public:
typedef _CharT value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef _CharT const_reference;
typedef const _CharT* const_pointer;
typedef _Rope_iterator<_CharT,_Alloc> iterator;
typedef _Rope_const_iterator<_CharT,_Alloc> const_iterator;
typedef _Rope_char_ref_proxy<_CharT,_Alloc> reference;
typedef _Rope_char_ptr_proxy<_CharT,_Alloc> pointer;
friend class _Rope_iterator<_CharT,_Alloc>;
friend class _Rope_const_iterator<_CharT,_Alloc>;
friend struct _Rope_RopeRep<_CharT,_Alloc>;
friend class _Rope_iterator_base<_CharT,_Alloc>;
friend class _Rope_char_ptr_proxy<_CharT,_Alloc>;
friend class _Rope_char_ref_proxy<_CharT,_Alloc>;
friend struct _Rope_RopeSubstring<_CharT,_Alloc>;
_STLP_DECLARE_RANDOM_ACCESS_REVERSE_ITERATORS;
protected:
typedef _CharT* _Cstrptr;
static _CharT _S_empty_c_str[1];
enum { _S_copy_max = 23 };
// For strings shorter than _S_copy_max, we copy to
// concatenate.
typedef _Rope_RopeRep<_CharT, _Alloc> _RopeRep;
typedef typename _RopeRep::_IsBasicCharType _IsBasicCharType;
public:
_STLP_FORCE_ALLOCATORS(_CharT, _Alloc)
typedef _Alloc allocator_type;
public:
// The only data member of a rope:
_STLP_PRIV _STLP_alloc_proxy<_RopeRep*, _CharT, allocator_type> _M_tree_ptr;
public:
allocator_type get_allocator() const { return allocator_type(_M_tree_ptr); }
public:
typedef _Rope_RopeConcatenation<_CharT,_Alloc> _RopeConcatenation;
typedef _Rope_RopeLeaf<_CharT,_Alloc> _RopeLeaf;
typedef _Rope_RopeFunction<_CharT,_Alloc> _RopeFunction;
typedef _Rope_RopeSubstring<_CharT,_Alloc> _RopeSubstring;
// Retrieve a character at the indicated position.
static _CharT _S_fetch(_RopeRep* __r, size_type __pos);
// Obtain a pointer to the character at the indicated position.
// The pointer can be used to change the character.
// If such a pointer cannot be produced, as is frequently the
// case, 0 is returned instead.
// (Returns nonzero only if all nodes in the path have a refcount
// of 1.)
static _CharT* _S_fetch_ptr(_RopeRep* __r, size_type __pos);
static void _S_unref(_RopeRep* __t) {
_RopeRep::_S_unref(__t);
}
static void _S_ref(_RopeRep* __t) {
_RopeRep::_S_ref(__t);
}
typedef _Rope_self_destruct_ptr<_CharT,_Alloc> _Self_destruct_ptr;
// _Result is counted in refcount.
static _RopeRep* _S_substring(_RopeRep* __base,
size_t __start, size_t __endp1);
static _RopeRep* _S_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen);
// Concatenate rope and char ptr, copying __s.
// Should really take an arbitrary iterator.
// Result is counted in refcount.
static _RopeRep* _S_destr_concat_char_iter(_RopeRep* __r,
const _CharT* __iter, size_t __slen);
// As above, but one reference to __r is about to be
// destroyed. Thus the pieces may be recycled if all
// relevent reference counts are 1.
// General concatenation on _RopeRep. _Result
// has refcount of 1. Adjusts argument refcounts.
static _RopeRep* _S_concat_rep(_RopeRep* __left, _RopeRep* __right);
public:
#if defined (_STLP_MEMBER_TEMPLATES)
template <class _CharConsumer>
#else
typedef _Rope_char_consumer<_CharT> _CharConsumer;
#endif
void apply_to_pieces(size_t __begin, size_t __end,
_CharConsumer& __c) const
{ _S_apply_to_pieces(__c, _M_tree_ptr._M_data, __begin, __end); }
protected:
static size_t _S_rounded_up_size(size_t __n)
{ return _RopeRep::_S_rounded_up_size(__n); }
// Allocate and construct a RopeLeaf using the supplied allocator
// Takes ownership of s instead of copying.
static _RopeLeaf* _S_new_RopeLeaf(_CharT *__s,
size_t _p_size, allocator_type __a) {
_RopeLeaf* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a,
_RopeLeaf).allocate(1);
_STLP_TRY {
new(__space) _RopeLeaf(__s, _p_size, __a);
}
_STLP_UNWIND(_STLP_CREATE_ALLOCATOR(allocator_type,__a,
_RopeLeaf).deallocate(__space, 1))
return __space;
}
static _RopeConcatenation* _S_new_RopeConcatenation(_RopeRep* __left, _RopeRep* __right,
allocator_type __a) {
_RopeConcatenation* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a,
_RopeConcatenation).allocate(1);
return new(__space) _RopeConcatenation(__left, __right, __a);
}
static _RopeFunction* _S_new_RopeFunction(char_producer<_CharT>* __f,
size_t _p_size, bool __d, allocator_type __a) {
_RopeFunction* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a,
_RopeFunction).allocate(1);
return new(__space) _RopeFunction(__f, _p_size, __d, __a);
}
static _RopeSubstring* _S_new_RopeSubstring(_Rope_RopeRep<_CharT,_Alloc>* __b, size_t __s,
size_t __l, allocator_type __a) {
_RopeSubstring* __space = _STLP_CREATE_ALLOCATOR(allocator_type, __a,
_RopeSubstring).allocate(1);
return new(__space) _RopeSubstring(__b, __s, __l, __a);
}
static
_RopeLeaf* _S_RopeLeaf_from_unowned_char_ptr(const _CharT *__s,
size_t _p_size, allocator_type __a) {
if (0 == _p_size) return 0;
_CharT* __buf = _STLP_CREATE_ALLOCATOR(allocator_type,__a, _CharT).allocate(_S_rounded_up_size(_p_size));
_STLP_PRIV __ucopy_n(__s, _p_size, __buf);
_S_construct_null(__buf + _p_size);
_STLP_TRY {
return _S_new_RopeLeaf(__buf, _p_size, __a);
}
_STLP_UNWIND(_RopeRep::_S_free_string(__buf, _p_size, __a))
_STLP_RET_AFTER_THROW(0)
}
// Concatenation of nonempty strings.
// Always builds a concatenation node.
// Rebalances if the result is too deep.
// Result has refcount 1.
// Does not increment left and right ref counts even though
// they are referenced.
static _RopeRep*
_S_tree_concat(_RopeRep* __left, _RopeRep* __right);
// Concatenation helper functions
static _RopeLeaf*
_S_leaf_concat_char_iter(_RopeLeaf* __r,
const _CharT* __iter, size_t __slen);
// Concatenate by copying leaf.
// should take an arbitrary iterator
// result has refcount 1.
static _RopeLeaf* _S_destr_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __slen);
// A version that potentially clobbers __r if __r->_M_ref_count == 1.
// A helper function for exponentiating strings.
// This uses a nonstandard refcount convention.
// The result has refcount 0.
typedef _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc> _Concat_fn;
#if !defined (__GNUC__) || (__GNUC__ < 3)
friend _Concat_fn;
#else
friend struct _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc>;
#endif
public:
static size_t _S_char_ptr_len(const _CharT* __s) {
return char_traits<_CharT>::length(__s);
}
public: /* for operators */
rope(_RopeRep* __t, const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, __t) { }
private:
// Copy __r to the _CharT buffer.
// Returns __buffer + __r->_M_size._M_data.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r, _CharT* __buffer);
// Again, with explicit starting position and length.
// Assumes that buffer is uninitialized.
static _CharT* _S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer);
// fbp : HP aCC prohibits access to protected min_len from within static methods ( ?? )
public:
static const unsigned long _S_min_len[__ROPE_DEPTH_SIZE];
protected:
static bool _S_is_balanced(_RopeRep* __r)
{ return (__r->_M_size._M_data >= _S_min_len[__r->_M_depth]); }
static bool _S_is_almost_balanced(_RopeRep* __r) {
return (__r->_M_depth == 0 ||
__r->_M_size._M_data >= _S_min_len[__r->_M_depth - 1]);
}
static bool _S_is_roughly_balanced(_RopeRep* __r) {
return (__r->_M_depth <= 1 ||
__r->_M_size._M_data >= _S_min_len[__r->_M_depth - 2]);
}
// Assumes the result is not empty.
static _RopeRep* _S_concat_and_set_balanced(_RopeRep* __left,
_RopeRep* __right) {
_RopeRep* __result = _S_concat_rep(__left, __right);
if (_S_is_balanced(__result)) __result->_M_is_balanced = true;
return __result;
}
// The basic rebalancing operation. Logically copies the
// rope. The result has refcount of 1. The client will
// usually decrement the reference count of __r.
// The result is within height 2 of balanced by the above
// definition.
static _RopeRep* _S_balance(_RopeRep* __r);
// Add all unbalanced subtrees to the forest of balanceed trees.
// Used only by balance.
static void _S_add_to_forest(_RopeRep*__r, _RopeRep** __forest);
// Add __r to forest, assuming __r is already balanced.
static void _S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest);
#ifdef _STLP_DEBUG
// Print to stdout, exposing structure
static void _S_dump(_RopeRep* __r, int __indent = 0);
#endif
// Return -1, 0, or 1 if __x < __y, __x == __y, or __x > __y resp.
static int _S_compare(const _RopeRep* __x, const _RopeRep* __y);
void _STLP_FUNCTION_THROWS _M_throw_out_of_range() const;
void _M_reset(_RopeRep* __r) {
//if (__r != _M_tree_ptr._M_data) {
_S_unref(_M_tree_ptr._M_data);
_M_tree_ptr._M_data = __r;
//}
}
public:
bool empty() const { return 0 == _M_tree_ptr._M_data; }
// Comparison member function. This is public only for those
// clients that need a ternary comparison. Others
// should use the comparison operators below.
int compare(const _Self& __y) const {
return _S_compare(_M_tree_ptr._M_data, __y._M_tree_ptr._M_data);
}
rope(const _CharT* __s, const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, _S_RopeLeaf_from_unowned_char_ptr(__s, _S_char_ptr_len(__s),__a))
{}
rope(const _CharT* __s, size_t __len,
const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, (_S_RopeLeaf_from_unowned_char_ptr(__s, __len, __a)))
{}
// Should perhaps be templatized with respect to the iterator type
// and use Sequence_buffer. (It should perhaps use sequence_buffer
// even now.)
rope(const _CharT *__s, const _CharT *__e,
const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, _S_RopeLeaf_from_unowned_char_ptr(__s, __e - __s, __a))
{}
rope(const const_iterator& __s, const const_iterator& __e,
const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, _S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos))
{}
rope(const iterator& __s, const iterator& __e,
const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, _S_substring(__s._M_root, __s._M_current_pos,
__e._M_current_pos))
{}
rope(_CharT __c, const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, (_RopeRep*)0) {
_CharT* __buf = _M_tree_ptr.allocate(_S_rounded_up_size(1));
_Copy_Construct(__buf, __c);
_S_construct_null(__buf + 1);
_STLP_TRY {
_M_tree_ptr._M_data = _S_new_RopeLeaf(__buf, 1, __a);
}
_STLP_UNWIND(_RopeRep::_S_free_string(__buf, 1, __a))
}
rope(size_t __n, _CharT __c,
const allocator_type& __a = allocator_type()):
_M_tree_ptr(__a, (_RopeRep*)0) {
if (0 == __n)
return;
rope<_CharT,_Alloc> __result;
# define __exponentiate_threshold size_t(32)
_RopeRep* __remainder;
rope<_CharT,_Alloc> __remainder_rope;
// gcc-2.7.2 bugs
typedef _STLP_PRIV _Rope_Concat_fn<_CharT,_Alloc> _Concat_fn;
size_t __exponent = __n / __exponentiate_threshold;
size_t __rest = __n % __exponentiate_threshold;
if (0 == __rest) {
__remainder = 0;
} else {
_CharT* __rest_buffer = _M_tree_ptr.allocate(_S_rounded_up_size(__rest));
uninitialized_fill_n(__rest_buffer, __rest, __c);
_S_construct_null(__rest_buffer + __rest);
_STLP_TRY {
__remainder = _S_new_RopeLeaf(__rest_buffer, __rest, __a);
}
_STLP_UNWIND(_RopeRep::_S_free_string(__rest_buffer, __rest, __a))
}
__remainder_rope._M_tree_ptr._M_data = __remainder;
if (__exponent != 0) {
_CharT* __base_buffer = _M_tree_ptr.allocate(_S_rounded_up_size(__exponentiate_threshold));
_RopeLeaf* __base_leaf;
rope<_CharT,_Alloc> __base_rope;
uninitialized_fill_n(__base_buffer, __exponentiate_threshold, __c);
_S_construct_null(__base_buffer + __exponentiate_threshold);
_STLP_TRY {
__base_leaf = _S_new_RopeLeaf(__base_buffer,
__exponentiate_threshold, __a);
}
_STLP_UNWIND(_RopeRep::_S_free_string(__base_buffer,
__exponentiate_threshold, __a))
__base_rope._M_tree_ptr._M_data = __base_leaf;
if (1 == __exponent) {
__result = __base_rope;
// One each for base_rope and __result
//_STLP_ASSERT(2 == __result._M_tree_ptr._M_data->_M_ref_count)
} else {
__result = _STLP_PRIV __power(__base_rope, __exponent, _Concat_fn());
}
if (0 != __remainder) {
__result += __remainder_rope;
}
} else {
__result = __remainder_rope;
}
_M_tree_ptr._M_data = __result._M_tree_ptr._M_data;
_M_tree_ptr._M_data->_M_ref_nonnil();
# undef __exponentiate_threshold
}
rope(const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, (_RopeRep*)0) {}
// Construct a rope from a function that can compute its members
rope(char_producer<_CharT> *__fn, size_t __len, bool __delete_fn,
const allocator_type& __a = allocator_type())
: _M_tree_ptr(__a, (_RopeRep*)0) {
_M_tree_ptr._M_data = (0 == __len) ?
0 : _S_new_RopeFunction(__fn, __len, __delete_fn, __a);
}
rope(const _Self& __x)
: _M_tree_ptr(__x._M_tree_ptr, __x._M_tree_ptr._M_data) {
_S_ref(_M_tree_ptr._M_data);
}
#if !defined (_STLP_NO_MOVE_SEMANTIC)
rope(__move_source<_Self> __src)
: _M_tree_ptr(__src.get()._M_tree_ptr, __src.get()._M_tree_ptr._M_data) {
__src.get()._M_tree_ptr._M_data = 0;
}
#endif
~rope() {
_S_unref(_M_tree_ptr._M_data);
}
_Self& operator=(const _Self& __x) {
_STLP_ASSERT(get_allocator() == __x.get_allocator())
_S_ref(__x._M_tree_ptr._M_data);
_M_reset(__x._M_tree_ptr._M_data);
return *this;
}
void clear() {
_S_unref(_M_tree_ptr._M_data);
_M_tree_ptr._M_data = 0;
}
void push_back(_CharT __x) {
_M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, &__x, 1));
}
void pop_back() {
_RopeRep* __old = _M_tree_ptr._M_data;
_M_tree_ptr._M_data =
_S_substring(_M_tree_ptr._M_data, 0, _M_tree_ptr._M_data->_M_size._M_data - 1);
_S_unref(__old);
}
_CharT back() const {
return _S_fetch(_M_tree_ptr._M_data, _M_tree_ptr._M_data->_M_size._M_data - 1);
}
void push_front(_CharT __x) {
_RopeRep* __old = _M_tree_ptr._M_data;
_RopeRep* __left =
_S_RopeLeaf_from_unowned_char_ptr(&__x, 1, _M_tree_ptr);
_STLP_TRY {
_M_tree_ptr._M_data = _S_concat_rep(__left, _M_tree_ptr._M_data);
_S_unref(__old);
_S_unref(__left);
}
_STLP_UNWIND(_S_unref(__left))
}
void pop_front() {
_RopeRep* __old = _M_tree_ptr._M_data;
_M_tree_ptr._M_data = _S_substring(_M_tree_ptr._M_data, 1, _M_tree_ptr._M_data->_M_size._M_data);
_S_unref(__old);
}
_CharT front() const {
return _S_fetch(_M_tree_ptr._M_data, 0);
}
void balance() {
_RopeRep* __old = _M_tree_ptr._M_data;
_M_tree_ptr._M_data = _S_balance(_M_tree_ptr._M_data);
_S_unref(__old);
}
void copy(_CharT* __buffer) const {
_STLP_STD::_Destroy_Range(__buffer, __buffer + size());
_S_flatten(_M_tree_ptr._M_data, __buffer);
}
/*
* This is the copy function from the standard, but
* with the arguments reordered to make it consistent with the
* rest of the interface.
* Note that this guaranteed not to compile if the draft standard
* order is assumed.
*/
size_type copy(size_type __pos, size_type __n, _CharT* __buffer) const {
size_t _p_size = size();
size_t __len = (__pos + __n > _p_size? _p_size - __pos : __n);
_STLP_STD::_Destroy_Range(__buffer, __buffer + __len);
_S_flatten(_M_tree_ptr._M_data, __pos, __len, __buffer);
return __len;
}
# ifdef _STLP_DEBUG
// Print to stdout, exposing structure. May be useful for
// performance debugging.
void dump() {
_S_dump(_M_tree_ptr._M_data);
}
# endif
// Convert to 0 terminated string in new allocated memory.
// Embedded 0s in the input do not terminate the copy.
const _CharT* c_str() const;
// As above, but also use the flattened representation as the
// the new rope representation.
const _CharT* replace_with_c_str();
// Reclaim memory for the c_str generated flattened string.
// Intentionally undocumented, since it's hard to say when this
// is safe for multiple threads.
void delete_c_str () {
if (0 == _M_tree_ptr._M_data) return;
if (_RopeRep::_S_leaf == _M_tree_ptr._M_data->_M_tag &&
((_RopeLeaf*)_M_tree_ptr._M_data)->_M_data ==
_M_tree_ptr._M_data->_M_c_string) {
// Representation shared
return;
}
_M_tree_ptr._M_data->_M_free_c_string();
_M_tree_ptr._M_data->_M_c_string = 0;
}
_CharT operator[] (size_type __pos) const {
return _S_fetch(_M_tree_ptr._M_data, __pos);
}
_CharT at(size_type __pos) const {
if (__pos >= size()) _M_throw_out_of_range();
return (*this)[__pos];
}
const_iterator begin() const {
return(const_iterator(_M_tree_ptr._M_data, 0));
}
// An easy way to get a const iterator from a non-const container.
const_iterator const_begin() const {
return(const_iterator(_M_tree_ptr._M_data, 0));
}
const_iterator end() const {
return(const_iterator(_M_tree_ptr._M_data, size()));
}
const_iterator const_end() const {
return(const_iterator(_M_tree_ptr._M_data, size()));
}
size_type size() const {
return(0 == _M_tree_ptr._M_data? 0 : _M_tree_ptr._M_data->_M_size._M_data);
}
size_type length() const {
return size();
}
size_type max_size() const {
return _S_min_len[__ROPE_MAX_DEPTH-1] - 1;
// Guarantees that the result can be sufficiently
// balanced. Longer ropes will probably still work,
// but it's harder to make guarantees.
}
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator const_rbegin() const {
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
const_reverse_iterator const_rend() const {
return const_reverse_iterator(begin());
}
// The symmetric cases are intentionally omitted, since they're presumed
// to be less common, and we don't handle them as well.
// The following should really be templatized.
// The first argument should be an input iterator or
// forward iterator with value_type _CharT.
_Self& append(const _CharT* __iter, size_t __n) {
_M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, __iter, __n));
return *this;
}
_Self& append(const _CharT* __c_string) {
size_t __len = _S_char_ptr_len(__c_string);
append(__c_string, __len);
return *this;
}
_Self& append(const _CharT* __s, const _CharT* __e) {
_M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, __s, __e - __s));
return *this;
}
_Self& append(const_iterator __s, const_iterator __e) {
_STLP_ASSERT(__s._M_root == __e._M_root)
_STLP_ASSERT(get_allocator() == __s._M_root->get_allocator())
_Self_destruct_ptr __appendee(_S_substring(__s._M_root, __s._M_current_pos, __e._M_current_pos));
_M_reset(_S_concat_rep(_M_tree_ptr._M_data, (_RopeRep*)__appendee));
return *this;
}
_Self& append(_CharT __c) {
_M_reset(_S_destr_concat_char_iter(_M_tree_ptr._M_data, &__c, 1));
return *this;
}
_Self& append() { return append(_CharT()); } // XXX why?
_Self& append(const _Self& __y) {
_STLP_ASSERT(__y.get_allocator() == get_allocator())
_M_reset(_S_concat_rep(_M_tree_ptr._M_data, __y._M_tree_ptr._M_data));
return *this;
}
_Self& append(size_t __n, _CharT __c) {
rope<_CharT,_Alloc> __last(__n, __c);
return append(__last);
}
void swap(_Self& __b) {
_M_tree_ptr.swap(__b._M_tree_ptr);
}
#if defined (_STLP_USE_PARTIAL_SPEC_WORKAROUND) && !defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER)
void _M_swap_workaround(_Self& __x) { swap(__x); }
#endif
protected:
// Result is included in refcount.
static _RopeRep* replace(_RopeRep* __old, size_t __pos1,
size_t __pos2, _RopeRep* __r) {
if (0 == __old) { _S_ref(__r); return __r; }
_Self_destruct_ptr __left(_S_substring(__old, 0, __pos1));
_Self_destruct_ptr __right(_S_substring(__old, __pos2, __old->_M_size._M_data));
_STLP_MPWFIX_TRY //*TY 06/01/2000 -
_RopeRep* __result;
if (0 == __r) {
__result = _S_concat_rep(__left, __right);
} else {
_STLP_ASSERT(__old->get_allocator() == __r->get_allocator())
_Self_destruct_ptr __left_result(_S_concat_rep(__left, __r));
__result = _S_concat_rep(__left_result, __right);
}
return __result;
_STLP_MPWFIX_CATCH //*TY 06/01/2000 -
}
public:
void insert(size_t __p, const _Self& __r) {
if (__p > size()) _M_throw_out_of_range();
_STLP_ASSERT(get_allocator() == __r.get_allocator())
_M_reset(replace(_M_tree_ptr._M_data, __p, __p, __r._M_tree_ptr._M_data));
}
void insert(size_t __p, size_t __n, _CharT __c) {
rope<_CharT,_Alloc> __r(__n,__c);
insert(__p, __r);
}
void insert(size_t __p, const _CharT* __i, size_t __n) {
if (__p > size()) _M_throw_out_of_range();
_Self_destruct_ptr __left(_S_substring(_M_tree_ptr._M_data, 0, __p));
_Self_destruct_ptr __right(_S_substring(_M_tree_ptr._M_data, __p, size()));
_Self_destruct_ptr __left_result(
_S_concat_char_iter(__left, __i, __n));
// _S_ destr_concat_char_iter should be safe here.
// But as it stands it's probably not a win, since __left
// is likely to have additional references.
_M_reset(_S_concat_rep(__left_result, __right));
}
void insert(size_t __p, const _CharT* __c_string) {
insert(__p, __c_string, _S_char_ptr_len(__c_string));
}
void insert(size_t __p, _CharT __c) {
insert(__p, &__c, 1);
}
void insert(size_t __p) {
_CharT __c = _CharT();
insert(__p, &__c, 1);
}
void insert(size_t __p, const _CharT* __i, const _CharT* __j) {
_Self __r(__i, __j);
insert(__p, __r);
}
void insert(size_t __p, const const_iterator& __i,
const const_iterator& __j) {
_Self __r(__i, __j);
insert(__p, __r);
}
void insert(size_t __p, const iterator& __i,
const iterator& __j) {
_Self __r(__i, __j);
insert(__p, __r);
}
// (position, length) versions of replace operations:
void replace(size_t __p, size_t __n, const _Self& __r) {
if (__p > size()) _M_throw_out_of_range();
_M_reset(replace(_M_tree_ptr._M_data, __p, __p + __n, __r._M_tree_ptr._M_data));
}
void replace(size_t __p, size_t __n,
const _CharT* __i, size_t __i_len) {
_Self __r(__i, __i_len);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n, _CharT __c) {
_Self __r(__c);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n, const _CharT* __c_string) {
_Self __r(__c_string);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n,
const _CharT* __i, const _CharT* __j) {
_Self __r(__i, __j);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n,
const const_iterator& __i, const const_iterator& __j) {
_Self __r(__i, __j);
replace(__p, __n, __r);
}
void replace(size_t __p, size_t __n,
const iterator& __i, const iterator& __j) {
_Self __r(__i, __j);
replace(__p, __n, __r);
}
// Single character variants:
void replace(size_t __p, _CharT __c) {
if (__p > size()) _M_throw_out_of_range();
iterator __i(this, __p);
*__i = __c;
}
void replace(size_t __p, const _Self& __r) {
replace(__p, 1, __r);
}
void replace(size_t __p, const _CharT* __i, size_t __i_len) {
replace(__p, 1, __i, __i_len);
}
void replace(size_t __p, const _CharT* __c_string) {
replace(__p, 1, __c_string);
}
void replace(size_t __p, const _CharT* __i, const _CharT* __j) {
replace(__p, 1, __i, __j);
}
void replace(size_t __p, const const_iterator& __i,
const const_iterator& __j) {
replace(__p, 1, __i, __j);
}
void replace(size_t __p, const iterator& __i,
const iterator& __j) {
replace(__p, 1, __i, __j);
}
// Erase, (position, size) variant.
void erase(size_t __p, size_t __n) {
if (__p > size()) _M_throw_out_of_range();
_M_reset(replace(_M_tree_ptr._M_data, __p, __p + __n, 0));
}
// Erase, single character
void erase(size_t __p) {
erase(__p, __p + 1);
}
// Insert, iterator variants.
iterator insert(const iterator& __p, const _Self& __r)
{ insert(__p.index(), __r); return __p; }
iterator insert(const iterator& __p, size_t __n, _CharT __c)
{ insert(__p.index(), __n, __c); return __p; }
iterator insert(const iterator& __p, _CharT __c)
{ insert(__p.index(), __c); return __p; }
iterator insert(const iterator& __p )
{ insert(__p.index()); return __p; }
iterator insert(const iterator& __p, const _CharT* c_string)
{ insert(__p.index(), c_string); return __p; }
iterator insert(const iterator& __p, const _CharT* __i, size_t __n)
{ insert(__p.index(), __i, __n); return __p; }
iterator insert(const iterator& __p, const _CharT* __i,
const _CharT* __j)
{ insert(__p.index(), __i, __j); return __p; }
iterator insert(const iterator& __p,
const const_iterator& __i, const const_iterator& __j)
{ insert(__p.index(), __i, __j); return __p; }
iterator insert(const iterator& __p,
const iterator& __i, const iterator& __j)
{ insert(__p.index(), __i, __j); return __p; }
// Replace, range variants.
void replace(const iterator& __p, const iterator& __q,
const _Self& __r)
{ replace(__p.index(), __q.index() - __p.index(), __r); }
void replace(const iterator& __p, const iterator& __q, _CharT __c)
{ replace(__p.index(), __q.index() - __p.index(), __c); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __c_string)
{ replace(__p.index(), __q.index() - __p.index(), __c_string); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __i, size_t __n)
{ replace(__p.index(), __q.index() - __p.index(), __i, __n); }
void replace(const iterator& __p, const iterator& __q,
const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void replace(const iterator& __p, const iterator& __q,
const const_iterator& __i, const const_iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
void replace(const iterator& __p, const iterator& __q,
const iterator& __i, const iterator& __j)
{ replace(__p.index(), __q.index() - __p.index(), __i, __j); }
// Replace, iterator variants.
void replace(const iterator& __p, const _Self& __r)
{ replace(__p.index(), __r); }
void replace(const iterator& __p, _CharT __c)
{ replace(__p.index(), __c); }
void replace(const iterator& __p, const _CharT* __c_string)
{ replace(__p.index(), __c_string); }
void replace(const iterator& __p, const _CharT* __i, size_t __n)
{ replace(__p.index(), __i, __n); }
void replace(const iterator& __p, const _CharT* __i, const _CharT* __j)
{ replace(__p.index(), __i, __j); }
void replace(const iterator& __p, const_iterator __i,
const_iterator __j)
{ replace(__p.index(), __i, __j); }
void replace(const iterator& __p, iterator __i, iterator __j)
{ replace(__p.index(), __i, __j); }
// Iterator and range variants of erase
iterator erase(const iterator& __p, const iterator& __q) {
size_t __p_index = __p.index();
erase(__p_index, __q.index() - __p_index);
return iterator(this, __p_index);
}
iterator erase(const iterator& __p) {
size_t __p_index = __p.index();
erase(__p_index, 1);
return iterator(this, __p_index);
}
_Self substr(size_t __start, size_t __len = 1) const {
if (__start > size()) _M_throw_out_of_range();
return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start, __start + __len));
}
_Self substr(iterator __start, iterator __end) const {
return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start.index(), __end.index()));
}
_Self substr(iterator __start) const {
size_t __pos = __start.index();
return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __pos, __pos + 1));
}
_Self substr(const_iterator __start, const_iterator __end) const {
// This might eventually take advantage of the cache in the
// iterator.
return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __start.index(), __end.index()));
}
rope<_CharT,_Alloc> substr(const_iterator __start) {
size_t __pos = __start.index();
return rope<_CharT,_Alloc>(_S_substring(_M_tree_ptr._M_data, __pos, __pos + 1));
}
#include <stl/_string_npos.h>
size_type find(const _Self& __s, size_type __pos = 0) const {
if (__pos >= size())
# ifndef _STLP_OLD_ROPE_SEMANTICS
return npos;
# else
return size();
# endif
size_type __result_pos;
const_iterator __result = _STLP_STD::search(const_begin() + (ptrdiff_t)__pos, const_end(), __s.begin(), __s.end() );
__result_pos = __result.index();
# ifndef _STLP_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
# endif
return __result_pos;
}
size_type find(_CharT __c, size_type __pos = 0) const;
size_type find(const _CharT* __s, size_type __pos = 0) const {
size_type __result_pos;
const_iterator __result = _STLP_STD::search(const_begin() + (ptrdiff_t)__pos, const_end(),
__s, __s + _S_char_ptr_len(__s));
__result_pos = __result.index();
# ifndef _STLP_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
# endif
return __result_pos;
}
iterator mutable_begin() {
return(iterator(this, 0));
}
iterator mutable_end() {
return(iterator(this, size()));
}
reverse_iterator mutable_rbegin() {
return reverse_iterator(mutable_end());
}
reverse_iterator mutable_rend() {
return reverse_iterator(mutable_begin());
}
reference mutable_reference_at(size_type __pos) {
return reference(this, __pos);
}
# ifdef __STD_STUFF
reference operator[] (size_type __pos) {
return reference(this, __pos);
}
reference at(size_type __pos) {
if (__pos >= size()) _M_throw_out_of_range();
return (*this)[__pos];
}
void resize(size_type, _CharT) {}
void resize(size_type) {}
void reserve(size_type = 0) {}
size_type capacity() const {
return max_size();
}
// Stuff below this line is dangerous because it's error prone.
// I would really like to get rid of it.
// copy function with funny arg ordering.
size_type copy(_CharT* __buffer, size_type __n,
size_type __pos = 0) const {
return copy(__pos, __n, __buffer);
}
iterator end() { return mutable_end(); }
iterator begin() { return mutable_begin(); }
reverse_iterator rend() { return mutable_rend(); }
reverse_iterator rbegin() { return mutable_rbegin(); }
# else
const_iterator end() { return const_end(); }
const_iterator begin() { return const_begin(); }
const_reverse_iterator rend() { return const_rend(); }
const_reverse_iterator rbegin() { return const_rbegin(); }
# endif
}; //class rope
#if defined (__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ == 96)
template <class _CharT, class _Alloc>
const size_t rope<_CharT, _Alloc>::npos = ~(size_t) 0;
#endif
template <class _CharT, class _Alloc>
inline _CharT
_Rope_const_iterator< _CharT, _Alloc>::operator[](size_t __n)
{ return rope<_CharT,_Alloc>::_S_fetch(this->_M_root, this->_M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos == __y._M_current_pos &&
__x._M_root == __y._M_root);
}
template <class _CharT, class _Alloc>
inline bool operator< (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y)
{ return (__x._M_current_pos < __y._M_current_pos); }
#ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y)
{ return !(__x == __y); }
template <class _CharT, class _Alloc>
inline bool operator> (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y)
{ return __y < __x; }
template <class _CharT, class _Alloc>
inline bool operator<= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y)
{ return !(__y < __x); }
template <class _CharT, class _Alloc>
inline bool operator>= (const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y)
{ return !(__x < __y); }
#endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */
template <class _CharT, class _Alloc>
inline ptrdiff_t operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x,
const _Rope_const_iterator<_CharT,_Alloc>& __y)
{ return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; }
#if !defined( __MWERKS__ ) || __MWERKS__ >= 0x2000 // dwa 8/21/97 - "ambiguous access to overloaded function" bug.
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator-(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n)
{ return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos - __n); }
# endif
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator+(const _Rope_const_iterator<_CharT,_Alloc>& __x, ptrdiff_t __n)
{ return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline _Rope_const_iterator<_CharT,_Alloc>
operator+(ptrdiff_t __n, const _Rope_const_iterator<_CharT,_Alloc>& __x)
{ return _Rope_const_iterator<_CharT,_Alloc>(__x._M_root, __x._M_current_pos + __n); }
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y) {
return (__x._M_current_pos == __y._M_current_pos &&
__x._M_root_rope == __y._M_root_rope);
}
template <class _CharT, class _Alloc>
inline bool operator< (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y)
{ return (__x._M_current_pos < __y._M_current_pos); }
#if defined (_STLP_USE_SEPARATE_RELOPS_NAMESPACE)
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y)
{ return !(__x == __y); }
template <class _CharT, class _Alloc>
inline bool operator> (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y)
{ return __y < __x; }
template <class _CharT, class _Alloc>
inline bool operator<= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y)
{ return !(__y < __x); }
template <class _CharT, class _Alloc>
inline bool operator>= (const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y)
{ return !(__x < __y); }
#endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */
template <class _CharT, class _Alloc>
inline ptrdiff_t operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
const _Rope_iterator<_CharT,_Alloc>& __y)
{ return (ptrdiff_t)__x._M_current_pos - (ptrdiff_t)__y._M_current_pos; }
#if !defined( __MWERKS__ ) || __MWERKS__ >= 0x2000 // dwa 8/21/97 - "ambiguous access to overloaded function" bug.
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator-(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n) {
return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos - __n);
}
# endif
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator+(const _Rope_iterator<_CharT,_Alloc>& __x,
ptrdiff_t __n) {
return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos + __n);
}
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>
operator+(ptrdiff_t __n, const _Rope_iterator<_CharT,_Alloc>& __x) {
return _Rope_iterator<_CharT,_Alloc>(__x._M_root_rope, __x._M_current_pos + __n);
}
template <class _CharT, class _Alloc>
inline rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
_STLP_ASSERT(__left.get_allocator() == __right.get_allocator())
return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_rep(__left._M_tree_ptr._M_data, __right._M_tree_ptr._M_data));
// Inlining this should make it possible to keep __left and __right in registers.
}
template <class _CharT, class _Alloc>
inline rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left,
const _CharT* __right) {
size_t __rlen = rope<_CharT,_Alloc>::_S_char_ptr_len(__right);
return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_char_iter(__left._M_tree_ptr._M_data, __right, __rlen));
}
template <class _CharT, class _Alloc>
inline rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left,
const _CharT* __right) {
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline rope<_CharT,_Alloc>
operator+ (const rope<_CharT,_Alloc>& __left, _CharT __right) {
return rope<_CharT,_Alloc>(rope<_CharT,_Alloc>::_S_concat_char_iter(__left._M_tree_ptr._M_data, &__right, 1));
}
template <class _CharT, class _Alloc>
inline rope<_CharT,_Alloc>&
operator+= (rope<_CharT,_Alloc>& __left, _CharT __right) {
__left.append(__right);
return __left;
}
template <class _CharT, class _Alloc>
inline bool
operator< (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
return __left.compare(__right) < 0;
}
template <class _CharT, class _Alloc>
inline bool
operator== (const rope<_CharT,_Alloc>& __left,
const rope<_CharT,_Alloc>& __right) {
return __left.compare(__right) == 0;
}
#ifdef _STLP_USE_SEPARATE_RELOPS_NAMESPACE
template <class _CharT, class _Alloc>
inline bool
operator!= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
template <class _CharT, class _Alloc>
inline bool
operator> (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return __y < __x;
}
template <class _CharT, class _Alloc>
inline bool
operator<= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__y < __x);
}
template <class _CharT, class _Alloc>
inline bool
operator>= (const rope<_CharT,_Alloc>& __x, const rope<_CharT,_Alloc>& __y) {
return !(__x < __y);
}
template <class _CharT, class _Alloc>
inline bool operator!= (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
return !(__x == __y);
}
#endif /* _STLP_USE_SEPARATE_RELOPS_NAMESPACE */
template <class _CharT, class _Alloc>
inline bool operator== (const _Rope_char_ptr_proxy<_CharT,_Alloc>& __x,
const _Rope_char_ptr_proxy<_CharT,_Alloc>& __y) {
return (__x._M_pos == __y._M_pos && __x._M_root == __y._M_root);
}
#if !defined (_STLP_USE_NO_IOSTREAMS)
template<class _CharT, class _Traits, class _Alloc>
basic_ostream<_CharT, _Traits>& operator<< (basic_ostream<_CharT, _Traits>& __o,
const rope<_CharT, _Alloc>& __r);
#endif
typedef rope<char, allocator<char> > crope;
#if defined (_STLP_HAS_WCHAR_T)
typedef rope<wchar_t, allocator<wchar_t> > wrope;
#endif
inline crope::reference __mutable_reference_at(crope& __c, size_t __i)
{ return __c.mutable_reference_at(__i); }
#if defined (_STLP_HAS_WCHAR_T)
inline wrope::reference __mutable_reference_at(wrope& __c, size_t __i)
{ return __c.mutable_reference_at(__i); }
#endif
#if defined (_STLP_FUNCTION_TMPL_PARTIAL_ORDER)
template <class _CharT, class _Alloc>
inline void swap(rope<_CharT,_Alloc>& __x, rope<_CharT,_Alloc>& __y)
{ __x.swap(__y); }
#else
inline void swap(crope& __x, crope& __y) { __x.swap(__y); }
# ifdef _STLP_HAS_WCHAR_T // dwa 8/21/97
inline void swap(wrope& __x, wrope& __y) { __x.swap(__y); }
# endif
#endif /* _STLP_FUNCTION_TMPL_PARTIAL_ORDER */
// Hash functions should probably be revisited later:
_STLP_TEMPLATE_NULL struct hash<crope> {
size_t operator()(const crope& __str) const {
size_t _p_size = __str.size();
if (0 == _p_size) return 0;
return 13*__str[0] + 5*__str[_p_size - 1] + _p_size;
}
};
#if defined (_STLP_HAS_WCHAR_T) // dwa 8/21/97
_STLP_TEMPLATE_NULL struct hash<wrope> {
size_t operator()(const wrope& __str) const {
size_t _p_size = __str.size();
if (0 == _p_size) return 0;
return 13*__str[0] + 5*__str[_p_size - 1] + _p_size;
}
};
#endif
#if (!defined (_STLP_MSVC) || (_STLP_MSVC >= 1310))
// I couldn't get this to work with VC++
template<class _CharT,class _Alloc>
# if defined (__DMC__)
extern
# endif
void _Rope_rotate(_Rope_iterator<_CharT, _Alloc> __first,
_Rope_iterator<_CharT, _Alloc> __middle,
_Rope_iterator<_CharT, _Alloc> __last);
inline void rotate(_Rope_iterator<char, allocator<char> > __first,
_Rope_iterator<char, allocator<char> > __middle,
_Rope_iterator<char, allocator<char> > __last)
{ _Rope_rotate(__first, __middle, __last); }
#endif
template <class _CharT, class _Alloc>
inline _Rope_char_ref_proxy<_CharT, _Alloc>::operator _CharT () const {
if (_M_current_valid) {
return _M_current;
} else {
return _My_rope::_S_fetch(_M_root->_M_tree_ptr._M_data, _M_pos);
}
}
#if defined (_STLP_CLASS_PARTIAL_SPECIALIZATION) && !defined (_STLP_NO_MOVE_SEMANTIC)
template <class _CharT, class _Alloc>
struct __move_traits<rope<_CharT, _Alloc> > {
typedef __true_type implemented;
//Completness depends on the allocator:
typedef typename __move_traits<_Alloc>::complete complete;
};
#endif
_STLP_END_NAMESPACE
#if !defined (_STLP_LINK_TIME_INSTANTIATION)
# include <stl/_rope.c>
#endif
#endif /* _STLP_INTERNAL_ROPE_H */
// Local Variables:
// mode:C++
// End: