blob: 1e97c93567bc5b884bdbe4397d2275e5068990ac [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/memory/shared_memory.h"
#include <memory>
#include "starboard/types.h"
#include "starboard/memory.h"
#include "base/atomicops.h"
#include "base/base_switches.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/shared_memory_handle.h"
#include "base/process/kill.h"
#include "base/rand_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "base/strings/string_util.h"
#include "base/sys_info.h"
#include "base/test/multiprocess_test.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "base/unguessable_token.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"
#if defined(OS_ANDROID)
#include "base/callback.h"
#endif
#if defined(OS_POSIX)
#include <errno.h>
#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#endif
#if defined(OS_LINUX)
#include <sys/syscall.h>
#endif
#if defined(OS_WIN)
#include "base/win/scoped_handle.h"
#endif
#if defined(OS_FUCHSIA)
#include <lib/zx/vmar.h>
#include <lib/zx/vmo.h>
#endif
namespace base {
namespace {
#if !defined(OS_MACOSX) && !defined(OS_FUCHSIA)
// Each thread will open the shared memory. Each thread will take a different 4
// byte int pointer, and keep changing it, with some small pauses in between.
// Verify that each thread's value in the shared memory is always correct.
class MultipleThreadMain : public PlatformThread::Delegate {
public:
explicit MultipleThreadMain(int16_t id) : id_(id) {}
~MultipleThreadMain() override = default;
static void CleanUp() {
SharedMemory memory;
memory.Delete(s_test_name_);
}
// PlatformThread::Delegate interface.
void ThreadMain() override {
const uint32_t kDataSize = 1024;
SharedMemory memory;
bool rv = memory.CreateNamedDeprecated(s_test_name_, true, kDataSize);
EXPECT_TRUE(rv);
rv = memory.Map(kDataSize);
EXPECT_TRUE(rv);
int* ptr = static_cast<int*>(memory.memory()) + id_;
EXPECT_EQ(0, *ptr);
for (int idx = 0; idx < 100; idx++) {
*ptr = idx;
PlatformThread::Sleep(TimeDelta::FromMilliseconds(1));
EXPECT_EQ(*ptr, idx);
}
// Reset back to 0 for the next test that uses the same name.
*ptr = 0;
memory.Close();
}
private:
int16_t id_;
static const char s_test_name_[];
DISALLOW_COPY_AND_ASSIGN(MultipleThreadMain);
};
const char MultipleThreadMain::s_test_name_[] =
"SharedMemoryOpenThreadTest";
#endif // !defined(OS_MACOSX) && !defined(OS_FUCHSIA)
enum class Mode {
Default,
#if defined(OS_LINUX) && !defined(OS_CHROMEOS)
DisableDevShm = 1,
#endif
};
class SharedMemoryTest : public ::testing::TestWithParam<Mode> {
public:
void SetUp() override {
switch (GetParam()) {
case Mode::Default:
break;
#if defined(OS_LINUX) && !defined(OS_CHROMEOS)
case Mode::DisableDevShm:
CommandLine* cmdline = CommandLine::ForCurrentProcess();
cmdline->AppendSwitch(switches::kDisableDevShmUsage);
break;
#endif // defined(OS_LINUX) && !defined(OS_CHROMEOS)
}
}
};
} // namespace
// Android/Mac/Fuchsia doesn't support SharedMemory::Open/Delete/
// CreateNamedDeprecated(openExisting=true)
#if !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(OS_FUCHSIA)
TEST_P(SharedMemoryTest, OpenClose) {
const uint32_t kDataSize = 1024;
std::string test_name = "SharedMemoryOpenCloseTest";
// Open two handles to a memory segment, confirm that they are mapped
// separately yet point to the same space.
SharedMemory memory1;
bool rv = memory1.Delete(test_name);
EXPECT_TRUE(rv);
rv = memory1.Delete(test_name);
EXPECT_TRUE(rv);
rv = memory1.Open(test_name, false);
EXPECT_FALSE(rv);
rv = memory1.CreateNamedDeprecated(test_name, false, kDataSize);
EXPECT_TRUE(rv);
rv = memory1.Map(kDataSize);
EXPECT_TRUE(rv);
SharedMemory memory2;
rv = memory2.Open(test_name, false);
EXPECT_TRUE(rv);
rv = memory2.Map(kDataSize);
EXPECT_TRUE(rv);
EXPECT_NE(memory1.memory(), memory2.memory()); // Compare the pointers.
// Make sure we don't segfault. (it actually happened!)
ASSERT_NE(memory1.memory(), static_cast<void*>(nullptr));
ASSERT_NE(memory2.memory(), static_cast<void*>(nullptr));
// Write data to the first memory segment, verify contents of second.
SbMemorySet(memory1.memory(), '1', kDataSize);
EXPECT_EQ(SbMemoryCompare(memory1.memory(), memory2.memory(), kDataSize), 0);
// Close the first memory segment, and verify the second has the right data.
memory1.Close();
char* start_ptr = static_cast<char*>(memory2.memory());
char* end_ptr = start_ptr + kDataSize;
for (char* ptr = start_ptr; ptr < end_ptr; ptr++)
EXPECT_EQ(*ptr, '1');
// Close the second memory segment.
memory2.Close();
rv = memory1.Delete(test_name);
EXPECT_TRUE(rv);
rv = memory2.Delete(test_name);
EXPECT_TRUE(rv);
}
TEST_P(SharedMemoryTest, OpenExclusive) {
const uint32_t kDataSize = 1024;
const uint32_t kDataSize2 = 2048;
std::ostringstream test_name_stream;
test_name_stream << "SharedMemoryOpenExclusiveTest."
<< Time::Now().ToDoubleT();
std::string test_name = test_name_stream.str();
// Open two handles to a memory segment and check that
// open_existing_deprecated works as expected.
SharedMemory memory1;
bool rv = memory1.CreateNamedDeprecated(test_name, false, kDataSize);
EXPECT_TRUE(rv);
// Memory1 knows it's size because it created it.
EXPECT_EQ(memory1.requested_size(), kDataSize);
rv = memory1.Map(kDataSize);
EXPECT_TRUE(rv);
// The mapped memory1 must be at least the size we asked for.
EXPECT_GE(memory1.mapped_size(), kDataSize);
// The mapped memory1 shouldn't exceed rounding for allocation granularity.
EXPECT_LT(memory1.mapped_size(),
kDataSize + SysInfo::VMAllocationGranularity());
SbMemorySet(memory1.memory(), 'G', kDataSize);
SharedMemory memory2;
// Should not be able to create if openExisting is false.
rv = memory2.CreateNamedDeprecated(test_name, false, kDataSize2);
EXPECT_FALSE(rv);
// Should be able to create with openExisting true.
rv = memory2.CreateNamedDeprecated(test_name, true, kDataSize2);
EXPECT_TRUE(rv);
// Memory2 shouldn't know the size because we didn't create it.
EXPECT_EQ(memory2.requested_size(), 0U);
// We should be able to map the original size.
rv = memory2.Map(kDataSize);
EXPECT_TRUE(rv);
// The mapped memory2 must be at least the size of the original.
EXPECT_GE(memory2.mapped_size(), kDataSize);
// The mapped memory2 shouldn't exceed rounding for allocation granularity.
EXPECT_LT(memory2.mapped_size(),
kDataSize2 + SysInfo::VMAllocationGranularity());
// Verify that opening memory2 didn't truncate or delete memory 1.
char* start_ptr = static_cast<char*>(memory2.memory());
char* end_ptr = start_ptr + kDataSize;
for (char* ptr = start_ptr; ptr < end_ptr; ptr++) {
EXPECT_EQ(*ptr, 'G');
}
memory1.Close();
memory2.Close();
rv = memory1.Delete(test_name);
EXPECT_TRUE(rv);
}
#endif // !defined(OS_ANDROID) && !defined(OS_MACOSX) && !defined(OS_FUCHSIA)
// Check that memory is still mapped after its closed.
TEST_P(SharedMemoryTest, CloseNoUnmap) {
const size_t kDataSize = 4096;
SharedMemory memory;
ASSERT_TRUE(memory.CreateAndMapAnonymous(kDataSize));
char* ptr = static_cast<char*>(memory.memory());
ASSERT_NE(ptr, static_cast<void*>(nullptr));
SbMemorySet(ptr, 'G', kDataSize);
memory.Close();
EXPECT_EQ(ptr, memory.memory());
EXPECT_TRUE(!memory.handle().IsValid());
for (size_t i = 0; i < kDataSize; i++) {
EXPECT_EQ('G', ptr[i]);
}
memory.Unmap();
EXPECT_EQ(nullptr, memory.memory());
}
#if !defined(OS_MACOSX) && !defined(OS_FUCHSIA)
// Create a set of N threads to each open a shared memory segment and write to
// it. Verify that they are always reading/writing consistent data.
TEST_P(SharedMemoryTest, MultipleThreads) {
const int kNumThreads = 5;
MultipleThreadMain::CleanUp();
// On POSIX we have a problem when 2 threads try to create the shmem
// (a file) at exactly the same time, since create both creates the
// file and zerofills it. We solve the problem for this unit test
// (make it not flaky) by starting with 1 thread, then
// intentionally don't clean up its shmem before running with
// kNumThreads.
int threadcounts[] = { 1, kNumThreads };
for (size_t i = 0; i < arraysize(threadcounts); i++) {
int numthreads = threadcounts[i];
std::unique_ptr<PlatformThreadHandle[]> thread_handles;
std::unique_ptr<MultipleThreadMain* []> thread_delegates;
thread_handles.reset(new PlatformThreadHandle[numthreads]);
thread_delegates.reset(new MultipleThreadMain*[numthreads]);
// Spawn the threads.
for (int16_t index = 0; index < numthreads; index++) {
PlatformThreadHandle pth;
thread_delegates[index] = new MultipleThreadMain(index);
EXPECT_TRUE(PlatformThread::Create(0, thread_delegates[index], &pth));
thread_handles[index] = pth;
}
// Wait for the threads to finish.
for (int index = 0; index < numthreads; index++) {
PlatformThread::Join(thread_handles[index]);
delete thread_delegates[index];
}
}
MultipleThreadMain::CleanUp();
}
#endif
// Allocate private (unique) shared memory with an empty string for a
// name. Make sure several of them don't point to the same thing as
// we might expect if the names are equal.
TEST_P(SharedMemoryTest, AnonymousPrivate) {
int i, j;
int count = 4;
bool rv;
const uint32_t kDataSize = 8192;
std::unique_ptr<SharedMemory[]> memories(new SharedMemory[count]);
std::unique_ptr<int* []> pointers(new int*[count]);
ASSERT_TRUE(memories.get());
ASSERT_TRUE(pointers.get());
for (i = 0; i < count; i++) {
rv = memories[i].CreateAndMapAnonymous(kDataSize);
EXPECT_TRUE(rv);
int* ptr = static_cast<int*>(memories[i].memory());
EXPECT_TRUE(ptr);
pointers[i] = ptr;
}
for (i = 0; i < count; i++) {
// zero out the first int in each except for i; for that one, make it 100.
for (j = 0; j < count; j++) {
if (i == j)
pointers[j][0] = 100;
else
pointers[j][0] = 0;
}
// make sure there is no bleeding of the 100 into the other pointers
for (j = 0; j < count; j++) {
if (i == j)
EXPECT_EQ(100, pointers[j][0]);
else
EXPECT_EQ(0, pointers[j][0]);
}
}
for (int i = 0; i < count; i++) {
memories[i].Close();
}
}
TEST_P(SharedMemoryTest, GetReadOnlyHandle) {
StringPiece contents = "Hello World";
SharedMemory writable_shmem;
SharedMemoryCreateOptions options;
options.size = contents.size();
options.share_read_only = true;
#if defined(OS_MACOSX) && !defined(OS_IOS)
// The Mach functionality is tested in shared_memory_mac_unittest.cc.
options.type = SharedMemoryHandle::POSIX;
#endif
ASSERT_TRUE(writable_shmem.Create(options));
ASSERT_TRUE(writable_shmem.Map(options.size));
SbMemoryCopy(writable_shmem.memory(), contents.data(), contents.size());
EXPECT_TRUE(writable_shmem.Unmap());
SharedMemoryHandle readonly_handle = writable_shmem.GetReadOnlyHandle();
EXPECT_EQ(writable_shmem.handle().GetGUID(), readonly_handle.GetGUID());
EXPECT_EQ(writable_shmem.handle().GetSize(), readonly_handle.GetSize());
ASSERT_TRUE(readonly_handle.IsValid());
SharedMemory readonly_shmem(readonly_handle, /*readonly=*/true);
ASSERT_TRUE(readonly_shmem.Map(contents.size()));
EXPECT_EQ(contents,
StringPiece(static_cast<const char*>(readonly_shmem.memory()),
contents.size()));
EXPECT_TRUE(readonly_shmem.Unmap());
#if defined(OS_ANDROID)
// On Android, mapping a region through a read-only descriptor makes the
// region read-only. Any writable mapping attempt should fail.
ASSERT_FALSE(writable_shmem.Map(contents.size()));
#else
// Make sure the writable instance is still writable.
ASSERT_TRUE(writable_shmem.Map(contents.size()));
StringPiece new_contents = "Goodbye";
SbMemoryCopy(writable_shmem.memory(), new_contents.data(),
new_contents.size());
EXPECT_EQ(new_contents,
StringPiece(static_cast<const char*>(writable_shmem.memory()),
new_contents.size()));
#endif
// We'd like to check that if we send the read-only segment to another
// process, then that other process can't reopen it read/write. (Since that
// would be a security hole.) Setting up multiple processes is hard in a
// unittest, so this test checks that the *current* process can't reopen the
// segment read/write. I think the test here is stronger than we actually
// care about, but there's a remote possibility that sending a file over a
// pipe would transform it into read/write.
SharedMemoryHandle handle = readonly_shmem.handle();
#if defined(OS_ANDROID)
// The "read-only" handle is still writable on Android:
// http://crbug.com/320865
(void)handle;
#elif defined(OS_FUCHSIA)
uintptr_t addr;
EXPECT_NE(ZX_OK, zx::vmar::root_self()->map(
0, *zx::unowned_vmo(handle.GetHandle()), 0,
contents.size(), ZX_VM_FLAG_PERM_WRITE, &addr))
<< "Shouldn't be able to map as writable.";
zx::vmo duped_handle;
EXPECT_NE(ZX_OK, zx::unowned_vmo(handle.GetHandle())
->duplicate(ZX_RIGHT_WRITE, &duped_handle))
<< "Shouldn't be able to duplicate the handle into a writable one.";
EXPECT_EQ(ZX_OK, zx::unowned_vmo(handle.GetHandle())
->duplicate(ZX_RIGHT_READ, &duped_handle))
<< "Should be able to duplicate the handle into a readable one.";
#elif defined(OS_POSIX)
int handle_fd = SharedMemory::GetFdFromSharedMemoryHandle(handle);
EXPECT_EQ(O_RDONLY, fcntl(handle_fd, F_GETFL) & O_ACCMODE)
<< "The descriptor itself should be read-only.";
errno = 0;
void* writable = mmap(nullptr, contents.size(), PROT_READ | PROT_WRITE,
MAP_SHARED, handle_fd, 0);
int mmap_errno = errno;
EXPECT_EQ(MAP_FAILED, writable)
<< "It shouldn't be possible to re-mmap the descriptor writable.";
EXPECT_EQ(EACCES, mmap_errno) << strerror(mmap_errno);
if (writable != MAP_FAILED)
EXPECT_EQ(0, munmap(writable, readonly_shmem.mapped_size()));
#elif defined(OS_WIN)
EXPECT_EQ(NULL, MapViewOfFile(handle.GetHandle(), FILE_MAP_WRITE, 0, 0, 0))
<< "Shouldn't be able to map memory writable.";
HANDLE temp_handle;
BOOL rv = ::DuplicateHandle(GetCurrentProcess(), handle.GetHandle(),
GetCurrentProcess(), &temp_handle,
FILE_MAP_ALL_ACCESS, false, 0);
EXPECT_EQ(FALSE, rv)
<< "Shouldn't be able to duplicate the handle into a writable one.";
if (rv)
win::ScopedHandle writable_handle(temp_handle);
rv = ::DuplicateHandle(GetCurrentProcess(), handle.GetHandle(),
GetCurrentProcess(), &temp_handle, FILE_MAP_READ,
false, 0);
EXPECT_EQ(TRUE, rv)
<< "Should be able to duplicate the handle into a readable one.";
if (rv)
win::ScopedHandle writable_handle(temp_handle);
#else
#error Unexpected platform; write a test that tries to make 'handle' writable.
#endif // defined(OS_POSIX) || defined(OS_WIN)
}
TEST_P(SharedMemoryTest, ShareToSelf) {
StringPiece contents = "Hello World";
SharedMemory shmem;
ASSERT_TRUE(shmem.CreateAndMapAnonymous(contents.size()));
SbMemoryCopy(shmem.memory(), contents.data(), contents.size());
EXPECT_TRUE(shmem.Unmap());
SharedMemoryHandle shared_handle = shmem.handle().Duplicate();
ASSERT_TRUE(shared_handle.IsValid());
EXPECT_TRUE(shared_handle.OwnershipPassesToIPC());
EXPECT_EQ(shared_handle.GetGUID(), shmem.handle().GetGUID());
EXPECT_EQ(shared_handle.GetSize(), shmem.handle().GetSize());
SharedMemory shared(shared_handle, /*readonly=*/false);
ASSERT_TRUE(shared.Map(contents.size()));
EXPECT_EQ(
contents,
StringPiece(static_cast<const char*>(shared.memory()), contents.size()));
shared_handle = shmem.handle().Duplicate();
ASSERT_TRUE(shared_handle.IsValid());
ASSERT_TRUE(shared_handle.OwnershipPassesToIPC());
SharedMemory readonly(shared_handle, /*readonly=*/true);
ASSERT_TRUE(readonly.Map(contents.size()));
EXPECT_EQ(contents,
StringPiece(static_cast<const char*>(readonly.memory()),
contents.size()));
}
TEST_P(SharedMemoryTest, ShareWithMultipleInstances) {
static const StringPiece kContents = "Hello World";
SharedMemory shmem;
ASSERT_TRUE(shmem.CreateAndMapAnonymous(kContents.size()));
// We do not need to unmap |shmem| to let |shared| map.
const StringPiece shmem_contents(static_cast<const char*>(shmem.memory()),
shmem.requested_size());
SharedMemoryHandle shared_handle = shmem.handle().Duplicate();
ASSERT_TRUE(shared_handle.IsValid());
SharedMemory shared(shared_handle, /*readonly=*/false);
ASSERT_TRUE(shared.Map(kContents.size()));
// The underlying shared memory is created by |shmem|, so both
// |shared|.requested_size() and |readonly|.requested_size() are zero.
ASSERT_EQ(0U, shared.requested_size());
const StringPiece shared_contents(static_cast<const char*>(shared.memory()),
shmem.requested_size());
shared_handle = shmem.handle().Duplicate();
ASSERT_TRUE(shared_handle.IsValid());
ASSERT_TRUE(shared_handle.OwnershipPassesToIPC());
SharedMemory readonly(shared_handle, /*readonly=*/true);
ASSERT_TRUE(readonly.Map(kContents.size()));
ASSERT_EQ(0U, readonly.requested_size());
const StringPiece readonly_contents(
static_cast<const char*>(readonly.memory()),
shmem.requested_size());
// |shmem| should be able to update the content.
SbMemoryCopy(shmem.memory(), kContents.data(), kContents.size());
ASSERT_EQ(kContents, shmem_contents);
ASSERT_EQ(kContents, shared_contents);
ASSERT_EQ(kContents, readonly_contents);
// |shared| should also be able to update the content.
SbMemoryCopy(shared.memory(), ToLowerASCII(kContents).c_str(),
kContents.size());
ASSERT_EQ(StringPiece(ToLowerASCII(kContents)), shmem_contents);
ASSERT_EQ(StringPiece(ToLowerASCII(kContents)), shared_contents);
ASSERT_EQ(StringPiece(ToLowerASCII(kContents)), readonly_contents);
}
TEST_P(SharedMemoryTest, MapAt) {
ASSERT_TRUE(SysInfo::VMAllocationGranularity() >= sizeof(uint32_t));
const size_t kCount = SysInfo::VMAllocationGranularity();
const size_t kDataSize = kCount * sizeof(uint32_t);
SharedMemory memory;
ASSERT_TRUE(memory.CreateAndMapAnonymous(kDataSize));
uint32_t* ptr = static_cast<uint32_t*>(memory.memory());
ASSERT_NE(ptr, static_cast<void*>(nullptr));
for (size_t i = 0; i < kCount; ++i) {
ptr[i] = i;
}
memory.Unmap();
off_t offset = SysInfo::VMAllocationGranularity();
ASSERT_TRUE(memory.MapAt(offset, kDataSize - offset));
offset /= sizeof(uint32_t);
ptr = static_cast<uint32_t*>(memory.memory());
ASSERT_NE(ptr, static_cast<void*>(nullptr));
for (size_t i = offset; i < kCount; ++i) {
EXPECT_EQ(ptr[i - offset], i);
}
}
TEST_P(SharedMemoryTest, MapTwice) {
const uint32_t kDataSize = 1024;
SharedMemory memory;
bool rv = memory.CreateAndMapAnonymous(kDataSize);
EXPECT_TRUE(rv);
void* old_address = memory.memory();
rv = memory.Map(kDataSize);
EXPECT_FALSE(rv);
EXPECT_EQ(old_address, memory.memory());
}
#if defined(OS_POSIX)
// This test is not applicable for iOS (crbug.com/399384).
#if !defined(OS_IOS)
// Create a shared memory object, mmap it, and mprotect it to PROT_EXEC.
TEST_P(SharedMemoryTest, AnonymousExecutable) {
#if defined(OS_LINUX)
// On Chromecast both /dev/shm and /tmp are mounted with 'noexec' option,
// which makes this test fail. But Chromecast doesn't use NaCL so we don't
// need this.
if (!IsPathExecutable(FilePath("/dev/shm")) &&
!IsPathExecutable(FilePath("/tmp"))) {
return;
}
#endif // OS_LINUX
const uint32_t kTestSize = 1 << 16;
SharedMemory shared_memory;
SharedMemoryCreateOptions options;
options.size = kTestSize;
options.executable = true;
#if defined(OS_MACOSX) && !defined(OS_IOS)
// The Mach functionality is tested in shared_memory_mac_unittest.cc.
options.type = SharedMemoryHandle::POSIX;
#endif
EXPECT_TRUE(shared_memory.Create(options));
EXPECT_TRUE(shared_memory.Map(shared_memory.requested_size()));
EXPECT_EQ(0, mprotect(shared_memory.memory(), shared_memory.requested_size(),
PROT_READ | PROT_EXEC));
}
#endif // !defined(OS_IOS)
#if defined(OS_ANDROID)
// This test is restricted to Android since there is no way on other platforms
// to guarantee that a region can never be mapped with PROT_EXEC. E.g. on
// Linux, anonymous shared regions come from /dev/shm which can be mounted
// without 'noexec'. In this case, anything can perform an mprotect() to
// change the protection mask of a given page.
TEST(SharedMemoryTest, AnonymousIsNotExecutableByDefault) {
const uint32_t kTestSize = 1 << 16;
SharedMemory shared_memory;
SharedMemoryCreateOptions options;
options.size = kTestSize;
EXPECT_TRUE(shared_memory.Create(options));
EXPECT_TRUE(shared_memory.Map(shared_memory.requested_size()));
errno = 0;
EXPECT_EQ(-1, mprotect(shared_memory.memory(), shared_memory.requested_size(),
PROT_READ | PROT_EXEC));
EXPECT_EQ(EACCES, errno);
}
#endif // OS_ANDROID
// Android supports a different permission model than POSIX for its "ashmem"
// shared memory implementation. So the tests about file permissions are not
// included on Android. Fuchsia does not use a file-backed shared memory
// implementation.
#if !defined(OS_ANDROID) && !defined(OS_FUCHSIA)
// Set a umask and restore the old mask on destruction.
class ScopedUmaskSetter {
public:
explicit ScopedUmaskSetter(mode_t target_mask) {
old_umask_ = umask(target_mask);
}
~ScopedUmaskSetter() { umask(old_umask_); }
private:
mode_t old_umask_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedUmaskSetter);
};
// Create a shared memory object, check its permissions.
TEST_P(SharedMemoryTest, FilePermissionsAnonymous) {
const uint32_t kTestSize = 1 << 8;
SharedMemory shared_memory;
SharedMemoryCreateOptions options;
options.size = kTestSize;
#if defined(OS_MACOSX) && !defined(OS_IOS)
// The Mach functionality is tested in shared_memory_mac_unittest.cc.
options.type = SharedMemoryHandle::POSIX;
#endif
// Set a file mode creation mask that gives all permissions.
ScopedUmaskSetter permissive_mask(S_IWGRP | S_IWOTH);
EXPECT_TRUE(shared_memory.Create(options));
int shm_fd =
SharedMemory::GetFdFromSharedMemoryHandle(shared_memory.handle());
struct stat shm_stat;
EXPECT_EQ(0, fstat(shm_fd, &shm_stat));
// Neither the group, nor others should be able to read the shared memory
// file.
EXPECT_FALSE(shm_stat.st_mode & S_IRWXO);
EXPECT_FALSE(shm_stat.st_mode & S_IRWXG);
}
// Create a shared memory object, check its permissions.
TEST_P(SharedMemoryTest, FilePermissionsNamed) {
const uint32_t kTestSize = 1 << 8;
SharedMemory shared_memory;
SharedMemoryCreateOptions options;
options.size = kTestSize;
#if defined(OS_MACOSX) && !defined(OS_IOS)
// The Mach functionality is tested in shared_memory_mac_unittest.cc.
options.type = SharedMemoryHandle::POSIX;
#endif
// Set a file mode creation mask that gives all permissions.
ScopedUmaskSetter permissive_mask(S_IWGRP | S_IWOTH);
EXPECT_TRUE(shared_memory.Create(options));
int fd = SharedMemory::GetFdFromSharedMemoryHandle(shared_memory.handle());
struct stat shm_stat;
EXPECT_EQ(0, fstat(fd, &shm_stat));
// Neither the group, nor others should have been able to open the shared
// memory file while its name existed.
EXPECT_FALSE(shm_stat.st_mode & S_IRWXO);
EXPECT_FALSE(shm_stat.st_mode & S_IRWXG);
}
#endif // !defined(OS_ANDROID) && !defined(OS_FUCHSIA)
#endif // defined(OS_POSIX)
// Map() will return addresses which are aligned to the platform page size, this
// varies from platform to platform though. Since we'd like to advertise a
// minimum alignment that callers can count on, test for it here.
TEST_P(SharedMemoryTest, MapMinimumAlignment) {
static const int kDataSize = 8192;
SharedMemory shared_memory;
ASSERT_TRUE(shared_memory.CreateAndMapAnonymous(kDataSize));
EXPECT_EQ(0U, reinterpret_cast<uintptr_t>(
shared_memory.memory()) & (SharedMemory::MAP_MINIMUM_ALIGNMENT - 1));
shared_memory.Close();
}
#if defined(OS_WIN)
TEST_P(SharedMemoryTest, UnsafeImageSection) {
const char kTestSectionName[] = "UnsafeImageSection";
wchar_t path[MAX_PATH];
EXPECT_GT(::GetModuleFileName(nullptr, path, arraysize(path)), 0U);
// Map the current executable image to save us creating a new PE file on disk.
base::win::ScopedHandle file_handle(::CreateFile(
path, GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, 0, nullptr));
EXPECT_TRUE(file_handle.IsValid());
base::win::ScopedHandle section_handle(
::CreateFileMappingA(file_handle.Get(), nullptr,
PAGE_READONLY | SEC_IMAGE, 0, 0, kTestSectionName));
EXPECT_TRUE(section_handle.IsValid());
// Check direct opening by name, from handle and duplicated from handle.
SharedMemory shared_memory_open;
EXPECT_TRUE(shared_memory_open.Open(kTestSectionName, true));
EXPECT_FALSE(shared_memory_open.Map(1));
EXPECT_EQ(nullptr, shared_memory_open.memory());
SharedMemory shared_memory_handle_local(
SharedMemoryHandle(section_handle.Take(), 1, UnguessableToken::Create()),
true);
EXPECT_FALSE(shared_memory_handle_local.Map(1));
EXPECT_EQ(nullptr, shared_memory_handle_local.memory());
// Check that a handle without SECTION_QUERY also can't be mapped as it can't
// be checked.
SharedMemory shared_memory_handle_dummy;
SharedMemoryCreateOptions options;
options.size = 0x1000;
EXPECT_TRUE(shared_memory_handle_dummy.Create(options));
HANDLE handle_no_query;
EXPECT_TRUE(::DuplicateHandle(
::GetCurrentProcess(), shared_memory_handle_dummy.handle().GetHandle(),
::GetCurrentProcess(), &handle_no_query, FILE_MAP_READ, FALSE, 0));
SharedMemory shared_memory_handle_no_query(
SharedMemoryHandle(handle_no_query, options.size,
UnguessableToken::Create()),
true);
EXPECT_FALSE(shared_memory_handle_no_query.Map(1));
EXPECT_EQ(nullptr, shared_memory_handle_no_query.memory());
}
#endif // defined(OS_WIN)
// iOS does not allow multiple processes.
// Android ashmem does not support named shared memory.
// Fuchsia SharedMemory does not support named shared memory.
// Mac SharedMemory does not support named shared memory. crbug.com/345734
#if !defined(OS_IOS) && !defined(OS_ANDROID) && !defined(OS_MACOSX) && \
!defined(OS_FUCHSIA)
// On POSIX it is especially important we test shmem across processes,
// not just across threads. But the test is enabled on all platforms.
class SharedMemoryProcessTest : public MultiProcessTest {
public:
static void CleanUp() {
SharedMemory memory;
memory.Delete(s_test_name_);
}
static int TaskTestMain() {
int errors = 0;
SharedMemory memory;
bool rv = memory.CreateNamedDeprecated(s_test_name_, true, s_data_size_);
EXPECT_TRUE(rv);
if (rv != true)
errors++;
rv = memory.Map(s_data_size_);
EXPECT_TRUE(rv);
if (rv != true)
errors++;
int* ptr = static_cast<int*>(memory.memory());
// This runs concurrently in multiple processes. Writes need to be atomic.
subtle::Barrier_AtomicIncrement(ptr, 1);
memory.Close();
return errors;
}
static const char s_test_name_[];
static const uint32_t s_data_size_;
};
const char SharedMemoryProcessTest::s_test_name_[] = "MPMem";
const uint32_t SharedMemoryProcessTest::s_data_size_ = 1024;
TEST_F(SharedMemoryProcessTest, SharedMemoryAcrossProcesses) {
const int kNumTasks = 5;
SharedMemoryProcessTest::CleanUp();
// Create a shared memory region. Set the first word to 0.
SharedMemory memory;
bool rv = memory.CreateNamedDeprecated(s_test_name_, true, s_data_size_);
ASSERT_TRUE(rv);
rv = memory.Map(s_data_size_);
ASSERT_TRUE(rv);
int* ptr = static_cast<int*>(memory.memory());
*ptr = 0;
// Start |kNumTasks| processes, each of which atomically increments the first
// word by 1.
Process processes[kNumTasks];
for (int index = 0; index < kNumTasks; ++index) {
processes[index] = SpawnChild("SharedMemoryTestMain");
ASSERT_TRUE(processes[index].IsValid());
}
// Check that each process exited correctly.
int exit_code = 0;
for (int index = 0; index < kNumTasks; ++index) {
EXPECT_TRUE(processes[index].WaitForExit(&exit_code));
EXPECT_EQ(0, exit_code);
}
// Check that the shared memory region reflects |kNumTasks| increments.
ASSERT_EQ(kNumTasks, *ptr);
memory.Close();
SharedMemoryProcessTest::CleanUp();
}
MULTIPROCESS_TEST_MAIN(SharedMemoryTestMain) {
return SharedMemoryProcessTest::TaskTestMain();
}
#endif // !defined(OS_IOS) && !defined(OS_ANDROID) && !defined(OS_MACOSX) &&
// !defined(OS_FUCHSIA)
TEST_P(SharedMemoryTest, MappedId) {
const uint32_t kDataSize = 1024;
SharedMemory memory;
SharedMemoryCreateOptions options;
options.size = kDataSize;
#if defined(OS_MACOSX) && !defined(OS_IOS)
// The Mach functionality is tested in shared_memory_mac_unittest.cc.
options.type = SharedMemoryHandle::POSIX;
#endif
EXPECT_TRUE(memory.Create(options));
base::UnguessableToken id = memory.handle().GetGUID();
EXPECT_FALSE(id.is_empty());
EXPECT_TRUE(memory.mapped_id().is_empty());
EXPECT_TRUE(memory.Map(kDataSize));
EXPECT_EQ(id, memory.mapped_id());
memory.Close();
EXPECT_EQ(id, memory.mapped_id());
memory.Unmap();
EXPECT_TRUE(memory.mapped_id().is_empty());
}
INSTANTIATE_TEST_CASE_P(Default,
SharedMemoryTest,
::testing::Values(Mode::Default));
#if defined(OS_LINUX) && !defined(OS_CHROMEOS)
INSTANTIATE_TEST_CASE_P(SkipDevShm,
SharedMemoryTest,
::testing::Values(Mode::DisableDevShm));
#endif // defined(OS_LINUX) && !defined(OS_CHROMEOS)
#if defined(OS_ANDROID)
TEST(SharedMemoryTest, ReadOnlyRegions) {
const uint32_t kDataSize = 1024;
SharedMemory memory;
SharedMemoryCreateOptions options;
options.size = kDataSize;
EXPECT_TRUE(memory.Create(options));
EXPECT_FALSE(memory.handle().IsRegionReadOnly());
// Check that it is possible to map the region directly from the fd.
int region_fd = memory.handle().GetHandle();
EXPECT_GE(region_fd, 0);
void* address = mmap(nullptr, kDataSize, PROT_READ | PROT_WRITE, MAP_SHARED,
region_fd, 0);
bool success = address && address != MAP_FAILED;
ASSERT_TRUE(address);
ASSERT_NE(address, MAP_FAILED);
if (success) {
EXPECT_EQ(0, munmap(address, kDataSize));
}
ASSERT_TRUE(memory.handle().SetRegionReadOnly());
EXPECT_TRUE(memory.handle().IsRegionReadOnly());
// Check that it is no longer possible to map the region read/write.
errno = 0;
address = mmap(nullptr, kDataSize, PROT_READ | PROT_WRITE, MAP_SHARED,
region_fd, 0);
success = address && address != MAP_FAILED;
ASSERT_FALSE(success);
ASSERT_EQ(EPERM, errno);
if (success) {
EXPECT_EQ(0, munmap(address, kDataSize));
}
}
TEST(SharedMemoryTest, ReadOnlyDescriptors) {
const uint32_t kDataSize = 1024;
SharedMemory memory;
SharedMemoryCreateOptions options;
options.size = kDataSize;
EXPECT_TRUE(memory.Create(options));
EXPECT_FALSE(memory.handle().IsRegionReadOnly());
// Getting a read-only descriptor should not make the region read-only itself.
SharedMemoryHandle ro_handle = memory.GetReadOnlyHandle();
EXPECT_FALSE(memory.handle().IsRegionReadOnly());
// Mapping a writable region from a read-only descriptor should not
// be possible, it will DCHECK() in debug builds (see test below),
// while returning false on release ones.
{
bool dcheck_fired = false;
logging::ScopedLogAssertHandler log_assert(
base::BindRepeating([](bool* flag, const char*, int, base::StringPiece,
base::StringPiece) { *flag = true; },
base::Unretained(&dcheck_fired)));
SharedMemory rw_region(ro_handle.Duplicate(), /* read_only */ false);
EXPECT_FALSE(rw_region.Map(kDataSize));
EXPECT_EQ(DCHECK_IS_ON() ? true : false, dcheck_fired);
}
// Nor shall it turn the region read-only itself.
EXPECT_FALSE(ro_handle.IsRegionReadOnly());
// Mapping a read-only region from a read-only descriptor should work.
SharedMemory ro_region(ro_handle.Duplicate(), /* read_only */ true);
EXPECT_TRUE(ro_region.Map(kDataSize));
// And it should turn the region read-only too.
EXPECT_TRUE(ro_handle.IsRegionReadOnly());
EXPECT_TRUE(memory.handle().IsRegionReadOnly());
EXPECT_FALSE(memory.Map(kDataSize));
ro_handle.Close();
}
#endif // OS_ANDROID
} // namespace base