| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/message_loop/message_loop.h" |
| |
| #include <algorithm> |
| #include <utility> |
| |
| #include "base/debug/stack_trace.h" |
| |
| #include "base/bind.h" |
| #include "base/callback_helpers.h" |
| #include "base/compiler_specific.h" |
| #include "base/debug/task_annotator.h" |
| #include "base/logging.h" |
| #include "base/memory/ptr_util.h" |
| #include "base/message_loop/message_loop_task_runner.h" |
| #include "base/message_loop/message_pump_default.h" |
| #include "base/message_loop/message_pump_for_io.h" |
| #include "base/message_loop/message_pump_for_ui.h" |
| #include "base/message_loop/sequenced_task_source.h" |
| #include "base/run_loop.h" |
| #include "base/threading/thread_id_name_manager.h" |
| #include "base/threading/thread_task_runner_handle.h" |
| #include "base/trace_event/trace_event.h" |
| |
| namespace base { |
| |
| namespace { |
| |
| MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = nullptr; |
| |
| std::unique_ptr<MessagePump> ReturnPump(std::unique_ptr<MessagePump> pump) { |
| return pump; |
| } |
| |
| } // namespace |
| |
| class MessageLoop::Controller : public SequencedTaskSource::Observer { |
| public: |
| // Constructs a MessageLoopController which controls |message_loop|, notifying |
| // |task_annotator_| when tasks are queued scheduling work on |message_loop| |
| // as fits. |message_loop| and |task_annotator_| will not be used after |
| // DisconnectFromParent() returns. |
| Controller(MessageLoop* message_loop); |
| |
| ~Controller() override; |
| |
| // SequencedTaskSource::Observer: |
| void WillQueueTask(PendingTask* task) final; |
| void DidQueueTask(bool was_empty) final; |
| |
| void StartScheduling(); |
| |
| // Disconnects |message_loop_| from this Controller instance (DidQueueTask() |
| // will no-op from this point forward). |
| void DisconnectFromParent(); |
| |
| // Shares this Controller's TaskAnnotator with MessageLoop as TaskAnnotator |
| // requires DidQueueTask(x)/RunTask(x) to be invoked on the same TaskAnnotator |
| // instance. |
| debug::TaskAnnotator& task_annotator() { return task_annotator_; } |
| |
| private: |
| // A TaskAnnotator which is owned by this Controller to be able to use it |
| // without locking |message_loop_lock_|. It cannot be owned by MessageLoop |
| // because this Controller cannot access |message_loop_| safely without the |
| // lock. Note: the TaskAnnotator API itself is thread-safe. |
| debug::TaskAnnotator task_annotator_; |
| |
| // Lock that serializes |message_loop_->ScheduleWork()| and access to all |
| // members below. |
| base::Lock message_loop_lock_; |
| |
| // Points to this Controller's outer MessageLoop instance. Null after |
| // DisconnectFromParent(). |
| MessageLoop* message_loop_; |
| |
| // False until StartScheduling() is called. |
| bool is_ready_for_scheduling_ = false; |
| |
| // True if DidQueueTask() has been called before StartScheduling(); letting it |
| // know whether it needs to ScheduleWork() right away or not. |
| bool pending_schedule_work_ = false; |
| |
| DISALLOW_COPY_AND_ASSIGN(Controller); |
| }; |
| |
| MessageLoop::Controller::Controller(MessageLoop* message_loop) |
| : message_loop_(message_loop) {} |
| |
| MessageLoop::Controller::~Controller() { |
| DCHECK(!message_loop_) |
| << "DisconnectFromParent() needs to be invoked before destruction."; |
| } |
| |
| void MessageLoop::Controller::WillQueueTask(PendingTask* task) { |
| task_annotator_.WillQueueTask("MessageLoop::PostTask", task); |
| } |
| |
| void MessageLoop::Controller::DidQueueTask(bool was_empty) { |
| // Avoid locking if we don't need to schedule. |
| if (!was_empty) |
| return; |
| |
| AutoLock auto_lock(message_loop_lock_); |
| |
| if (message_loop_ && is_ready_for_scheduling_) |
| message_loop_->ScheduleWork(); |
| else |
| pending_schedule_work_ = true; |
| } |
| |
| void MessageLoop::Controller::StartScheduling() { |
| AutoLock lock(message_loop_lock_); |
| DCHECK(message_loop_); |
| DCHECK(!is_ready_for_scheduling_); |
| is_ready_for_scheduling_ = true; |
| if (pending_schedule_work_) |
| message_loop_->ScheduleWork(); |
| } |
| |
| void MessageLoop::Controller::DisconnectFromParent() { |
| AutoLock lock(message_loop_lock_); |
| message_loop_ = nullptr; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| MessageLoop::MessageLoop(Type type) |
| : MessageLoop(type, MessagePumpFactoryCallback()) { |
| BindToCurrentThread(); |
| } |
| |
| MessageLoop::MessageLoop(std::unique_ptr<MessagePump> pump) |
| : MessageLoop(TYPE_CUSTOM, BindOnce(&ReturnPump, std::move(pump))) { |
| BindToCurrentThread(); |
| } |
| |
| MessageLoop::~MessageLoop() { |
| // If |pump_| is non-null, this message loop has been bound and should be the |
| // current one on this thread. Otherwise, this loop is being destructed before |
| // it was bound to a thread, so a different message loop (or no loop at all) |
| // may be current. |
| DCHECK((pump_ && MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) || |
| (!pump_ && !MessageLoopCurrent::IsBoundToCurrentThreadInternal(this))); |
| |
| // iOS just attaches to the loop, it doesn't Run it. |
| // TODO(stuartmorgan): Consider wiring up a Detach(). |
| #if !defined(OS_IOS) |
| // There should be no active RunLoops on this thread, unless this MessageLoop |
| // isn't bound to the current thread (see other condition at the top of this |
| // method). |
| DCHECK( |
| (!pump_ && !MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) || |
| !RunLoop::IsRunningOnCurrentThread()); |
| #endif // !defined(OS_IOS) |
| |
| #if defined(OS_WIN) |
| if (in_high_res_mode_) |
| Time::ActivateHighResolutionTimer(false); |
| #endif |
| // Clean up any unprocessed tasks, but take care: deleting a task could |
| // result in the addition of more tasks (e.g., via DeleteSoon). We set a |
| // limit on the number of times we will allow a deleted task to generate more |
| // tasks. Normally, we should only pass through this loop once or twice. If |
| // we end up hitting the loop limit, then it is probably due to one task that |
| // is being stubborn. Inspect the queues to see who is left. |
| bool tasks_remain; |
| for (int i = 0; i < 100; ++i) { |
| DeletePendingTasks(); |
| // If we end up with empty queues, then break out of the loop. |
| tasks_remain = sequenced_task_source_->HasTasks(); |
| if (!tasks_remain) |
| break; |
| } |
| DCHECK(!tasks_remain); |
| |
| // Let interested parties have one last shot at accessing this. |
| for (auto& observer : destruction_observers_) |
| observer.WillDestroyCurrentMessageLoop(); |
| |
| thread_task_runner_handle_.reset(); |
| |
| // Detach this instance's Controller from |this|. After this point, |
| // |underlying_task_runner_| may still receive tasks and notify the controller |
| // but the controller will no-op (and not use this MessageLoop after free). |
| // |underlying_task_runner_| being ref-counted and potentially kept alive by |
| // many SingleThreadTaskRunner refs, the best we can do is tell it to shutdown |
| // after which it will start returning false to PostTasks that happen-after |
| // this point (note that invoking Shutdown() first would not remove the need |
| // to DisconnectFromParent() since the controller is invoked *after* a task is |
| // enqueued and the incoming queue's lock is released (see |
| // MessageLoopTaskRunner::AddToIncomingQueue()). |
| // Details : while an "in-progress post tasks" refcount in Controller in lieu |
| // of |message_loop_lock_| would be an option to handle the "pending post |
| // tasks on shutdown" case, |message_loop_lock_| would still be required to |
| // serialize ScheduleWork() call and as such that optimization isn't worth it. |
| message_loop_controller_->DisconnectFromParent(); |
| underlying_task_runner_->Shutdown(); |
| |
| // OK, now make it so that no one can find us. |
| if (MessageLoopCurrent::IsBoundToCurrentThreadInternal(this)) |
| MessageLoopCurrent::UnbindFromCurrentThreadInternal(this); |
| } |
| |
| // static |
| MessageLoopCurrent MessageLoop::current() { |
| return MessageLoopCurrent::Get(); |
| } |
| |
| // static |
| bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) { |
| if (message_pump_for_ui_factory_) |
| return false; |
| |
| message_pump_for_ui_factory_ = factory; |
| return true; |
| } |
| |
| // static |
| std::unique_ptr<MessagePump> MessageLoop::CreateMessagePumpForType(Type type) { |
| if (type == MessageLoop::TYPE_UI) { |
| if (message_pump_for_ui_factory_) |
| return message_pump_for_ui_factory_(); |
| #if defined(OS_IOS) || defined(OS_MACOSX) |
| return MessagePumpMac::Create(); |
| #elif defined(OS_NACL) || defined(OS_AIX) |
| // Currently NaCl and AIX don't have a UI MessageLoop. |
| // TODO(abarth): Figure out if we need this. |
| NOTREACHED(); |
| return nullptr; |
| #else |
| return std::make_unique<MessagePumpForUI>(); |
| #endif |
| } |
| |
| if (type == MessageLoop::TYPE_IO) |
| return std::unique_ptr<MessagePump>(new MessagePumpForIO()); |
| |
| #if defined(OS_ANDROID) |
| if (type == MessageLoop::TYPE_JAVA) |
| return std::unique_ptr<MessagePump>(new MessagePumpForUI()); |
| #endif |
| |
| DCHECK_EQ(MessageLoop::TYPE_DEFAULT, type); |
| #if defined(OS_IOS) |
| // On iOS, a native runloop is always required to pump system work. |
| return std::make_unique<MessagePumpCFRunLoop>(); |
| #else |
| return std::make_unique<MessagePumpDefault>(); |
| #endif |
| } |
| |
| bool MessageLoop::IsType(Type type) const { |
| return type_ == type; |
| } |
| |
| // TODO(gab): Migrate TaskObservers to RunLoop as part of separating concerns |
| // between MessageLoop and RunLoop and making MessageLoop a swappable |
| // implementation detail. http://crbug.com/703346 |
| void MessageLoop::AddTaskObserver(TaskObserver* task_observer) { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| task_observers_.push_back(task_observer); |
| } |
| |
| void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| auto it = |
| std::find(task_observers_.begin(), task_observers_.end(), task_observer); |
| DCHECK(it != task_observers_.end()); |
| task_observers_.erase(it); |
| } |
| |
| void MessageLoop::SetAddQueueTimeToTasks(bool enable) { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| underlying_task_runner_->SetAddQueueTimeToTasks(enable); |
| } |
| |
| bool MessageLoop::IsIdleForTesting() { |
| // Have unprocessed tasks? (this reloads the work queue if necessary) |
| if (sequenced_task_source_->HasTasks()) |
| return false; |
| |
| // Have unprocessed deferred tasks which can be processed at this run-level? |
| if (pending_task_queue_.deferred_tasks().HasTasks() && |
| !RunLoop::IsNestedOnCurrentThread()) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| // static |
| std::unique_ptr<MessageLoop> MessageLoop::CreateUnbound( |
| Type type, |
| MessagePumpFactoryCallback pump_factory) { |
| return WrapUnique(new MessageLoop(type, std::move(pump_factory))); |
| } |
| |
| MessageLoop::MessageLoop(Type type, MessagePumpFactoryCallback pump_factory) |
| : MessageLoopCurrent(this), |
| type_(type), |
| pump_factory_(std::move(pump_factory)), |
| message_loop_controller_( |
| new Controller(this)), // Ownership transferred on the next line. |
| underlying_task_runner_(MakeRefCounted<internal::MessageLoopTaskRunner>( |
| WrapUnique(message_loop_controller_))), |
| sequenced_task_source_(underlying_task_runner_.get()), |
| task_runner_(underlying_task_runner_) { |
| // If type is TYPE_CUSTOM non-null pump_factory must be given. |
| DCHECK(type_ != TYPE_CUSTOM || !pump_factory_.is_null()); |
| |
| // Bound in BindToCurrentThread(); |
| DETACH_FROM_THREAD(bound_thread_checker_); |
| } |
| |
| void MessageLoop::BindToCurrentThread() { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| |
| DCHECK(!pump_); |
| if (!pump_factory_.is_null()) |
| pump_ = std::move(pump_factory_).Run(); |
| else |
| pump_ = CreateMessagePumpForType(type_); |
| |
| DCHECK(!MessageLoopCurrent::IsSet()) |
| << "should only have one message loop per thread"; |
| MessageLoopCurrent::BindToCurrentThreadInternal(this); |
| |
| underlying_task_runner_->BindToCurrentThread(); |
| message_loop_controller_->StartScheduling(); |
| SetThreadTaskRunnerHandle(); |
| thread_id_ = PlatformThread::CurrentId(); |
| |
| scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique< |
| internal::ScopedSetSequenceLocalStorageMapForCurrentThread>( |
| &sequence_local_storage_map_); |
| |
| RunLoop::RegisterDelegateForCurrentThread(this); |
| |
| #if defined(OS_ANDROID) |
| // On Android, attach to the native loop when there is one. |
| if (type_ == TYPE_UI || type_ == TYPE_JAVA) |
| static_cast<MessagePumpForUI*>(pump_.get())->Attach(this); |
| #endif |
| } |
| |
| std::string MessageLoop::GetThreadName() const { |
| DCHECK_NE(kInvalidThreadId, thread_id_) |
| << "GetThreadName() must only be called after BindToCurrentThread()'s " |
| << "side-effects have been synchronized with this thread."; |
| return ThreadIdNameManager::GetInstance()->GetName(thread_id_); |
| } |
| |
| void MessageLoop::SetTaskRunner( |
| scoped_refptr<SingleThreadTaskRunner> task_runner) { |
| DCHECK(task_runner); |
| if (thread_id_ == kInvalidThreadId) { |
| // ThreadTaskRunnerHandle will be set during BindToCurrentThread(). |
| task_runner_ = std::move(task_runner); |
| } else { |
| // Once MessageLoop is bound, |task_runner_| may only be altered on the |
| // bound thread. |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| DCHECK(task_runner->BelongsToCurrentThread()); |
| task_runner_ = std::move(task_runner); |
| SetThreadTaskRunnerHandle(); |
| } |
| } |
| |
| void MessageLoop::Run(bool application_tasks_allowed) { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| if (application_tasks_allowed && !task_execution_allowed_) { |
| // Allow nested task execution as explicitly requested. |
| DCHECK(RunLoop::IsNestedOnCurrentThread()); |
| task_execution_allowed_ = true; |
| pump_->Run(this); |
| task_execution_allowed_ = false; |
| } else { |
| pump_->Run(this); |
| } |
| } |
| |
| void MessageLoop::Quit() { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| pump_->Quit(); |
| } |
| |
| #if defined(STARBOARD) |
| void MessageLoop::RunUntilIdleForTesting() { |
| base::RunLoop run_loop; |
| run_loop.RunUntilIdle(); |
| } |
| #endif |
| |
| void MessageLoop::EnsureWorkScheduled() { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| if (sequenced_task_source_->HasTasks()) |
| pump_->ScheduleWork(); |
| } |
| |
| void MessageLoop::SetThreadTaskRunnerHandle() { |
| DCHECK_CALLED_ON_VALID_THREAD(bound_thread_checker_); |
| // Clear the previous thread task runner first, because only one can exist at |
| // a time. |
| thread_task_runner_handle_.reset(); |
| thread_task_runner_handle_.reset(new ThreadTaskRunnerHandle(task_runner_)); |
| } |
| |
| bool MessageLoop::ProcessNextDelayedNonNestableTask() { |
| if (RunLoop::IsNestedOnCurrentThread()) |
| return false; |
| |
| while (pending_task_queue_.deferred_tasks().HasTasks()) { |
| PendingTask pending_task = pending_task_queue_.deferred_tasks().Pop(); |
| if (!pending_task.task.IsCancelled()) { |
| RunTask(&pending_task); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void MessageLoop::RunTask(PendingTask* pending_task) { |
| DCHECK(task_execution_allowed_); |
| |
| // Execute the task and assume the worst: It is probably not reentrant. |
| task_execution_allowed_ = false; |
| |
| TRACE_TASK_EXECUTION("MessageLoop::RunTask", *pending_task); |
| |
| for (TaskObserver* task_observer : task_observers_) |
| task_observer->WillProcessTask(*pending_task); |
| message_loop_controller_->task_annotator().RunTask("MessageLoop::PostTask", |
| pending_task); |
| for (TaskObserver* task_observer : task_observers_) |
| task_observer->DidProcessTask(*pending_task); |
| |
| task_execution_allowed_ = true; |
| } |
| |
| bool MessageLoop::DeferOrRunPendingTask(PendingTask pending_task) { |
| if (pending_task.nestable == Nestable::kNestable || |
| !RunLoop::IsNestedOnCurrentThread()) { |
| RunTask(&pending_task); |
| // Show that we ran a task (Note: a new one might arrive as a |
| // consequence!). |
| return true; |
| } |
| |
| // We couldn't run the task now because we're in a nested run loop |
| // and the task isn't nestable. |
| pending_task_queue_.deferred_tasks().Push(std::move(pending_task)); |
| return false; |
| } |
| |
| void MessageLoop::DeletePendingTasks() { |
| // Delete all currently pending tasks but not tasks potentially posted from |
| // their destructors. See ~MessageLoop() for the full logic mitigating against |
| // infite loops when clearing pending tasks. The ScopedClosureRunner below |
| // will be bound to a task posted at the end of the queue. After it is posted, |
| // tasks will be deleted one by one, when the bound ScopedClosureRunner is |
| // deleted and sets |deleted_all_originally_pending|, we know we've deleted |
| // all originally pending tasks. |
| bool deleted_all_originally_pending = false; |
| ScopedClosureRunner capture_deleted_all_originally_pending(BindOnce( |
| [](bool* deleted_all_originally_pending) { |
| *deleted_all_originally_pending = true; |
| }, |
| Unretained(&deleted_all_originally_pending))); |
| sequenced_task_source_->InjectTask( |
| BindOnce([](ScopedClosureRunner) {}, |
| std::move(capture_deleted_all_originally_pending))); |
| |
| while (!deleted_all_originally_pending) { |
| PendingTask pending_task = sequenced_task_source_->TakeTask(); |
| |
| // New delayed tasks should be deleted after older ones. |
| if (!pending_task.delayed_run_time.is_null()) |
| pending_task_queue_.delayed_tasks().Push(std::move(pending_task)); |
| } |
| |
| pending_task_queue_.deferred_tasks().Clear(); |
| // TODO(robliao): Determine if we can move delayed task destruction before |
| // deferred tasks to maintain the MessagePump DoWork, DoDelayedWork, and |
| // DoIdleWork processing order. |
| pending_task_queue_.delayed_tasks().Clear(); |
| } |
| |
| void MessageLoop::ScheduleWork() { |
| pump_->ScheduleWork(); |
| } |
| |
| TimeTicks MessageLoop::CapAtOneDay(TimeTicks next_run_time) { |
| return std::min(next_run_time, recent_time_ + TimeDelta::FromDays(1)); |
| } |
| |
| bool MessageLoop::DoWork() { |
| if (!task_execution_allowed_) |
| return false; |
| |
| // Execute oldest task. |
| while (sequenced_task_source_->HasTasks()) { |
| PendingTask pending_task = sequenced_task_source_->TakeTask(); |
| if (pending_task.task.IsCancelled()) |
| continue; |
| |
| if (!pending_task.delayed_run_time.is_null()) { |
| int sequence_num = pending_task.sequence_num; |
| TimeTicks delayed_run_time = pending_task.delayed_run_time; |
| pending_task_queue_.delayed_tasks().Push(std::move(pending_task)); |
| // If we changed the topmost task, then it is time to reschedule. |
| if (pending_task_queue_.delayed_tasks().Peek().sequence_num == |
| sequence_num) { |
| pump_->ScheduleDelayedWork(delayed_run_time); |
| } |
| } else if (DeferOrRunPendingTask(std::move(pending_task))) { |
| return true; |
| } |
| } |
| |
| // Nothing happened. |
| return false; |
| } |
| |
| bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) { |
| if (!task_execution_allowed_ || |
| !pending_task_queue_.delayed_tasks().HasTasks()) { |
| *next_delayed_work_time = TimeTicks(); |
| return false; |
| } |
| |
| // When we "fall behind", there will be a lot of tasks in the delayed work |
| // queue that are ready to run. To increase efficiency when we fall behind, |
| // we will only call Time::Now() intermittently, and then process all tasks |
| // that are ready to run before calling it again. As a result, the more we |
| // fall behind (and have a lot of ready-to-run delayed tasks), the more |
| // efficient we'll be at handling the tasks. |
| |
| TimeTicks next_run_time = |
| pending_task_queue_.delayed_tasks().Peek().delayed_run_time; |
| |
| if (next_run_time > recent_time_) { |
| recent_time_ = TimeTicks::Now(); // Get a better view of Now(); |
| if (next_run_time > recent_time_) { |
| *next_delayed_work_time = CapAtOneDay(next_run_time); |
| return false; |
| } |
| } |
| |
| PendingTask pending_task = pending_task_queue_.delayed_tasks().Pop(); |
| |
| if (pending_task_queue_.delayed_tasks().HasTasks()) { |
| *next_delayed_work_time = CapAtOneDay( |
| pending_task_queue_.delayed_tasks().Peek().delayed_run_time); |
| } |
| |
| return DeferOrRunPendingTask(std::move(pending_task)); |
| } |
| |
| bool MessageLoop::DoIdleWork() { |
| if (ProcessNextDelayedNonNestableTask()) |
| return true; |
| |
| #if defined(OS_WIN) |
| bool need_high_res_timers = false; |
| #endif |
| |
| // Do not report idle metrics if about to quit the loop and/or in a nested |
| // loop where |!task_execution_allowed_|. In the former case, the loop isn't |
| // going to sleep and in the latter case DoDelayedWork() will not actually do |
| // the work this is prepping for. |
| if (ShouldQuitWhenIdle()) { |
| pump_->Quit(); |
| } else if (task_execution_allowed_) { |
| // Only track idle metrics in MessageLoopForUI to avoid too much contention |
| // logging the histogram (https://crbug.com/860801) -- there's typically |
| // only one UI thread per process and, for practical purposes, restricting |
| // the MessageLoop diagnostic metrics to it yields similar information. |
| if (type_ == TYPE_UI) |
| pending_task_queue_.ReportMetricsOnIdle(); |
| |
| #if defined(OS_WIN) |
| // On Windows we activate the high resolution timer so that the wait |
| // _if_ triggered by the timer happens with good resolution. If we don't |
| // do this the default resolution is 15ms which might not be acceptable |
| // for some tasks. |
| need_high_res_timers = pending_task_queue_.HasPendingHighResolutionTasks(); |
| #endif |
| } |
| |
| #if defined(OS_WIN) |
| if (in_high_res_mode_ != need_high_res_timers) { |
| in_high_res_mode_ = need_high_res_timers; |
| Time::ActivateHighResolutionTimer(in_high_res_mode_); |
| } |
| #endif |
| |
| // When we return we will do a kernel wait for more tasks. |
| return false; |
| } |
| |
| #if !defined(OS_NACL) |
| |
| //------------------------------------------------------------------------------ |
| // MessageLoopForUI |
| |
| MessageLoopForUI::MessageLoopForUI(Type type) : MessageLoop(type) { |
| #if defined(OS_ANDROID) |
| DCHECK(type == TYPE_UI || type == TYPE_JAVA); |
| #else |
| DCHECK_EQ(type, TYPE_UI); |
| #endif |
| } |
| |
| // static |
| MessageLoopCurrentForUI MessageLoopForUI::current() { |
| return MessageLoopCurrentForUI::Get(); |
| } |
| |
| // static |
| bool MessageLoopForUI::IsCurrent() { |
| return MessageLoopCurrentForUI::IsSet(); |
| } |
| |
| #if defined(OS_STARBOARD) |
| void MessageLoopForUI::Start() { |
| // No Histogram support for UI message loop as it is managed by Starboard. |
| static_cast<base::MessagePumpUIStarboard*>(pump_.get())->Start(this); |
| } |
| #endif |
| |
| #if defined(OS_IOS) |
| void MessageLoopForUI::Attach() { |
| static_cast<MessagePumpUIApplication*>(pump_.get())->Attach(this); |
| } |
| #endif // defined(OS_IOS) |
| |
| #if defined(OS_ANDROID) |
| void MessageLoopForUI::Abort() { |
| static_cast<MessagePumpForUI*>(pump_.get())->Abort(); |
| } |
| |
| bool MessageLoopForUI::IsAborted() { |
| return static_cast<MessagePumpForUI*>(pump_.get())->IsAborted(); |
| } |
| |
| void MessageLoopForUI::QuitWhenIdle(base::OnceClosure callback) { |
| static_cast<MessagePumpForUI*>(pump_.get()) |
| ->QuitWhenIdle(std::move(callback)); |
| } |
| #endif // defined(OS_ANDROID) |
| |
| #if defined(OS_WIN) |
| void MessageLoopForUI::EnableWmQuit() { |
| static_cast<MessagePumpForUI*>(pump_.get())->EnableWmQuit(); |
| } |
| #endif // defined(OS_WIN) |
| |
| #endif // !defined(OS_NACL) |
| |
| //------------------------------------------------------------------------------ |
| // MessageLoopForIO |
| |
| // static |
| MessageLoopCurrentForIO MessageLoopForIO::current() { |
| return MessageLoopCurrentForIO::Get(); |
| } |
| |
| // static |
| bool MessageLoopForIO::IsCurrent() { |
| return MessageLoopCurrentForIO::IsSet(); |
| } |
| |
| } // namespace base |