| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/message_loop/message_pump_win.h" |
| |
| #include <math.h> |
| |
| #include <limits> |
| |
| #include "base/debug/alias.h" |
| #include "base/memory/ptr_util.h" |
| #include "base/metrics/histogram_macros.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/trace_event/trace_event.h" |
| #include "base/win/current_module.h" |
| #include "base/win/wrapped_window_proc.h" |
| #include "starboard/memory.h" |
| #include "starboard/types.h" |
| |
| namespace base { |
| |
| namespace { |
| |
| enum MessageLoopProblems { |
| MESSAGE_POST_ERROR, |
| COMPLETION_POST_ERROR, |
| SET_TIMER_ERROR, |
| RECEIVED_WM_QUIT_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX, |
| }; |
| |
| } // namespace |
| |
| // Message sent to get an additional time slice for pumping (processing) another |
| // task (a series of such messages creates a continuous task pump). |
| static const int kMsgHaveWork = WM_USER + 1; |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpWin public: |
| |
| MessagePumpWin::MessagePumpWin() = default; |
| |
| void MessagePumpWin::Run(Delegate* delegate) { |
| RunState s; |
| s.delegate = delegate; |
| s.should_quit = false; |
| s.run_depth = state_ ? state_->run_depth + 1 : 1; |
| |
| RunState* previous_state = state_; |
| state_ = &s; |
| |
| DoRunLoop(); |
| |
| state_ = previous_state; |
| } |
| |
| void MessagePumpWin::Quit() { |
| DCHECK(state_); |
| state_->should_quit = true; |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpWin protected: |
| |
| int MessagePumpWin::GetCurrentDelay() const { |
| if (delayed_work_time_.is_null()) |
| return -1; |
| |
| // Be careful here. TimeDelta has a precision of microseconds, but we want a |
| // value in milliseconds. If there are 5.5ms left, should the delay be 5 or |
| // 6? It should be 6 to avoid executing delayed work too early. |
| double timeout = |
| ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); |
| |
| // Range check the |timeout| while converting to an integer. If the |timeout| |
| // is negative, then we need to run delayed work soon. If the |timeout| is |
| // "overflowingly" large, that means a delayed task was posted with a |
| // super-long delay. |
| return timeout < 0 ? 0 : |
| (timeout > std::numeric_limits<int>::max() ? |
| std::numeric_limits<int>::max() : static_cast<int>(timeout)); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForUI public: |
| |
| MessagePumpForUI::MessagePumpForUI() { |
| bool succeeded = message_window_.Create( |
| BindRepeating(&MessagePumpForUI::MessageCallback, Unretained(this))); |
| DCHECK(succeeded); |
| } |
| |
| MessagePumpForUI::~MessagePumpForUI() = default; |
| |
| void MessagePumpForUI::ScheduleWork() { |
| if (InterlockedExchange(&work_state_, HAVE_WORK) != READY) |
| return; // Someone else continued the pumping. |
| |
| // Make sure the MessagePump does some work for us. |
| BOOL ret = PostMessage(message_window_.hwnd(), kMsgHaveWork, 0, 0); |
| if (ret) |
| return; // There was room in the Window Message queue. |
| |
| // We have failed to insert a have-work message, so there is a chance that we |
| // will starve tasks/timers while sitting in a nested run loop. Nested |
| // loops only look at Windows Message queues, and don't look at *our* task |
| // queues, etc., so we might not get a time slice in such. :-( |
| // We could abort here, but the fear is that this failure mode is plausibly |
| // common (queue is full, of about 2000 messages), so we'll do a near-graceful |
| // recovery. Nested loops are pretty transient (we think), so this will |
| // probably be recoverable. |
| |
| // Clarify that we didn't really insert. |
| InterlockedExchange(&work_state_, READY); |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX); |
| } |
| |
| void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { |
| delayed_work_time_ = delayed_work_time; |
| RescheduleTimer(); |
| } |
| |
| void MessagePumpForUI::EnableWmQuit() { |
| enable_wm_quit_ = true; |
| } |
| |
| void MessagePumpForUI::AddObserver(Observer* observer) { |
| observers_.AddObserver(observer); |
| } |
| |
| void MessagePumpForUI::RemoveObserver(Observer* observer) { |
| observers_.RemoveObserver(observer); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForUI private: |
| |
| bool MessagePumpForUI::MessageCallback( |
| UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result) { |
| switch (message) { |
| case kMsgHaveWork: |
| HandleWorkMessage(); |
| break; |
| case WM_TIMER: |
| HandleTimerMessage(); |
| break; |
| } |
| return false; |
| } |
| |
| void MessagePumpForUI::DoRunLoop() { |
| // IF this was just a simple PeekMessage() loop (servicing all possible work |
| // queues), then Windows would try to achieve the following order according |
| // to MSDN documentation about PeekMessage with no filter): |
| // * Sent messages |
| // * Posted messages |
| // * Sent messages (again) |
| // * WM_PAINT messages |
| // * WM_TIMER messages |
| // |
| // Summary: none of the above classes is starved, and sent messages has twice |
| // the chance of being processed (i.e., reduced service time). |
| |
| for (;;) { |
| // If we do any work, we may create more messages etc., and more work may |
| // possibly be waiting in another task group. When we (for example) |
| // ProcessNextWindowsMessage(), there is a good chance there are still more |
| // messages waiting. On the other hand, when any of these methods return |
| // having done no work, then it is pretty unlikely that calling them again |
| // quickly will find any work to do. Finally, if they all say they had no |
| // work, then it is a good time to consider sleeping (waiting) for more |
| // work. |
| |
| bool more_work_is_plausible = ProcessNextWindowsMessage(); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= state_->delegate->DoWork(); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| // If we did not process any delayed work, then we can assume that our |
| // existing WM_TIMER if any will fire when delayed work should run. We |
| // don't want to disturb that timer if it is already in flight. However, |
| // if we did do all remaining delayed work, then lets kill the WM_TIMER. |
| if (more_work_is_plausible && delayed_work_time_.is_null()) |
| KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this)); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| more_work_is_plausible = state_->delegate->DoIdleWork(); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| WaitForWork(); // Wait (sleep) until we have work to do again. |
| } |
| } |
| |
| void MessagePumpForUI::WaitForWork() { |
| // Wait until a message is available, up to the time needed by the timer |
| // manager to fire the next set of timers. |
| int delay; |
| DWORD wait_flags = MWMO_INPUTAVAILABLE; |
| |
| while ((delay = GetCurrentDelay()) != 0) { |
| if (delay < 0) // Negative value means no timers waiting. |
| delay = INFINITE; |
| |
| // Tell the optimizer to retain these values to simplify analyzing hangs. |
| base::debug::Alias(&delay); |
| base::debug::Alias(&wait_flags); |
| DWORD result = MsgWaitForMultipleObjectsEx(0, nullptr, delay, QS_ALLINPUT, |
| wait_flags); |
| |
| if (WAIT_OBJECT_0 == result) { |
| // A WM_* message is available. |
| // If a parent child relationship exists between windows across threads |
| // then their thread inputs are implicitly attached. |
| // This causes the MsgWaitForMultipleObjectsEx API to return indicating |
| // that messages are ready for processing (Specifically, mouse messages |
| // intended for the child window may appear if the child window has |
| // capture). |
| // The subsequent PeekMessages call may fail to return any messages thus |
| // causing us to enter a tight loop at times. |
| // The code below is a workaround to give the child window |
| // some time to process its input messages by looping back to |
| // MsgWaitForMultipleObjectsEx above when there are no messages for the |
| // current thread. |
| MSG msg = {0}; |
| bool has_pending_sent_message = |
| (HIWORD(::GetQueueStatus(QS_SENDMESSAGE)) & QS_SENDMESSAGE) != 0; |
| if (has_pending_sent_message || |
| ::PeekMessage(&msg, nullptr, 0, 0, PM_NOREMOVE)) { |
| return; |
| } |
| |
| // We know there are no more messages for this thread because PeekMessage |
| // has returned false. Reset |wait_flags| so that we wait for a *new* |
| // message. |
| wait_flags = 0; |
| } |
| |
| DCHECK_NE(WAIT_FAILED, result) << GetLastError(); |
| } |
| } |
| |
| void MessagePumpForUI::HandleWorkMessage() { |
| // If we are being called outside of the context of Run, then don't try to do |
| // any work. This could correspond to a MessageBox call or something of that |
| // sort. |
| if (!state_) { |
| // Since we handled a kMsgHaveWork message, we must still update this flag. |
| InterlockedExchange(&work_state_, READY); |
| return; |
| } |
| |
| // Let whatever would have run had we not been putting messages in the queue |
| // run now. This is an attempt to make our dummy message not starve other |
| // messages that may be in the Windows message queue. |
| ProcessPumpReplacementMessage(); |
| |
| // Now give the delegate a chance to do some work. It'll let us know if it |
| // needs to do more work. |
| if (state_->delegate->DoWork()) |
| ScheduleWork(); |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| RescheduleTimer(); |
| } |
| |
| void MessagePumpForUI::HandleTimerMessage() { |
| KillTimer(message_window_.hwnd(), reinterpret_cast<UINT_PTR>(this)); |
| |
| // If we are being called outside of the context of Run, then don't do |
| // anything. This could correspond to a MessageBox call or something of |
| // that sort. |
| if (!state_) |
| return; |
| |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| RescheduleTimer(); |
| } |
| |
| void MessagePumpForUI::RescheduleTimer() { |
| if (delayed_work_time_.is_null()) |
| return; |
| // |
| // We would *like* to provide high resolution timers. Windows timers using |
| // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup |
| // mechanism because the application can enter modal windows loops where it |
| // is not running our MessageLoop; the only way to have our timers fire in |
| // these cases is to post messages there. |
| // |
| // To provide sub-10ms timers, we process timers directly from our run loop. |
| // For the common case, timers will be processed there as the run loop does |
| // its normal work. However, we *also* set the system timer so that WM_TIMER |
| // events fire. This mops up the case of timers not being able to work in |
| // modal message loops. It is possible for the SetTimer to pop and have no |
| // pending timers, because they could have already been processed by the |
| // run loop itself. |
| // |
| // We use a single SetTimer corresponding to the timer that will expire |
| // soonest. As new timers are created and destroyed, we update SetTimer. |
| // Getting a spurious SetTimer event firing is benign, as we'll just be |
| // processing an empty timer queue. |
| // |
| int delay_msec = GetCurrentDelay(); |
| DCHECK_GE(delay_msec, 0); |
| if (delay_msec == 0) { |
| ScheduleWork(); |
| } else { |
| if (delay_msec < USER_TIMER_MINIMUM) |
| delay_msec = USER_TIMER_MINIMUM; |
| |
| // Tell the optimizer to retain these values to simplify analyzing hangs. |
| base::debug::Alias(&delay_msec); |
| // Create a WM_TIMER event that will wake us up to check for any pending |
| // timers (in case we are running within a nested, external sub-pump). |
| UINT_PTR ret = SetTimer(message_window_.hwnd(), 0, delay_msec, nullptr); |
| if (ret) |
| return; |
| // If we can't set timers, we are in big trouble... but cross our fingers |
| // for now. |
| // TODO(jar): If we don't see this error, use a CHECK() here instead. |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX); |
| } |
| } |
| |
| bool MessagePumpForUI::ProcessNextWindowsMessage() { |
| // If there are sent messages in the queue then PeekMessage internally |
| // dispatches the message and returns false. We return true in this |
| // case to ensure that the message loop peeks again instead of calling |
| // MsgWaitForMultipleObjectsEx again. |
| bool sent_messages_in_queue = false; |
| DWORD queue_status = ::GetQueueStatus(QS_SENDMESSAGE); |
| if (HIWORD(queue_status) & QS_SENDMESSAGE) |
| sent_messages_in_queue = true; |
| |
| MSG msg; |
| if (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE) |
| return ProcessMessageHelper(msg); |
| |
| return sent_messages_in_queue; |
| } |
| |
| bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { |
| TRACE_EVENT1("base,toplevel", "MessagePumpForUI::ProcessMessageHelper", |
| "message", msg.message); |
| if (WM_QUIT == msg.message) { |
| // WM_QUIT is the standard way to exit a ::GetMessage() loop. Our |
| // MessageLoop has its own quit mechanism, so WM_QUIT should only terminate |
| // it if |enable_wm_quit_| is explicitly set (and is generally unexpected |
| // otherwise). |
| if (enable_wm_quit_) { |
| state_->should_quit = true; |
| return false; |
| } |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", |
| RECEIVED_WM_QUIT_ERROR, MESSAGE_LOOP_PROBLEM_MAX); |
| return true; |
| } |
| |
| // While running our main message pump, we discard kMsgHaveWork messages. |
| if (msg.message == kMsgHaveWork && msg.hwnd == message_window_.hwnd()) |
| return ProcessPumpReplacementMessage(); |
| |
| for (Observer& observer : observers_) |
| observer.WillDispatchMSG(msg); |
| ::TranslateMessage(&msg); |
| ::DispatchMessage(&msg); |
| for (Observer& observer : observers_) |
| observer.DidDispatchMSG(msg); |
| |
| return true; |
| } |
| |
| bool MessagePumpForUI::ProcessPumpReplacementMessage() { |
| // When we encounter a kMsgHaveWork message, this method is called to peek and |
| // process a replacement message. The goal is to make the kMsgHaveWork as non- |
| // intrusive as possible, even though a continuous stream of such messages are |
| // posted. This method carefully peeks a message while there is no chance for |
| // a kMsgHaveWork to be pending, then resets the |have_work_| flag (allowing a |
| // replacement kMsgHaveWork to possibly be posted), and finally dispatches |
| // that peeked replacement. Note that the re-post of kMsgHaveWork may be |
| // asynchronous to this thread!! |
| |
| MSG msg; |
| const bool have_message = |
| ::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE) != FALSE; |
| |
| // Expect no message or a message different than kMsgHaveWork. |
| DCHECK(!have_message || kMsgHaveWork != msg.message || |
| msg.hwnd != message_window_.hwnd()); |
| |
| // Since we discarded a kMsgHaveWork message, we must update the flag. |
| int old_work_state_ = InterlockedExchange(&work_state_, READY); |
| DCHECK_EQ(HAVE_WORK, old_work_state_); |
| |
| // We don't need a special time slice if we didn't have_message to process. |
| if (!have_message) |
| return false; |
| |
| if (WM_QUIT == msg.message) { |
| // If we're in a nested ::GetMessage() loop then we must let that loop see |
| // the WM_QUIT in order for it to exit. If we're in DoRunLoop then the re- |
| // posted WM_QUIT will be either ignored, or handled, by |
| // ProcessMessageHelper() called directly from ProcessNextWindowsMessage(). |
| ::PostQuitMessage(static_cast<int>(msg.wParam)); |
| // Note: we *must not* ScheduleWork() here as WM_QUIT is a low-priority |
| // message on Windows (it is only returned by ::PeekMessage() when idle) : |
| // https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453. As |
| // such posting a kMsgHaveWork message via ScheduleWork() would cause an |
| // infinite loop (kMsgHaveWork message handled first means we end up here |
| // again and repost WM_QUIT+ScheduleWork() again, etc.). Not leaving a |
| // kMsgHaveWork message behind however is also problematic as unwinding |
| // multiple layers of nested ::GetMessage() loops can result in starving |
| // application tasks. TODO(https://crbug.com/890016) : Fix this. |
| |
| // The return value is mostly irrelevant but return true like we would after |
| // processing a QuitClosure() task. |
| return true; |
| } |
| |
| // Guarantee we'll get another time slice in the case where we go into native |
| // windows code. This ScheduleWork() may hurt performance a tiny bit when |
| // tasks appear very infrequently, but when the event queue is busy, the |
| // kMsgHaveWork events get (percentage wise) rarer and rarer. |
| ScheduleWork(); |
| return ProcessMessageHelper(msg); |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForIO public: |
| |
| MessagePumpForIO::IOContext::IOContext() { |
| SbMemorySet(&overlapped, 0, sizeof(overlapped)); |
| } |
| |
| MessagePumpForIO::MessagePumpForIO() { |
| port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr, |
| reinterpret_cast<ULONG_PTR>(nullptr), 1)); |
| DCHECK(port_.IsValid()); |
| } |
| |
| MessagePumpForIO::~MessagePumpForIO() = default; |
| |
| void MessagePumpForIO::ScheduleWork() { |
| if (InterlockedExchange(&work_state_, HAVE_WORK) != READY) |
| return; // Someone else continued the pumping. |
| |
| // Make sure the MessagePump does some work for us. |
| BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0, |
| reinterpret_cast<ULONG_PTR>(this), |
| reinterpret_cast<OVERLAPPED*>(this)); |
| if (ret) |
| return; // Post worked perfectly. |
| |
| // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. |
| InterlockedExchange(&work_state_, READY); // Clarify that we didn't succeed. |
| UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR, |
| MESSAGE_LOOP_PROBLEM_MAX); |
| } |
| |
| void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { |
| // We know that we can't be blocked right now since this method can only be |
| // called on the same thread as Run, so we only need to update our record of |
| // how long to sleep when we do sleep. |
| delayed_work_time_ = delayed_work_time; |
| } |
| |
| HRESULT MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, |
| IOHandler* handler) { |
| HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), |
| reinterpret_cast<ULONG_PTR>(handler), 1); |
| return (port != nullptr) ? S_OK : HRESULT_FROM_WIN32(GetLastError()); |
| } |
| |
| bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, |
| IOHandler* handler) { |
| JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; |
| info.CompletionKey = handler; |
| info.CompletionPort = port_.Get(); |
| return SetInformationJobObject(job_handle, |
| JobObjectAssociateCompletionPortInformation, |
| &info, |
| sizeof(info)) != FALSE; |
| } |
| |
| //----------------------------------------------------------------------------- |
| // MessagePumpForIO private: |
| |
| void MessagePumpForIO::DoRunLoop() { |
| for (;;) { |
| // If we do any work, we may create more messages etc., and more work may |
| // possibly be waiting in another task group. When we (for example) |
| // WaitForIOCompletion(), there is a good chance there are still more |
| // messages waiting. On the other hand, when any of these methods return |
| // having done no work, then it is pretty unlikely that calling them |
| // again quickly will find any work to do. Finally, if they all say they |
| // had no work, then it is a good time to consider sleeping (waiting) for |
| // more work. |
| |
| bool more_work_is_plausible = state_->delegate->DoWork(); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= WaitForIOCompletion(0, nullptr); |
| if (state_->should_quit) |
| break; |
| |
| more_work_is_plausible |= |
| state_->delegate->DoDelayedWork(&delayed_work_time_); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| more_work_is_plausible = state_->delegate->DoIdleWork(); |
| if (state_->should_quit) |
| break; |
| |
| if (more_work_is_plausible) |
| continue; |
| |
| WaitForWork(); // Wait (sleep) until we have work to do again. |
| } |
| } |
| |
| // Wait until IO completes, up to the time needed by the timer manager to fire |
| // the next set of timers. |
| void MessagePumpForIO::WaitForWork() { |
| // We do not support nested IO message loops. This is to avoid messy |
| // recursion problems. |
| DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; |
| |
| int timeout = GetCurrentDelay(); |
| if (timeout < 0) // Negative value means no timers waiting. |
| timeout = INFINITE; |
| |
| // Tell the optimizer to retain these values to simplify analyzing hangs. |
| base::debug::Alias(&timeout); |
| WaitForIOCompletion(timeout, nullptr); |
| } |
| |
| bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { |
| IOItem item; |
| if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { |
| // We have to ask the system for another IO completion. |
| if (!GetIOItem(timeout, &item)) |
| return false; |
| |
| if (ProcessInternalIOItem(item)) |
| return true; |
| } |
| |
| if (filter && item.handler != filter) { |
| // Save this item for later |
| completed_io_.push_back(item); |
| } else { |
| item.handler->OnIOCompleted(item.context, item.bytes_transfered, |
| item.error); |
| } |
| return true; |
| } |
| |
| // Asks the OS for another IO completion result. |
| bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { |
| SbMemorySet(item, 0, sizeof(*item)); |
| ULONG_PTR key = reinterpret_cast<ULONG_PTR>(nullptr); |
| OVERLAPPED* overlapped = nullptr; |
| if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, |
| &overlapped, timeout)) { |
| if (!overlapped) |
| return false; // Nothing in the queue. |
| item->error = GetLastError(); |
| item->bytes_transfered = 0; |
| } |
| |
| item->handler = reinterpret_cast<IOHandler*>(key); |
| item->context = reinterpret_cast<IOContext*>(overlapped); |
| return true; |
| } |
| |
| bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { |
| if (reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.context) && |
| reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.handler)) { |
| // This is our internal completion. |
| DCHECK(!item.bytes_transfered); |
| InterlockedExchange(&work_state_, READY); |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns a completion item that was previously received. |
| bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { |
| DCHECK(!completed_io_.empty()); |
| for (std::list<IOItem>::iterator it = completed_io_.begin(); |
| it != completed_io_.end(); ++it) { |
| if (!filter || it->handler == filter) { |
| *item = *it; |
| completed_io_.erase(it); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace base |