blob: b09acba9d7736d533870d61bd40996d86c7290ab [file] [log] [blame]
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests some commonly used argument matchers.
#include "gmock/gmock-matchers.h"
#include "gmock/gmock-more-matchers.h"
#include <string.h>
#include <time.h>
#include <deque>
#include <functional>
#include <iostream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "gtest/gtest-spi.h"
#if GTEST_HAS_STD_FORWARD_LIST_
# include <forward_list> // NOLINT
#endif
namespace testing {
namespace internal {
GTEST_API_ string JoinAsTuple(const Strings& fields);
} // namespace internal
namespace gmock_matchers_test {
using std::greater;
using std::less;
using std::list;
using std::make_pair;
using std::map;
using std::multimap;
using std::multiset;
using std::ostream;
using std::pair;
using std::set;
using std::stringstream;
using std::vector;
using testing::A;
using testing::AllArgs;
using testing::AllOf;
using testing::An;
using testing::AnyOf;
using testing::ByRef;
using testing::ContainsRegex;
using testing::DoubleEq;
using testing::DoubleNear;
using testing::EndsWith;
using testing::Eq;
using testing::ExplainMatchResult;
using testing::Field;
using testing::FloatEq;
using testing::FloatNear;
using testing::Ge;
using testing::Gt;
using testing::HasSubstr;
using testing::IsEmpty;
using testing::IsNull;
using testing::Key;
using testing::Le;
using testing::Lt;
using testing::MakeMatcher;
using testing::MakePolymorphicMatcher;
using testing::MatchResultListener;
using testing::Matcher;
using testing::MatcherCast;
using testing::MatcherInterface;
using testing::Matches;
using testing::MatchesRegex;
using testing::NanSensitiveDoubleEq;
using testing::NanSensitiveDoubleNear;
using testing::NanSensitiveFloatEq;
using testing::NanSensitiveFloatNear;
using testing::Ne;
using testing::Not;
using testing::NotNull;
using testing::Pair;
using testing::Pointee;
using testing::Pointwise;
using testing::PolymorphicMatcher;
using testing::Property;
using testing::Ref;
using testing::ResultOf;
using testing::SizeIs;
using testing::StartsWith;
using testing::StrCaseEq;
using testing::StrCaseNe;
using testing::StrEq;
using testing::StrNe;
using testing::StringMatchResultListener;
using testing::Truly;
using testing::TypedEq;
using testing::UnorderedPointwise;
using testing::Value;
using testing::WhenSorted;
using testing::WhenSortedBy;
using testing::_;
using testing::get;
using testing::internal::DummyMatchResultListener;
using testing::internal::ElementMatcherPair;
using testing::internal::ElementMatcherPairs;
using testing::internal::ExplainMatchFailureTupleTo;
using testing::internal::FloatingEqMatcher;
using testing::internal::FormatMatcherDescription;
using testing::internal::IsReadableTypeName;
using testing::internal::JoinAsTuple;
using testing::internal::linked_ptr;
using testing::internal::MatchMatrix;
using testing::internal::RE;
using testing::internal::scoped_ptr;
using testing::internal::StreamMatchResultListener;
using testing::internal::Strings;
using testing::internal::linked_ptr;
using testing::internal::scoped_ptr;
using testing::internal::string;
using testing::make_tuple;
using testing::tuple;
// For testing ExplainMatchResultTo().
class GreaterThanMatcher : public MatcherInterface<int> {
public:
explicit GreaterThanMatcher(int rhs) : rhs_(rhs) {}
virtual void DescribeTo(ostream* os) const {
*os << "is > " << rhs_;
}
virtual bool MatchAndExplain(int lhs,
MatchResultListener* listener) const {
const int diff = lhs - rhs_;
if (diff > 0) {
*listener << "which is " << diff << " more than " << rhs_;
} else if (diff == 0) {
*listener << "which is the same as " << rhs_;
} else {
*listener << "which is " << -diff << " less than " << rhs_;
}
return lhs > rhs_;
}
private:
int rhs_;
};
Matcher<int> GreaterThan(int n) {
return MakeMatcher(new GreaterThanMatcher(n));
}
string OfType(const string& type_name) {
#if GTEST_HAS_RTTI
return " (of type " + type_name + ")";
#else
return "";
#endif
}
// Returns the description of the given matcher.
template <typename T>
string Describe(const Matcher<T>& m) {
stringstream ss;
m.DescribeTo(&ss);
return ss.str();
}
// Returns the description of the negation of the given matcher.
template <typename T>
string DescribeNegation(const Matcher<T>& m) {
stringstream ss;
m.DescribeNegationTo(&ss);
return ss.str();
}
// Returns the reason why x matches, or doesn't match, m.
template <typename MatcherType, typename Value>
string Explain(const MatcherType& m, const Value& x) {
StringMatchResultListener listener;
ExplainMatchResult(m, x, &listener);
return listener.str();
}
TEST(MatchResultListenerTest, StreamingWorks) {
StringMatchResultListener listener;
listener << "hi" << 5;
EXPECT_EQ("hi5", listener.str());
listener.Clear();
EXPECT_EQ("", listener.str());
listener << 42;
EXPECT_EQ("42", listener.str());
// Streaming shouldn't crash when the underlying ostream is NULL.
DummyMatchResultListener dummy;
dummy << "hi" << 5;
}
TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
EXPECT_TRUE(DummyMatchResultListener().stream() == NULL);
EXPECT_TRUE(StreamMatchResultListener(NULL).stream() == NULL);
EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
}
TEST(MatchResultListenerTest, IsInterestedWorks) {
EXPECT_TRUE(StringMatchResultListener().IsInterested());
EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
EXPECT_FALSE(DummyMatchResultListener().IsInterested());
EXPECT_FALSE(StreamMatchResultListener(NULL).IsInterested());
}
// Makes sure that the MatcherInterface<T> interface doesn't
// change.
class EvenMatcherImpl : public MatcherInterface<int> {
public:
virtual bool MatchAndExplain(int x,
MatchResultListener* /* listener */) const {
return x % 2 == 0;
}
virtual void DescribeTo(ostream* os) const {
*os << "is an even number";
}
// We deliberately don't define DescribeNegationTo() and
// ExplainMatchResultTo() here, to make sure the definition of these
// two methods is optional.
};
// Makes sure that the MatcherInterface API doesn't change.
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
EvenMatcherImpl m;
}
// Tests implementing a monomorphic matcher using MatchAndExplain().
class NewEvenMatcherImpl : public MatcherInterface<int> {
public:
virtual bool MatchAndExplain(int x, MatchResultListener* listener) const {
const bool match = x % 2 == 0;
// Verifies that we can stream to a listener directly.
*listener << "value % " << 2;
if (listener->stream() != NULL) {
// Verifies that we can stream to a listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2);
}
return match;
}
virtual void DescribeTo(ostream* os) const {
*os << "is an even number";
}
};
TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(3));
EXPECT_EQ("value % 2 == 0", Explain(m, 2));
EXPECT_EQ("value % 2 == 1", Explain(m, 3));
}
// Tests default-constructing a matcher.
TEST(MatcherTest, CanBeDefaultConstructed) {
Matcher<double> m;
}
// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
const MatcherInterface<int>* impl = new EvenMatcherImpl;
Matcher<int> m(impl);
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(5));
}
// Tests that value can be used in place of Eq(value).
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
Matcher<int> m1 = 5;
EXPECT_TRUE(m1.Matches(5));
EXPECT_FALSE(m1.Matches(6));
}
// Tests that NULL can be used in place of Eq(NULL).
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
Matcher<int*> m1 = NULL;
EXPECT_TRUE(m1.Matches(NULL));
int n = 0;
EXPECT_FALSE(m1.Matches(&n));
}
// Tests that matchers are copyable.
TEST(MatcherTest, IsCopyable) {
// Tests the copy constructor.
Matcher<bool> m1 = Eq(false);
EXPECT_TRUE(m1.Matches(false));
EXPECT_FALSE(m1.Matches(true));
// Tests the assignment operator.
m1 = Eq(true);
EXPECT_TRUE(m1.Matches(true));
EXPECT_FALSE(m1.Matches(false));
}
// Tests that Matcher<T>::DescribeTo() calls
// MatcherInterface<T>::DescribeTo().
TEST(MatcherTest, CanDescribeItself) {
EXPECT_EQ("is an even number",
Describe(Matcher<int>(new EvenMatcherImpl)));
}
// Tests Matcher<T>::MatchAndExplain().
TEST(MatcherTest, MatchAndExplain) {
Matcher<int> m = GreaterThan(0);
StringMatchResultListener listener1;
EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
EXPECT_EQ("which is 42 more than 0", listener1.str());
StringMatchResultListener listener2;
EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
EXPECT_EQ("which is 9 less than 0", listener2.str());
}
// Tests that a C-string literal can be implicitly converted to a
// Matcher<string> or Matcher<const string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
Matcher<string> m1 = "hi";
EXPECT_TRUE(m1.Matches("hi"));
EXPECT_FALSE(m1.Matches("hello"));
Matcher<const string&> m2 = "hi";
EXPECT_TRUE(m2.Matches("hi"));
EXPECT_FALSE(m2.Matches("hello"));
}
// Tests that a string object can be implicitly converted to a
// Matcher<string> or Matcher<const string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
Matcher<string> m1 = string("hi");
EXPECT_TRUE(m1.Matches("hi"));
EXPECT_FALSE(m1.Matches("hello"));
Matcher<const string&> m2 = string("hi");
EXPECT_TRUE(m2.Matches("hi"));
EXPECT_FALSE(m2.Matches("hello"));
}
#if GTEST_HAS_STRING_PIECE_
// Tests that a C-string literal can be implicitly converted to a
// Matcher<StringPiece> or Matcher<const StringPiece&>.
TEST(StringPieceMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
Matcher<StringPiece> m1 = "cats";
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const StringPiece&> m2 = "cats";
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
// Tests that a string object can be implicitly converted to a
// Matcher<StringPiece> or Matcher<const StringPiece&>.
TEST(StringPieceMatcherTest, CanBeImplicitlyConstructedFromString) {
Matcher<StringPiece> m1 = string("cats");
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const StringPiece&> m2 = string("cats");
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
// Tests that a StringPiece object can be implicitly converted to a
// Matcher<StringPiece> or Matcher<const StringPiece&>.
TEST(StringPieceMatcherTest, CanBeImplicitlyConstructedFromStringPiece) {
Matcher<StringPiece> m1 = StringPiece("cats");
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const StringPiece&> m2 = StringPiece("cats");
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
#endif // GTEST_HAS_STRING_PIECE_
// Tests that MakeMatcher() constructs a Matcher<T> from a
// MatcherInterface* without requiring the user to explicitly
// write the type.
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
const MatcherInterface<int>* dummy_impl = NULL;
Matcher<int> m = MakeMatcher(dummy_impl);
}
// Tests that MakePolymorphicMatcher() can construct a polymorphic
// matcher from its implementation using the old API.
const int g_bar = 1;
class ReferencesBarOrIsZeroImpl {
public:
template <typename T>
bool MatchAndExplain(const T& x,
MatchResultListener* /* listener */) const {
const void* p = &x;
return p == &g_bar || x == 0;
}
void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
void DescribeNegationTo(ostream* os) const {
*os << "doesn't reference g_bar and is not zero";
}
};
// This function verifies that MakePolymorphicMatcher() returns a
// PolymorphicMatcher<T> where T is the argument's type.
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
}
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
// Using a polymorphic matcher to match a reference type.
Matcher<const int&> m1 = ReferencesBarOrIsZero();
EXPECT_TRUE(m1.Matches(0));
// Verifies that the identity of a by-reference argument is preserved.
EXPECT_TRUE(m1.Matches(g_bar));
EXPECT_FALSE(m1.Matches(1));
EXPECT_EQ("g_bar or zero", Describe(m1));
// Using a polymorphic matcher to match a value type.
Matcher<double> m2 = ReferencesBarOrIsZero();
EXPECT_TRUE(m2.Matches(0.0));
EXPECT_FALSE(m2.Matches(0.1));
EXPECT_EQ("g_bar or zero", Describe(m2));
}
// Tests implementing a polymorphic matcher using MatchAndExplain().
class PolymorphicIsEvenImpl {
public:
void DescribeTo(ostream* os) const { *os << "is even"; }
void DescribeNegationTo(ostream* os) const {
*os << "is odd";
}
template <typename T>
bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
// Verifies that we can stream to the listener directly.
*listener << "% " << 2;
if (listener->stream() != NULL) {
// Verifies that we can stream to the listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2);
}
return (x % 2) == 0;
}
};
PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
}
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
// Using PolymorphicIsEven() as a Matcher<int>.
const Matcher<int> m1 = PolymorphicIsEven();
EXPECT_TRUE(m1.Matches(42));
EXPECT_FALSE(m1.Matches(43));
EXPECT_EQ("is even", Describe(m1));
const Matcher<int> not_m1 = Not(m1);
EXPECT_EQ("is odd", Describe(not_m1));
EXPECT_EQ("% 2 == 0", Explain(m1, 42));
// Using PolymorphicIsEven() as a Matcher<char>.
const Matcher<char> m2 = PolymorphicIsEven();
EXPECT_TRUE(m2.Matches('\x42'));
EXPECT_FALSE(m2.Matches('\x43'));
EXPECT_EQ("is even", Describe(m2));
const Matcher<char> not_m2 = Not(m2);
EXPECT_EQ("is odd", Describe(not_m2));
EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
}
// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
TEST(MatcherCastTest, FromPolymorphicMatcher) {
Matcher<int> m = MatcherCast<int>(Eq(5));
EXPECT_TRUE(m.Matches(5));
EXPECT_FALSE(m.Matches(6));
}
// For testing casting matchers between compatible types.
class IntValue {
public:
// An int can be statically (although not implicitly) cast to a
// IntValue.
explicit IntValue(int a_value) : value_(a_value) {}
int value() const { return value_; }
private:
int value_;
};
// For testing casting matchers between compatible types.
bool IsPositiveIntValue(const IntValue& foo) {
return foo.value() > 0;
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
// can be statically converted to U.
TEST(MatcherCastTest, FromCompatibleType) {
Matcher<double> m1 = Eq(2.0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(2));
EXPECT_FALSE(m2.Matches(3));
Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
Matcher<int> m4 = MatcherCast<int>(m3);
// In the following, the arguments 1 and 0 are statically converted
// to IntValue objects, and then tested by the IsPositiveIntValue()
// predicate.
EXPECT_TRUE(m4.Matches(1));
EXPECT_FALSE(m4.Matches(0));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
TEST(MatcherCastTest, FromConstReferenceToNonReference) {
Matcher<const int&> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
TEST(MatcherCastTest, FromReferenceToNonReference) {
Matcher<int&> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToConstReference) {
Matcher<int> m1 = Eq(0);
Matcher<const int&> m2 = MatcherCast<const int&>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToReference) {
Matcher<int> m1 = Eq(0);
Matcher<int&> m2 = MatcherCast<int&>(m1);
int n = 0;
EXPECT_TRUE(m2.Matches(n));
n = 1;
EXPECT_FALSE(m2.Matches(n));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromSameType) {
Matcher<int> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Implicitly convertible from any type.
struct ConvertibleFromAny {
ConvertibleFromAny(int a_value) : value(a_value) {}
template <typename T>
ConvertibleFromAny(const T& /*a_value*/) : value(-1) {
ADD_FAILURE() << "Conversion constructor called";
}
int value;
};
bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
return a.value == b.value;
}
ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
return os << a.value;
}
TEST(MatcherCastTest, ConversionConstructorIsUsed) {
Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(MatcherCastTest, FromConvertibleFromAny) {
Matcher<ConvertibleFromAny> m =
MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
struct IntReferenceWrapper {
IntReferenceWrapper(const int& a_value) : value(&a_value) {}
const int* value;
};
bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) {
return a.value == b.value;
}
TEST(MatcherCastTest, ValueIsNotCopied) {
int n = 42;
Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n);
// Verify that the matcher holds a reference to n, not to its temporary copy.
EXPECT_TRUE(m.Matches(n));
}
class Base {
public:
virtual ~Base() {}
Base() {}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(Base);
};
class Derived : public Base {
public:
Derived() : Base() {}
int i;
};
class OtherDerived : public Base {};
// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
TEST(SafeMatcherCastTest, FromPolymorphicMatcher) {
Matcher<char> m2 = SafeMatcherCast<char>(Eq(32));
EXPECT_TRUE(m2.Matches(' '));
EXPECT_FALSE(m2.Matches('\n'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
// T and U are arithmetic types and T can be losslessly converted to
// U.
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
Matcher<double> m1 = DoubleEq(1.0);
Matcher<float> m2 = SafeMatcherCast<float>(m1);
EXPECT_TRUE(m2.Matches(1.0f));
EXPECT_FALSE(m2.Matches(2.0f));
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
EXPECT_TRUE(m3.Matches('a'));
EXPECT_FALSE(m3.Matches('b'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
// are pointers or references to a derived and a base class, correspondingly.
TEST(SafeMatcherCastTest, FromBaseClass) {
Derived d, d2;
Matcher<Base*> m1 = Eq(&d);
Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
EXPECT_TRUE(m2.Matches(&d));
EXPECT_FALSE(m2.Matches(&d2));
Matcher<Base&> m3 = Ref(d);
Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
EXPECT_TRUE(m4.Matches(d));
EXPECT_FALSE(m4.Matches(d2));
}
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
int n = 0;
Matcher<const int&> m1 = Ref(n);
Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
int n1 = 0;
EXPECT_TRUE(m2.Matches(n));
EXPECT_FALSE(m2.Matches(n1));
}
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
Matcher<int> m1 = Eq(0);
Matcher<const int&> m2 = SafeMatcherCast<const int&>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
Matcher<int> m1 = Eq(0);
Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
int n = 0;
EXPECT_TRUE(m2.Matches(n));
n = 1;
EXPECT_FALSE(m2.Matches(n));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromSameType) {
Matcher<int> m1 = Eq(0);
Matcher<int> m2 = SafeMatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
Matcher<ConvertibleFromAny> m =
SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(SafeMatcherCastTest, ValueIsNotCopied) {
int n = 42;
Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n);
// Verify that the matcher holds a reference to n, not to its temporary copy.
EXPECT_TRUE(m.Matches(n));
}
TEST(ExpectThat, TakesLiterals) {
EXPECT_THAT(1, 1);
EXPECT_THAT(1.0, 1.0);
EXPECT_THAT(string(), "");
}
TEST(ExpectThat, TakesFunctions) {
struct Helper {
static void Func() {}
};
void (*func)() = Helper::Func;
EXPECT_THAT(func, Helper::Func);
EXPECT_THAT(func, &Helper::Func);
}
// Tests that A<T>() matches any value of type T.
TEST(ATest, MatchesAnyValue) {
// Tests a matcher for a value type.
Matcher<double> m1 = A<double>();
EXPECT_TRUE(m1.Matches(91.43));
EXPECT_TRUE(m1.Matches(-15.32));
// Tests a matcher for a reference type.
int a = 2;
int b = -6;
Matcher<int&> m2 = A<int&>();
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
TEST(ATest, WorksForDerivedClass) {
Base base;
Derived derived;
EXPECT_THAT(&base, A<Base*>());
// This shouldn't compile: EXPECT_THAT(&base, A<Derived*>());
EXPECT_THAT(&derived, A<Base*>());
EXPECT_THAT(&derived, A<Derived*>());
}
// Tests that A<T>() describes itself properly.
TEST(ATest, CanDescribeSelf) {
EXPECT_EQ("is anything", Describe(A<bool>()));
}
// Tests that An<T>() matches any value of type T.
TEST(AnTest, MatchesAnyValue) {
// Tests a matcher for a value type.
Matcher<int> m1 = An<int>();
EXPECT_TRUE(m1.Matches(9143));
EXPECT_TRUE(m1.Matches(-1532));
// Tests a matcher for a reference type.
int a = 2;
int b = -6;
Matcher<int&> m2 = An<int&>();
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that An<T>() describes itself properly.
TEST(AnTest, CanDescribeSelf) {
EXPECT_EQ("is anything", Describe(An<int>()));
}
// Tests that _ can be used as a matcher for any type and matches any
// value of that type.
TEST(UnderscoreTest, MatchesAnyValue) {
// Uses _ as a matcher for a value type.
Matcher<int> m1 = _;
EXPECT_TRUE(m1.Matches(123));
EXPECT_TRUE(m1.Matches(-242));
// Uses _ as a matcher for a reference type.
bool a = false;
const bool b = true;
Matcher<const bool&> m2 = _;
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that _ describes itself properly.
TEST(UnderscoreTest, CanDescribeSelf) {
Matcher<int> m = _;
EXPECT_EQ("is anything", Describe(m));
}
// Tests that Eq(x) matches any value equal to x.
TEST(EqTest, MatchesEqualValue) {
// 2 C-strings with same content but different addresses.
const char a1[] = "hi";
const char a2[] = "hi";
Matcher<const char*> m1 = Eq(a1);
EXPECT_TRUE(m1.Matches(a1));
EXPECT_FALSE(m1.Matches(a2));
}
// Tests that Eq(v) describes itself properly.
class Unprintable {
public:
Unprintable() : c_('a') {}
bool operator==(const Unprintable& /* rhs */) { return true; }
private:
char c_;
};
TEST(EqTest, CanDescribeSelf) {
Matcher<Unprintable> m = Eq(Unprintable());
EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
}
// Tests that Eq(v) can be used to match any type that supports
// comparing with type T, where T is v's type.
TEST(EqTest, IsPolymorphic) {
Matcher<int> m1 = Eq(1);
EXPECT_TRUE(m1.Matches(1));
EXPECT_FALSE(m1.Matches(2));
Matcher<char> m2 = Eq(1);
EXPECT_TRUE(m2.Matches('\1'));
EXPECT_FALSE(m2.Matches('a'));
}
// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
TEST(TypedEqTest, ChecksEqualityForGivenType) {
Matcher<char> m1 = TypedEq<char>('a');
EXPECT_TRUE(m1.Matches('a'));
EXPECT_FALSE(m1.Matches('b'));
Matcher<int> m2 = TypedEq<int>(6);
EXPECT_TRUE(m2.Matches(6));
EXPECT_FALSE(m2.Matches(7));
}
// Tests that TypedEq(v) describes itself properly.
TEST(TypedEqTest, CanDescribeSelf) {
EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
}
// Tests that TypedEq<T>(v) has type Matcher<T>.
// Type<T>::IsTypeOf(v) compiles iff the type of value v is T, where T
// is a "bare" type (i.e. not in the form of const U or U&). If v's
// type is not T, the compiler will generate a message about
// "undefined referece".
template <typename T>
struct Type {
static bool IsTypeOf(const T& /* v */) { return true; }
template <typename T2>
static void IsTypeOf(T2 v);
};
TEST(TypedEqTest, HasSpecifiedType) {
// Verfies that the type of TypedEq<T>(v) is Matcher<T>.
Type<Matcher<int> >::IsTypeOf(TypedEq<int>(5));
Type<Matcher<double> >::IsTypeOf(TypedEq<double>(5));
}
// Tests that Ge(v) matches anything >= v.
TEST(GeTest, ImplementsGreaterThanOrEqual) {
Matcher<int> m1 = Ge(0);
EXPECT_TRUE(m1.Matches(1));
EXPECT_TRUE(m1.Matches(0));
EXPECT_FALSE(m1.Matches(-1));
}
// Tests that Ge(v) describes itself properly.
TEST(GeTest, CanDescribeSelf) {
Matcher<int> m = Ge(5);
EXPECT_EQ("is >= 5", Describe(m));
}
// Tests that Gt(v) matches anything > v.
TEST(GtTest, ImplementsGreaterThan) {
Matcher<double> m1 = Gt(0);
EXPECT_TRUE(m1.Matches(1.0));
EXPECT_FALSE(m1.Matches(0.0));
EXPECT_FALSE(m1.Matches(-1.0));
}
// Tests that Gt(v) describes itself properly.
TEST(GtTest, CanDescribeSelf) {
Matcher<int> m = Gt(5);
EXPECT_EQ("is > 5", Describe(m));
}
// Tests that Le(v) matches anything <= v.
TEST(LeTest, ImplementsLessThanOrEqual) {
Matcher<char> m1 = Le('b');
EXPECT_TRUE(m1.Matches('a'));
EXPECT_TRUE(m1.Matches('b'));
EXPECT_FALSE(m1.Matches('c'));
}
// Tests that Le(v) describes itself properly.
TEST(LeTest, CanDescribeSelf) {
Matcher<int> m = Le(5);
EXPECT_EQ("is <= 5", Describe(m));
}
// Tests that Lt(v) matches anything < v.
TEST(LtTest, ImplementsLessThan) {
Matcher<const string&> m1 = Lt("Hello");
EXPECT_TRUE(m1.Matches("Abc"));
EXPECT_FALSE(m1.Matches("Hello"));
EXPECT_FALSE(m1.Matches("Hello, world!"));
}
// Tests that Lt(v) describes itself properly.
TEST(LtTest, CanDescribeSelf) {
Matcher<int> m = Lt(5);
EXPECT_EQ("is < 5", Describe(m));
}
// Tests that Ne(v) matches anything != v.
TEST(NeTest, ImplementsNotEqual) {
Matcher<int> m1 = Ne(0);
EXPECT_TRUE(m1.Matches(1));
EXPECT_TRUE(m1.Matches(-1));
EXPECT_FALSE(m1.Matches(0));
}
// Tests that Ne(v) describes itself properly.
TEST(NeTest, CanDescribeSelf) {
Matcher<int> m = Ne(5);
EXPECT_EQ("isn't equal to 5", Describe(m));
}
// Tests that IsNull() matches any NULL pointer of any type.
TEST(IsNullTest, MatchesNullPointer) {
Matcher<int*> m1 = IsNull();
int* p1 = NULL;
int n = 0;
EXPECT_TRUE(m1.Matches(p1));
EXPECT_FALSE(m1.Matches(&n));
Matcher<const char*> m2 = IsNull();
const char* p2 = NULL;
EXPECT_TRUE(m2.Matches(p2));
EXPECT_FALSE(m2.Matches("hi"));
#if !GTEST_OS_SYMBIAN
// Nokia's Symbian compiler generates:
// gmock-matchers.h: ambiguous access to overloaded function
// gmock-matchers.h: 'testing::Matcher<void *>::Matcher(void *)'
// gmock-matchers.h: 'testing::Matcher<void *>::Matcher(const testing::
// MatcherInterface<void *> *)'
// gmock-matchers.h: (point of instantiation: 'testing::
// gmock_matchers_test::IsNullTest_MatchesNullPointer_Test::TestBody()')
// gmock-matchers.h: (instantiating: 'testing::PolymorphicMatc
Matcher<void*> m3 = IsNull();
void* p3 = NULL;
EXPECT_TRUE(m3.Matches(p3));
EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
#endif
}
TEST(IsNullTest, LinkedPtr) {
const Matcher<linked_ptr<int> > m = IsNull();
const linked_ptr<int> null_p;
const linked_ptr<int> non_null_p(new int);
EXPECT_TRUE(m.Matches(null_p));
EXPECT_FALSE(m.Matches(non_null_p));
}
TEST(IsNullTest, ReferenceToConstLinkedPtr) {
const Matcher<const linked_ptr<double>&> m = IsNull();
const linked_ptr<double> null_p;
const linked_ptr<double> non_null_p(new double);
EXPECT_TRUE(m.Matches(null_p));
EXPECT_FALSE(m.Matches(non_null_p));
}
#if GTEST_LANG_CXX11
TEST(IsNullTest, StdFunction) {
const Matcher<std::function<void()>> m = IsNull();
EXPECT_TRUE(m.Matches(std::function<void()>()));
EXPECT_FALSE(m.Matches([]{}));
}
#endif // GTEST_LANG_CXX11
// Tests that IsNull() describes itself properly.
TEST(IsNullTest, CanDescribeSelf) {
Matcher<int*> m = IsNull();
EXPECT_EQ("is NULL", Describe(m));
EXPECT_EQ("isn't NULL", DescribeNegation(m));
}
// Tests that NotNull() matches any non-NULL pointer of any type.
TEST(NotNullTest, MatchesNonNullPointer) {
Matcher<int*> m1 = NotNull();
int* p1 = NULL;
int n = 0;
EXPECT_FALSE(m1.Matches(p1));
EXPECT_TRUE(m1.Matches(&n));
Matcher<const char*> m2 = NotNull();
const char* p2 = NULL;
EXPECT_FALSE(m2.Matches(p2));
EXPECT_TRUE(m2.Matches("hi"));
}
TEST(NotNullTest, LinkedPtr) {
const Matcher<linked_ptr<int> > m = NotNull();
const linked_ptr<int> null_p;
const linked_ptr<int> non_null_p(new int);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
TEST(NotNullTest, ReferenceToConstLinkedPtr) {
const Matcher<const linked_ptr<double>&> m = NotNull();
const linked_ptr<double> null_p;
const linked_ptr<double> non_null_p(new double);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
#if GTEST_LANG_CXX11
TEST(NotNullTest, StdFunction) {
const Matcher<std::function<void()>> m = NotNull();
EXPECT_TRUE(m.Matches([]{}));
EXPECT_FALSE(m.Matches(std::function<void()>()));
}
#endif // GTEST_LANG_CXX11
// Tests that NotNull() describes itself properly.
TEST(NotNullTest, CanDescribeSelf) {
Matcher<int*> m = NotNull();
EXPECT_EQ("isn't NULL", Describe(m));
}
// Tests that Ref(variable) matches an argument that references
// 'variable'.
TEST(RefTest, MatchesSameVariable) {
int a = 0;
int b = 0;
Matcher<int&> m = Ref(a);
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that Ref(variable) describes itself properly.
TEST(RefTest, CanDescribeSelf) {
int n = 5;
Matcher<int&> m = Ref(n);
stringstream ss;
ss << "references the variable @" << &n << " 5";
EXPECT_EQ(string(ss.str()), Describe(m));
}
// Test that Ref(non_const_varialbe) can be used as a matcher for a
// const reference.
TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
int a = 0;
int b = 0;
Matcher<const int&> m = Ref(a);
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
// used wherever Ref(base) can be used (Ref(derived) is a sub-type
// of Ref(base), but not vice versa.
TEST(RefTest, IsCovariant) {
Base base, base2;
Derived derived;
Matcher<const Base&> m1 = Ref(base);
EXPECT_TRUE(m1.Matches(base));
EXPECT_FALSE(m1.Matches(base2));
EXPECT_FALSE(m1.Matches(derived));
m1 = Ref(derived);
EXPECT_TRUE(m1.Matches(derived));
EXPECT_FALSE(m1.Matches(base));
EXPECT_FALSE(m1.Matches(base2));
}
TEST(RefTest, ExplainsResult) {
int n = 0;
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
StartsWith("which is located @"));
int m = 0;
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
StartsWith("which is located @"));
}
// Tests string comparison matchers.
TEST(StrEqTest, MatchesEqualString) {
Matcher<const char*> m = StrEq(string("Hello"));
EXPECT_TRUE(m.Matches("Hello"));
EXPECT_FALSE(m.Matches("hello"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const string&> m2 = StrEq("Hello");
EXPECT_TRUE(m2.Matches("Hello"));
EXPECT_FALSE(m2.Matches("Hi"));
}
TEST(StrEqTest, CanDescribeSelf) {
Matcher<string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
Describe(m));
string str("01204500800");
str[3] = '\0';
Matcher<string> m2 = StrEq(str);
EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
Matcher<string> m3 = StrEq(str);
EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
}
TEST(StrNeTest, MatchesUnequalString) {
Matcher<const char*> m = StrNe("Hello");
EXPECT_TRUE(m.Matches(""));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches("Hello"));
Matcher<string> m2 = StrNe(string("Hello"));
EXPECT_TRUE(m2.Matches("hello"));
EXPECT_FALSE(m2.Matches("Hello"));
}
TEST(StrNeTest, CanDescribeSelf) {
Matcher<const char*> m = StrNe("Hi");
EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
}
TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const char*> m = StrCaseEq(string("Hello"));
EXPECT_TRUE(m.Matches("Hello"));
EXPECT_TRUE(m.Matches("hello"));
EXPECT_FALSE(m.Matches("Hi"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const string&> m2 = StrCaseEq("Hello");
EXPECT_TRUE(m2.Matches("hello"));
EXPECT_FALSE(m2.Matches("Hi"));
}
TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
string str1("oabocdooeoo");
string str2("OABOCDOOEOO");
Matcher<const string&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + string(1, '\0')));
str1[3] = str2[3] = '\0';
Matcher<const string&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = '\0';
str2[0] = str2[6] = str2[7] = str2[10] = '\0';
Matcher<const string&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = '\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const string&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + "x"));
str2.append(1, '\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(string(str2, 0, 9)));
}
TEST(StrCaseEqTest, CanDescribeSelf) {
Matcher<string> m = StrCaseEq("Hi");
EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
}
TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const char*> m = StrCaseNe("Hello");
EXPECT_TRUE(m.Matches("Hi"));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches("Hello"));
EXPECT_FALSE(m.Matches("hello"));
Matcher<string> m2 = StrCaseNe(string("Hello"));
EXPECT_TRUE(m2.Matches(""));
EXPECT_FALSE(m2.Matches("Hello"));
}
TEST(StrCaseNeTest, CanDescribeSelf) {
Matcher<const char*> m = StrCaseNe("Hi");
EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching string-typed values.
TEST(HasSubstrTest, WorksForStringClasses) {
const Matcher<string> m1 = HasSubstr("foo");
EXPECT_TRUE(m1.Matches(string("I love food.")));
EXPECT_FALSE(m1.Matches(string("tofo")));
const Matcher<const std::string&> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches(std::string("I love food.")));
EXPECT_FALSE(m2.Matches(std::string("tofo")));
}
// Tests that HasSubstr() works for matching C-string-typed values.
TEST(HasSubstrTest, WorksForCStrings) {
const Matcher<char*> m1 = HasSubstr("foo");
EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const char*> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches("I love food."));
EXPECT_FALSE(m2.Matches("tofo"));
EXPECT_FALSE(m2.Matches(NULL));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(HasSubstrTest, CanDescribeSelf) {
Matcher<string> m = HasSubstr("foo\n\"");
EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
}
TEST(KeyTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m = Key("foo");
EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
}
TEST(KeyTest, ExplainsResult) {
Matcher<pair<int, bool> > m = Key(GreaterThan(10));
EXPECT_EQ("whose first field is a value which is 5 less than 10",
Explain(m, make_pair(5, true)));
EXPECT_EQ("whose first field is a value which is 5 more than 10",
Explain(m, make_pair(15, true)));
}
TEST(KeyTest, MatchesCorrectly) {
pair<int, std::string> p(25, "foo");
EXPECT_THAT(p, Key(25));
EXPECT_THAT(p, Not(Key(42)));
EXPECT_THAT(p, Key(Ge(20)));
EXPECT_THAT(p, Not(Key(Lt(25))));
}
TEST(KeyTest, SafelyCastsInnerMatcher) {
Matcher<int> is_positive = Gt(0);
Matcher<int> is_negative = Lt(0);
pair<char, bool> p('a', true);
EXPECT_THAT(p, Key(is_positive));
EXPECT_THAT(p, Not(Key(is_negative)));
}
TEST(KeyTest, InsideContainsUsingMap) {
map<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3))));
}
TEST(KeyTest, InsideContainsUsingMultimap) {
multimap<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Not(Contains(Key(25))));
container.insert(make_pair(25, 'd'));
EXPECT_THAT(container, Contains(Key(25)));
container.insert(make_pair(25, 'e'));
EXPECT_THAT(container, Contains(Key(25)));
EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3))));
}
TEST(PairTest, Typing) {
// Test verifies the following type conversions can be compiled.
Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
Matcher<const pair<const char*, int> > m2 = Pair("foo", 42);
Matcher<pair<const char*, int> > m3 = Pair("foo", 42);
Matcher<pair<int, const std::string> > m4 = Pair(25, "42");
Matcher<pair<const std::string, int> > m5 = Pair("25", 42);
}
TEST(PairTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
EXPECT_EQ("has a first field that is equal to \"foo\""
", and has a second field that is equal to 42",
Describe(m1));
EXPECT_EQ("has a first field that isn't equal to \"foo\""
", or has a second field that isn't equal to 42",
DescribeNegation(m1));
// Double and triple negation (1 or 2 times not and description of negation).
Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
EXPECT_EQ("has a first field that isn't equal to 13"
", and has a second field that is equal to 42",
DescribeNegation(m2));
}
TEST(PairTest, CanExplainMatchResultTo) {
// If neither field matches, Pair() should explain about the first
// field.
const Matcher<pair<int, int> > m = Pair(GreaterThan(0), GreaterThan(0));
EXPECT_EQ("whose first field does not match, which is 1 less than 0",
Explain(m, make_pair(-1, -2)));
// If the first field matches but the second doesn't, Pair() should
// explain about the second field.
EXPECT_EQ("whose second field does not match, which is 2 less than 0",
Explain(m, make_pair(1, -2)));
// If the first field doesn't match but the second does, Pair()
// should explain about the first field.
EXPECT_EQ("whose first field does not match, which is 1 less than 0",
Explain(m, make_pair(-1, 2)));
// If both fields match, Pair() should explain about them both.
EXPECT_EQ("whose both fields match, where the first field is a value "
"which is 1 more than 0, and the second field is a value "
"which is 2 more than 0",
Explain(m, make_pair(1, 2)));
// If only the first match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int> > explain_first = Pair(GreaterThan(0), 0);
EXPECT_EQ("whose both fields match, where the first field is a value "
"which is 1 more than 0",
Explain(explain_first, make_pair(1, 0)));
// If only the second match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int> > explain_second = Pair(0, GreaterThan(0));
EXPECT_EQ("whose both fields match, where the second field is a value "
"which is 1 more than 0",
Explain(explain_second, make_pair(0, 1)));
}
TEST(PairTest, MatchesCorrectly) {
pair<int, std::string> p(25, "foo");
// Both fields match.
EXPECT_THAT(p, Pair(25, "foo"));
EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
// 'first' doesnt' match, but 'second' matches.
EXPECT_THAT(p, Not(Pair(42, "foo")));
EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
// 'first' matches, but 'second' doesn't match.
EXPECT_THAT(p, Not(Pair(25, "bar")));
EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
// Neither field matches.
EXPECT_THAT(p, Not(Pair(13, "bar")));
EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
}
TEST(PairTest, SafelyCastsInnerMatchers) {
Matcher<int> is_positive = Gt(0);
Matcher<int> is_negative = Lt(0);
pair<char, bool> p('a', true);
EXPECT_THAT(p, Pair(is_positive, _));
EXPECT_THAT(p, Not(Pair(is_negative, _)));
EXPECT_THAT(p, Pair(_, is_positive));
EXPECT_THAT(p, Not(Pair(_, is_negative)));
}
TEST(PairTest, InsideContainsUsingMap) {
map<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Pair(1, 'a')));
EXPECT_THAT(container, Contains(Pair(1, _)));
EXPECT_THAT(container, Contains(Pair(_, 'a')));
EXPECT_THAT(container, Not(Contains(Pair(3, _))));
}
// Tests StartsWith(s).
TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const char*> m1 = StartsWith(string(""));
EXPECT_TRUE(m1.Matches("Hi"));
EXPECT_TRUE(m1.Matches(""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = StartsWith("Hi");
EXPECT_TRUE(m2.Matches("Hi"));
EXPECT_TRUE(m2.Matches("Hi Hi!"));
EXPECT_TRUE(m2.Matches("High"));
EXPECT_FALSE(m2.Matches("H"));
EXPECT_FALSE(m2.Matches(" Hi"));
}
TEST(StartsWithTest, CanDescribeSelf) {
Matcher<const std::string> m = StartsWith("Hi");
EXPECT_EQ("starts with \"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const char*> m1 = EndsWith("");
EXPECT_TRUE(m1.Matches("Hi"));
EXPECT_TRUE(m1.Matches(""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = EndsWith(string("Hi"));
EXPECT_TRUE(m2.Matches("Hi"));
EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
EXPECT_TRUE(m2.Matches("Super Hi"));
EXPECT_FALSE(m2.Matches("i"));
EXPECT_FALSE(m2.Matches("Hi "));
}
TEST(EndsWithTest, CanDescribeSelf) {
Matcher<const std::string> m = EndsWith("Hi");
EXPECT_EQ("ends with \"Hi\"", Describe(m));
}
// Tests MatchesRegex().
TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
const Matcher<const char*> m1 = MatchesRegex("a.*z");
EXPECT_TRUE(m1.Matches("az"));
EXPECT_TRUE(m1.Matches("abcz"));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = MatchesRegex(new RE("a.*z"));
EXPECT_TRUE(m2.Matches("azbz"));
EXPECT_FALSE(m2.Matches("az1"));
EXPECT_FALSE(m2.Matches("1az"));
}
TEST(MatchesRegexTest, CanDescribeSelf) {
Matcher<const std::string> m1 = MatchesRegex(string("Hi.*"));
EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
}
// Tests ContainsRegex().
TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
const Matcher<const char*> m1 = ContainsRegex(string("a.*z"));
EXPECT_TRUE(m1.Matches("az"));
EXPECT_TRUE(m1.Matches("0abcz1"));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const string&> m2 = ContainsRegex(new RE("a.*z"));
EXPECT_TRUE(m2.Matches("azbz"));
EXPECT_TRUE(m2.Matches("az1"));
EXPECT_FALSE(m2.Matches("1a"));
}
TEST(ContainsRegexTest, CanDescribeSelf) {
Matcher<const std::string> m1 = ContainsRegex("Hi.*");
EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
}
// Tests for wide strings.
#if GTEST_HAS_STD_WSTRING
TEST(StdWideStrEqTest, MatchesEqual) {
Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"Hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
::std::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::std::wstring&> m4 = StrEq(str);
EXPECT_TRUE(m4.Matches(str));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::std::wstring&> m5 = StrEq(str);
EXPECT_TRUE(m5.Matches(str));
}
TEST(StdWideStrEqTest, CanDescribeSelf) {
Matcher< ::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
Describe(m));
Matcher< ::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
Describe(m2));
::std::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::std::wstring&> m4 = StrEq(str);
EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::std::wstring&> m5 = StrEq(str);
EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
}
TEST(StdWideStrNeTest, MatchesUnequalString) {
Matcher<const wchar_t*> m = StrNe(L"Hello");
EXPECT_TRUE(m.Matches(L""));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
Matcher< ::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(StdWideStrNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrNe(L"Hi");
EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
}
TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_TRUE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(L"Hi"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
}
TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
::std::wstring str1(L"oabocdooeoo");
::std::wstring str2(L"OABOCDOOEOO");
Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
str1[3] = str2[3] = L'\0';
Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = L'\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + L"x"));
str2.append(1, L'\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
}
TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
Matcher< ::std::wstring> m = StrCaseEq(L"Hi");
EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
}
TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
EXPECT_TRUE(m.Matches(L"Hi"));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
Matcher< ::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L""));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching wstring-typed values.
TEST(StdWideHasSubstrTest, WorksForStringClasses) {
const Matcher< ::std::wstring> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
}
// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(StdWideHasSubstrTest, WorksForCStrings) {
const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(L"I love food."));
EXPECT_FALSE(m2.Matches(L"tofo"));
EXPECT_FALSE(m2.Matches(NULL));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(StdWideHasSubstrTest, CanDescribeSelf) {
Matcher< ::std::wstring> m = HasSubstr(L"foo\n\"");
EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
}
// Tests StartsWith(s).
TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
EXPECT_TRUE(m2.Matches(L"High"));
EXPECT_FALSE(m2.Matches(L"H"));
EXPECT_FALSE(m2.Matches(L" Hi"));
}
TEST(StdWideStartsWithTest, CanDescribeSelf) {
Matcher<const ::std::wstring> m = StartsWith(L"Hi");
EXPECT_EQ("starts with L\"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const wchar_t*> m1 = EndsWith(L"");
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
EXPECT_TRUE(m2.Matches(L"Super Hi"));
EXPECT_FALSE(m2.Matches(L"i"));
EXPECT_FALSE(m2.Matches(L"Hi "));
}
TEST(StdWideEndsWithTest, CanDescribeSelf) {
Matcher<const ::std::wstring> m = EndsWith(L"Hi");
EXPECT_EQ("ends with L\"Hi\"", Describe(m));
}
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_WSTRING
TEST(GlobalWideStrEqTest, MatchesEqual) {
Matcher<const wchar_t*> m = StrEq(::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::wstring&> m2 = StrEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"Hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
Matcher<const ::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::wstring&> m4 = StrEq(str);
EXPECT_TRUE(m4.Matches(str));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::wstring&> m5 = StrEq(str);
EXPECT_TRUE(m5.Matches(str));
}
TEST(GlobalWideStrEqTest, CanDescribeSelf) {
Matcher< ::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
Describe(m));
Matcher< ::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"",
Describe(m2));
::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::wstring&> m4 = StrEq(str);
EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::wstring&> m5 = StrEq(str);
EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
}
TEST(GlobalWideStrNeTest, MatchesUnequalString) {
Matcher<const wchar_t*> m = StrNe(L"Hello");
EXPECT_TRUE(m.Matches(L""));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
Matcher< ::wstring> m2 = StrNe(::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(GlobalWideStrNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrNe(L"Hi");
EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
}
TEST(GlobalWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseEq(::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_TRUE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(L"Hi"));
EXPECT_FALSE(m.Matches(NULL));
Matcher<const ::wstring&> m2 = StrCaseEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
}
TEST(GlobalWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
::wstring str1(L"oabocdooeoo");
::wstring str2(L"OABOCDOOEOO");
Matcher<const ::wstring&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + ::wstring(1, L'\0')));
str1[3] = str2[3] = L'\0';
Matcher<const ::wstring&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
Matcher<const ::wstring&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = L'\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const ::wstring&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + L"x"));
str2.append(1, L'\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(::wstring(str2, 0, 9)));
}
TEST(GlobalWideStrCaseEqTest, CanDescribeSelf) {
Matcher< ::wstring> m = StrCaseEq(L"Hi");
EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
}
TEST(GlobalWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
EXPECT_TRUE(m.Matches(L"Hi"));
EXPECT_TRUE(m.Matches(NULL));
EXPECT_FALSE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
Matcher< ::wstring> m2 = StrCaseNe(::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L""));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(GlobalWideStrCaseNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching wstring-typed values.
TEST(GlobalWideHasSubstrTest, WorksForStringClasses) {
const Matcher< ::wstring> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(::wstring(L"I love food.")));
EXPECT_FALSE(m1.Matches(::wstring(L"tofo")));
const Matcher<const ::wstring&> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(::wstring(L"I love food.")));
EXPECT_FALSE(m2.Matches(::wstring(L"tofo")));
}
// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(GlobalWideHasSubstrTest, WorksForCStrings) {
const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(L"I love food."));
EXPECT_FALSE(m2.Matches(L"tofo"));
EXPECT_FALSE(m2.Matches(NULL));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(GlobalWideHasSubstrTest, CanDescribeSelf) {
Matcher< ::wstring> m = HasSubstr(L"foo\n\"");
EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
}
// Tests StartsWith(s).
TEST(GlobalWideStartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const wchar_t*> m1 = StartsWith(::wstring(L""));
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::wstring&> m2 = StartsWith(L"Hi");
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
EXPECT_TRUE(m2.Matches(L"High"));
EXPECT_FALSE(m2.Matches(L"H"));
EXPECT_FALSE(m2.Matches(L" Hi"));
}
TEST(GlobalWideStartsWithTest, CanDescribeSelf) {
Matcher<const ::wstring> m = StartsWith(L"Hi");
EXPECT_EQ("starts with L\"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(GlobalWideEndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const wchar_t*> m1 = EndsWith(L"");
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(NULL));
const Matcher<const ::wstring&> m2 = EndsWith(::wstring(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
EXPECT_TRUE(m2.Matches(L"Super Hi"));
EXPECT_FALSE(m2.Matches(L"i"));
EXPECT_FALSE(m2.Matches(L"Hi "));
}
TEST(GlobalWideEndsWithTest, CanDescribeSelf) {
Matcher<const ::wstring> m = EndsWith(L"Hi");
EXPECT_EQ("ends with L\"Hi\"", Describe(m));
}
#endif // GTEST_HAS_GLOBAL_WSTRING
typedef ::testing::tuple<long, int> Tuple2; // NOLINT
// Tests that Eq() matches a 2-tuple where the first field == the
// second field.
TEST(Eq2Test, MatchesEqualArguments) {
Matcher<const Tuple2&> m = Eq();
EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
}
// Tests that Eq() describes itself properly.
TEST(Eq2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Eq();
EXPECT_EQ("are an equal pair", Describe(m));
}
// Tests that Ge() matches a 2-tuple where the first field >= the
// second field.
TEST(Ge2Test, MatchesGreaterThanOrEqualArguments) {
Matcher<const Tuple2&> m = Ge();
EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
}
// Tests that Ge() describes itself properly.
TEST(Ge2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Ge();
EXPECT_EQ("are a pair where the first >= the second", Describe(m));
}
// Tests that Gt() matches a 2-tuple where the first field > the
// second field.
TEST(Gt2Test, MatchesGreaterThanArguments) {
Matcher<const Tuple2&> m = Gt();
EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 6)));
}
// Tests that Gt() describes itself properly.
TEST(Gt2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Gt();
EXPECT_EQ("are a pair where the first > the second", Describe(m));
}
// Tests that Le() matches a 2-tuple where the first field <= the
// second field.
TEST(Le2Test, MatchesLessThanOrEqualArguments) {
Matcher<const Tuple2&> m = Le();
EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
EXPECT_TRUE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
}
// Tests that Le() describes itself properly.
TEST(Le2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Le();
EXPECT_EQ("are a pair where the first <= the second", Describe(m));
}
// Tests that Lt() matches a 2-tuple where the first field < the
// second field.
TEST(Lt2Test, MatchesLessThanArguments) {
Matcher<const Tuple2&> m = Lt();
EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 4)));
}
// Tests that Lt() describes itself properly.
TEST(Lt2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Lt();
EXPECT_EQ("are a pair where the first < the second", Describe(m));
}
// Tests that Ne() matches a 2-tuple where the first field != the
// second field.
TEST(Ne2Test, MatchesUnequalArguments) {
Matcher<const Tuple2&> m = Ne();
EXPECT_TRUE(m.Matches(Tuple2(5L, 6)));
EXPECT_TRUE(m.Matches(Tuple2(5L, 4)));
EXPECT_FALSE(m.Matches(Tuple2(5L, 5)));
}
// Tests that Ne() describes itself properly.
TEST(Ne2Test, CanDescribeSelf) {
Matcher<const Tuple2&> m = Ne();
EXPECT_EQ("are an unequal pair", Describe(m));
}
// Tests that Not(m) matches any value that doesn't match m.
TEST(NotTest, NegatesMatcher) {
Matcher<int> m;
m = Not(Eq(2));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
}
// Tests that Not(m) describes itself properly.
TEST(NotTest, CanDescribeSelf) {
Matcher<int> m = Not(Eq(5));
EXPECT_EQ("isn't equal to 5", Describe(m));
}
// Tests that monomorphic matchers are safely cast by the Not matcher.
TEST(NotTest, NotMatcherSafelyCastsMonomorphicMatchers) {
// greater_than_5 is a monomorphic matcher.
Matcher<int> greater_than_5 = Gt(5);
Matcher<const int&> m = Not(greater_than_5);
Matcher<int&> m2 = Not(greater_than_5);
Matcher<int&> m3 = Not(m);
}
// Helper to allow easy testing of AllOf matchers with num parameters.
void AllOfMatches(int num, const Matcher<int>& m) {
SCOPED_TRACE(Describe(m));
EXPECT_TRUE(m.Matches(0));
for (int i = 1; i <= num; ++i) {
EXPECT_FALSE(m.Matches(i));
}
EXPECT_TRUE(m.Matches(num + 1));
}
// Tests that AllOf(m1, ..., mn) matches any value that matches all of
// the given matchers.
TEST(AllOfTest, MatchesWhenAllMatch) {
Matcher<int> m;
m = AllOf(Le(2), Ge(1));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(0));
EXPECT_FALSE(m.Matches(3));
m = AllOf(Gt(0), Ne(1), Ne(2));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
EXPECT_FALSE(m.Matches(1));
EXPECT_FALSE(m.Matches(0));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
EXPECT_FALSE(m.Matches(1));
EXPECT_FALSE(m.Matches(0));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
EXPECT_TRUE(m.Matches(0));
EXPECT_TRUE(m.Matches(1));
EXPECT_FALSE(m.Matches(3));
// The following tests for varying number of sub-matchers. Due to the way
// the sub-matchers are handled it is enough to test every sub-matcher once
// with sub-matchers using the same matcher type. Varying matcher types are
// checked for above.
AllOfMatches(2, AllOf(Ne(1), Ne(2)));
AllOfMatches(3, AllOf(Ne(1), Ne(2), Ne(3)));
AllOfMatches(4, AllOf(Ne(1), Ne(2), Ne(3), Ne(4)));
AllOfMatches(5, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5)));
AllOfMatches(6, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6)));
AllOfMatches(7, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7)));
AllOfMatches(8, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
Ne(8)));
AllOfMatches(9, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7),
Ne(8), Ne(9)));
AllOfMatches(10, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
Ne(9), Ne(10)));
}
#if GTEST_LANG_CXX11
// Tests the variadic version of the AllOfMatcher.
TEST(AllOfTest, VariadicMatchesWhenAllMatch) {
// Make sure AllOf is defined in the right namespace and does not depend on
// ADL.
::testing::AllOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
Matcher<int> m = AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
Ne(9), Ne(10), Ne(11));
EXPECT_THAT(Describe(m), EndsWith("and (isn't equal to 11))))))))))"));
AllOfMatches(11, m);
AllOfMatches(50, AllOf(Ne(1), Ne(2), Ne(3), Ne(4), Ne(5), Ne(6), Ne(7), Ne(8),
Ne(9), Ne(10), Ne(11), Ne(12), Ne(13), Ne(14), Ne(15),
Ne(16), Ne(17), Ne(18), Ne(19), Ne(20), Ne(21), Ne(22),
Ne(23), Ne(24), Ne(25), Ne(26), Ne(27), Ne(28), Ne(29),
Ne(30), Ne(31), Ne(32), Ne(33), Ne(34), Ne(35), Ne(36),
Ne(37), Ne(38), Ne(39), Ne(40), Ne(41), Ne(42), Ne(43),
Ne(44), Ne(45), Ne(46), Ne(47), Ne(48), Ne(49),
Ne(50)));
}
#endif // GTEST_LANG_CXX11
// Tests that AllOf(m1, ..., mn) describes itself properly.
TEST(AllOfTest, CanDescribeSelf) {
Matcher<int> m;
m = AllOf(Le(2), Ge(1));
EXPECT_EQ("(is <= 2) and (is >= 1)", Describe(m));
m = AllOf(Gt(0), Ne(1), Ne(2));
EXPECT_EQ("(is > 0) and "
"((isn't equal to 1) and "
"(isn't equal to 2))",
Describe(m));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
EXPECT_EQ("((is > 0) and "
"(isn't equal to 1)) and "
"((isn't equal to 2) and "
"(isn't equal to 3))",
Describe(m));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
EXPECT_EQ("((is >= 0) and "
"(is < 10)) and "
"((isn't equal to 3) and "
"((isn't equal to 5) and "
"(isn't equal to 7)))",
Describe(m));
}
// Tests that AllOf(m1, ..., mn) describes its negation properly.
TEST(AllOfTest, CanDescribeNegation) {
Matcher<int> m;
m = AllOf(Le(2), Ge(1));
EXPECT_EQ("(isn't <= 2) or "
"(isn't >= 1)",
DescribeNegation(m));
m = AllOf(Gt(0), Ne(1), Ne(2));
EXPECT_EQ("(isn't > 0) or "
"((is equal to 1) or "
"(is equal to 2))",
DescribeNegation(m));
m = AllOf(Gt(0), Ne(1), Ne(2), Ne(3));
EXPECT_EQ("((isn't > 0) or "
"(is equal to 1)) or "
"((is equal to 2) or "
"(is equal to 3))",
DescribeNegation(m));
m = AllOf(Ge(0), Lt(10), Ne(3), Ne(5), Ne(7));
EXPECT_EQ("((isn't >= 0) or "
"(isn't < 10)) or "
"((is equal to 3) or "
"((is equal to 5) or "
"(is equal to 7)))",
DescribeNegation(m));
}
// Tests that monomorphic matchers are safely cast by the AllOf matcher.
TEST(AllOfTest, AllOfMatcherSafelyCastsMonomorphicMatchers) {
// greater_than_5 and less_than_10 are monomorphic matchers.
Matcher<int> greater_than_5 = Gt(5);
Matcher<int> less_than_10 = Lt(10);
Matcher<const int&> m = AllOf(greater_than_5, less_than_10);
Matcher<int&> m2 = AllOf(greater_than_5, less_than_10);
Matcher<int&> m3 = AllOf(greater_than_5, m2);
// Tests that BothOf works when composing itself.
Matcher<const int&> m4 = AllOf(greater_than_5, less_than_10, less_than_10);
Matcher<int&> m5 = AllOf(greater_than_5, less_than_10, less_than_10);
}
TEST(AllOfTest, ExplainsResult) {
Matcher<int> m;
// Successful match. Both matchers need to explain. The second
// matcher doesn't give an explanation, so only the first matcher's
// explanation is printed.
m = AllOf(GreaterThan(10), Lt(30));
EXPECT_EQ("which is 15 more than 10", Explain(m, 25));
// Successful match. Both matchers need to explain.
m = AllOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 20 more than 10, and which is 10 more than 20",
Explain(m, 30));
// Successful match. All matchers need to explain. The second
// matcher doesn't given an explanation.
m = AllOf(GreaterThan(10), Lt(30), GreaterThan(20));
EXPECT_EQ("which is 15 more than 10, and which is 5 more than 20",
Explain(m, 25));
// Successful match. All matchers need to explain.
m = AllOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
EXPECT_EQ("which is 30 more than 10, and which is 20 more than 20, "
"and which is 10 more than 30",
Explain(m, 40));
// Failed match. The first matcher, which failed, needs to
// explain.
m = AllOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
// Failed match. The second matcher, which failed, needs to
// explain. Since it doesn't given an explanation, nothing is
// printed.
m = AllOf(GreaterThan(10), Lt(30));
EXPECT_EQ("", Explain(m, 40));
// Failed match. The second matcher, which failed, needs to
// explain.
m = AllOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 less than 20", Explain(m, 15));
}
// Helper to allow easy testing of AnyOf matchers with num parameters.
void AnyOfMatches(int num, const Matcher<int>& m) {
SCOPED_TRACE(Describe(m));
EXPECT_FALSE(m.Matches(0));
for (int i = 1; i <= num; ++i) {
EXPECT_TRUE(m.Matches(i));
}
EXPECT_FALSE(m.Matches(num + 1));
}
// Tests that AnyOf(m1, ..., mn) matches any value that matches at
// least one of the given matchers.
TEST(AnyOfTest, MatchesWhenAnyMatches) {
Matcher<int> m;
m = AnyOf(Le(1), Ge(3));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(2));
m = AnyOf(Lt(0), Eq(1), Eq(2));
EXPECT_TRUE(m.Matches(-1));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(0));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
EXPECT_TRUE(m.Matches(-1));
EXPECT_TRUE(m.Matches(1));
EXPECT_TRUE(m.Matches(2));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(0));
m = AnyOf(Le(0), Gt(10), 3, 5, 7);
EXPECT_TRUE(m.Matches(0));
EXPECT_TRUE(m.Matches(11));
EXPECT_TRUE(m.Matches(3));
EXPECT_FALSE(m.Matches(2));
// The following tests for varying number of sub-matchers. Due to the way
// the sub-matchers are handled it is enough to test every sub-matcher once
// with sub-matchers using the same matcher type. Varying matcher types are
// checked for above.
AnyOfMatches(2, AnyOf(1, 2));
AnyOfMatches(3, AnyOf(1, 2, 3));
AnyOfMatches(4, AnyOf(1, 2, 3, 4));
AnyOfMatches(5, AnyOf(1, 2, 3, 4, 5));
AnyOfMatches(6, AnyOf(1, 2, 3, 4, 5, 6));
AnyOfMatches(7, AnyOf(1, 2, 3, 4, 5, 6, 7));
AnyOfMatches(8, AnyOf(1, 2, 3, 4, 5, 6, 7, 8));
AnyOfMatches(9, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9));
AnyOfMatches(10, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
}
#if GTEST_LANG_CXX11
// Tests the variadic version of the AnyOfMatcher.
TEST(AnyOfTest, VariadicMatchesWhenAnyMatches) {
// Also make sure AnyOf is defined in the right namespace and does not depend
// on ADL.
Matcher<int> m = ::testing::AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
EXPECT_THAT(Describe(m), EndsWith("or (is equal to 11))))))))))"));
AnyOfMatches(11, m);
AnyOfMatches(50, AnyOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50));
}
#endif // GTEST_LANG_CXX11
// Tests that AnyOf(m1, ..., mn) describes itself properly.
TEST(AnyOfTest, CanDescribeSelf) {
Matcher<int> m;
m = AnyOf(Le(1), Ge(3));
EXPECT_EQ("(is <= 1) or (is >= 3)",
Describe(m));
m = AnyOf(Lt(0), Eq(1), Eq(2));
EXPECT_EQ("(is < 0) or "
"((is equal to 1) or (is equal to 2))",
Describe(m));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
EXPECT_EQ("((is < 0) or "
"(is equal to 1)) or "
"((is equal to 2) or "
"(is equal to 3))",
Describe(m));
m = AnyOf(Le(0), Gt(10), 3, 5, 7);
EXPECT_EQ("((is <= 0) or "
"(is > 10)) or "
"((is equal to 3) or "
"((is equal to 5) or "
"(is equal to 7)))",
Describe(m));
}
// Tests that AnyOf(m1, ..., mn) describes its negation properly.
TEST(AnyOfTest, CanDescribeNegation) {
Matcher<int> m;
m = AnyOf(Le(1), Ge(3));
EXPECT_EQ("(isn't <= 1) and (isn't >= 3)",
DescribeNegation(m));
m = AnyOf(Lt(0), Eq(1), Eq(2));
EXPECT_EQ("(isn't < 0) and "
"((isn't equal to 1) and (isn't equal to 2))",
DescribeNegation(m));
m = AnyOf(Lt(0), Eq(1), Eq(2), Eq(3));
EXPECT_EQ("((isn't < 0) and "
"(isn't equal to 1)) and "
"((isn't equal to 2) and "
"(isn't equal to 3))",
DescribeNegation(m));
m = AnyOf(Le(0), Gt(10), 3, 5, 7);
EXPECT_EQ("((isn't <= 0) and "
"(isn't > 10)) and "
"((isn't equal to 3) and "
"((isn't equal to 5) and "
"(isn't equal to 7)))",
DescribeNegation(m));
}
// Tests that monomorphic matchers are safely cast by the AnyOf matcher.
TEST(AnyOfTest, AnyOfMatcherSafelyCastsMonomorphicMatchers) {
// greater_than_5 and less_than_10 are monomorphic matchers.
Matcher<int> greater_than_5 = Gt(5);
Matcher<int> less_than_10 = Lt(10);
Matcher<const int&> m = AnyOf(greater_than_5, less_than_10);
Matcher<int&> m2 = AnyOf(greater_than_5, less_than_10);
Matcher<int&> m3 = AnyOf(greater_than_5, m2);
// Tests that EitherOf works when composing itself.
Matcher<const int&> m4 = AnyOf(greater_than_5, less_than_10, less_than_10);
Matcher<int&> m5 = AnyOf(greater_than_5, less_than_10, less_than_10);
}
TEST(AnyOfTest, ExplainsResult) {
Matcher<int> m;
// Failed match. Both matchers need to explain. The second
// matcher doesn't give an explanation, so only the first matcher's
// explanation is printed.
m = AnyOf(GreaterThan(10), Lt(0));
EXPECT_EQ("which is 5 less than 10", Explain(m, 5));
// Failed match. Both matchers need to explain.
m = AnyOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20",
Explain(m, 5));
// Failed match. All matchers need to explain. The second
// matcher doesn't given an explanation.
m = AnyOf(GreaterThan(10), Gt(20), GreaterThan(30));
EXPECT_EQ("which is 5 less than 10, and which is 25 less than 30",
Explain(m, 5));
// Failed match. All matchers need to explain.
m = AnyOf(GreaterThan(10), GreaterThan(20), GreaterThan(30));
EXPECT_EQ("which is 5 less than 10, and which is 15 less than 20, "
"and which is 25 less than 30",
Explain(m, 5));
// Successful match. The first matcher, which succeeded, needs to
// explain.
m = AnyOf(GreaterThan(10), GreaterThan(20));
EXPECT_EQ("which is 5 more than 10", Explain(m, 15));
// Successful match. The second matcher, which succeeded, needs to
// explain. Since it doesn't given an explanation, nothing is
// printed.
m = AnyOf(GreaterThan(10), Lt(30));
EXPECT_EQ("", Explain(m, 0));
// Successful match. The second matcher, which succeeded, needs to
// explain.
m = AnyOf(GreaterThan(30), GreaterThan(20));
EXPECT_EQ("which is 5 more than 20", Explain(m, 25));
}
// The following predicate function and predicate functor are for
// testing the Truly(predicate) matcher.
// Returns non-zero if the input is positive. Note that the return
// type of this function is not bool. It's OK as Truly() accepts any
// unary function or functor whose return type can be implicitly
// converted to bool.
int IsPositive(double x) {
return x > 0 ? 1 : 0;
}
// This functor returns true if the input is greater than the given
// number.
class IsGreaterThan {
public:
explicit IsGreaterThan(int threshold) : threshold_(threshold) {}
bool operator()(int n) const { return n > threshold_; }
private:
int threshold_;
};
// For testing Truly().
const int foo = 0;
// This predicate returns true iff the argument references foo and has
// a zero value.
bool ReferencesFooAndIsZero(const int& n) {
return (&n == &foo) && (n == 0);
}