| #include "benchmark/benchmark.h" |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdint.h> |
| |
| #include <chrono> |
| #include <cstdlib> |
| #include <iostream> |
| #include <limits> |
| #include <list> |
| #include <map> |
| #include <mutex> |
| #include <set> |
| #include <sstream> |
| #include <string> |
| #include <thread> |
| #include <utility> |
| #include <vector> |
| |
| #if defined(__GNUC__) |
| #define BENCHMARK_NOINLINE __attribute__((noinline)) |
| #else |
| #define BENCHMARK_NOINLINE |
| #endif |
| |
| namespace { |
| |
| int BENCHMARK_NOINLINE Factorial(uint32_t n) { |
| return (n == 1) ? 1 : n * Factorial(n - 1); |
| } |
| |
| double CalculatePi(int depth) { |
| double pi = 0.0; |
| for (int i = 0; i < depth; ++i) { |
| double numerator = static_cast<double>(((i % 2) * 2) - 1); |
| double denominator = static_cast<double>((2 * i) - 1); |
| pi += numerator / denominator; |
| } |
| return (pi - 1.0) * 4; |
| } |
| |
| std::set<int64_t> ConstructRandomSet(int64_t size) { |
| std::set<int64_t> s; |
| for (int i = 0; i < size; ++i) s.insert(s.end(), i); |
| return s; |
| } |
| |
| std::mutex test_vector_mu; |
| std::vector<int>* test_vector = nullptr; |
| |
| } // end namespace |
| |
| static void BM_Factorial(benchmark::State& state) { |
| int fac_42 = 0; |
| for (auto _ : state) fac_42 = Factorial(8); |
| // Prevent compiler optimizations |
| std::stringstream ss; |
| ss << fac_42; |
| state.SetLabel(ss.str()); |
| } |
| BENCHMARK(BM_Factorial); |
| BENCHMARK(BM_Factorial)->UseRealTime(); |
| |
| static void BM_CalculatePiRange(benchmark::State& state) { |
| double pi = 0.0; |
| for (auto _ : state) pi = CalculatePi(static_cast<int>(state.range(0))); |
| std::stringstream ss; |
| ss << pi; |
| state.SetLabel(ss.str()); |
| } |
| BENCHMARK_RANGE(BM_CalculatePiRange, 1, 1024 * 1024); |
| |
| static void BM_CalculatePi(benchmark::State& state) { |
| static const int depth = 1024; |
| for (auto _ : state) { |
| benchmark::DoNotOptimize(CalculatePi(static_cast<int>(depth))); |
| } |
| } |
| BENCHMARK(BM_CalculatePi)->Threads(8); |
| BENCHMARK(BM_CalculatePi)->ThreadRange(1, 32); |
| BENCHMARK(BM_CalculatePi)->ThreadPerCpu(); |
| |
| static void BM_SetInsert(benchmark::State& state) { |
| std::set<int64_t> data; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| data = ConstructRandomSet(state.range(0)); |
| state.ResumeTiming(); |
| for (int j = 0; j < state.range(1); ++j) data.insert(rand()); |
| } |
| state.SetItemsProcessed(state.iterations() * state.range(1)); |
| state.SetBytesProcessed(state.iterations() * state.range(1) * sizeof(int)); |
| } |
| |
| // Test many inserts at once to reduce the total iterations needed. Otherwise, the slower, |
| // non-timed part of each iteration will make the benchmark take forever. |
| BENCHMARK(BM_SetInsert)->Ranges({{1 << 10, 8 << 10}, {128, 512}}); |
| |
| template <typename Container, |
| typename ValueType = typename Container::value_type> |
| static void BM_Sequential(benchmark::State& state) { |
| ValueType v = 42; |
| for (auto _ : state) { |
| Container c; |
| for (int64_t i = state.range(0); --i;) c.push_back(v); |
| } |
| const int64_t items_processed = state.iterations() * state.range(0); |
| state.SetItemsProcessed(items_processed); |
| state.SetBytesProcessed(items_processed * sizeof(v)); |
| } |
| BENCHMARK_TEMPLATE2(BM_Sequential, std::vector<int>, int) |
| ->Range(1 << 0, 1 << 10); |
| BENCHMARK_TEMPLATE(BM_Sequential, std::list<int>)->Range(1 << 0, 1 << 10); |
| // Test the variadic version of BENCHMARK_TEMPLATE in C++11 and beyond. |
| #ifdef BENCHMARK_HAS_CXX11 |
| BENCHMARK_TEMPLATE(BM_Sequential, std::vector<int>, int)->Arg(512); |
| #endif |
| |
| static void BM_StringCompare(benchmark::State& state) { |
| size_t len = static_cast<size_t>(state.range(0)); |
| std::string s1(len, '-'); |
| std::string s2(len, '-'); |
| for (auto _ : state) benchmark::DoNotOptimize(s1.compare(s2)); |
| } |
| BENCHMARK(BM_StringCompare)->Range(1, 1 << 20); |
| |
| static void BM_SetupTeardown(benchmark::State& state) { |
| if (state.thread_index == 0) { |
| // No need to lock test_vector_mu here as this is running single-threaded. |
| test_vector = new std::vector<int>(); |
| } |
| int i = 0; |
| for (auto _ : state) { |
| std::lock_guard<std::mutex> l(test_vector_mu); |
| if (i % 2 == 0) |
| test_vector->push_back(i); |
| else |
| test_vector->pop_back(); |
| ++i; |
| } |
| if (state.thread_index == 0) { |
| delete test_vector; |
| } |
| } |
| BENCHMARK(BM_SetupTeardown)->ThreadPerCpu(); |
| |
| static void BM_LongTest(benchmark::State& state) { |
| double tracker = 0.0; |
| for (auto _ : state) { |
| for (int i = 0; i < state.range(0); ++i) |
| benchmark::DoNotOptimize(tracker += i); |
| } |
| } |
| BENCHMARK(BM_LongTest)->Range(1 << 16, 1 << 28); |
| |
| static void BM_ParallelMemset(benchmark::State& state) { |
| int64_t size = state.range(0) / static_cast<int64_t>(sizeof(int)); |
| int thread_size = static_cast<int>(size) / state.threads; |
| int from = thread_size * state.thread_index; |
| int to = from + thread_size; |
| |
| if (state.thread_index == 0) { |
| test_vector = new std::vector<int>(static_cast<size_t>(size)); |
| } |
| |
| for (auto _ : state) { |
| for (int i = from; i < to; i++) { |
| // No need to lock test_vector_mu as ranges |
| // do not overlap between threads. |
| benchmark::DoNotOptimize(test_vector->at(i) = 1); |
| } |
| } |
| |
| if (state.thread_index == 0) { |
| delete test_vector; |
| } |
| } |
| BENCHMARK(BM_ParallelMemset)->Arg(10 << 20)->ThreadRange(1, 4); |
| |
| static void BM_ManualTiming(benchmark::State& state) { |
| int64_t slept_for = 0; |
| int64_t microseconds = state.range(0); |
| std::chrono::duration<double, std::micro> sleep_duration{ |
| static_cast<double>(microseconds)}; |
| |
| for (auto _ : state) { |
| auto start = std::chrono::high_resolution_clock::now(); |
| // Simulate some useful workload with a sleep |
| std::this_thread::sleep_for( |
| std::chrono::duration_cast<std::chrono::nanoseconds>(sleep_duration)); |
| auto end = std::chrono::high_resolution_clock::now(); |
| |
| auto elapsed = |
| std::chrono::duration_cast<std::chrono::duration<double>>(end - start); |
| |
| state.SetIterationTime(elapsed.count()); |
| slept_for += microseconds; |
| } |
| state.SetItemsProcessed(slept_for); |
| } |
| BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseRealTime(); |
| BENCHMARK(BM_ManualTiming)->Range(1, 1 << 14)->UseManualTime(); |
| |
| #ifdef BENCHMARK_HAS_CXX11 |
| |
| template <class... Args> |
| void BM_with_args(benchmark::State& state, Args&&...) { |
| for (auto _ : state) { |
| } |
| } |
| BENCHMARK_CAPTURE(BM_with_args, int_test, 42, 43, 44); |
| BENCHMARK_CAPTURE(BM_with_args, string_and_pair_test, std::string("abc"), |
| std::pair<int, double>(42, 3.8)); |
| |
| void BM_non_template_args(benchmark::State& state, int, double) { |
| while(state.KeepRunning()) {} |
| } |
| BENCHMARK_CAPTURE(BM_non_template_args, basic_test, 0, 0); |
| |
| #endif // BENCHMARK_HAS_CXX11 |
| |
| static void BM_DenseThreadRanges(benchmark::State& st) { |
| switch (st.range(0)) { |
| case 1: |
| assert(st.threads == 1 || st.threads == 2 || st.threads == 3); |
| break; |
| case 2: |
| assert(st.threads == 1 || st.threads == 3 || st.threads == 4); |
| break; |
| case 3: |
| assert(st.threads == 5 || st.threads == 8 || st.threads == 11 || |
| st.threads == 14); |
| break; |
| default: |
| assert(false && "Invalid test case number"); |
| } |
| while (st.KeepRunning()) { |
| } |
| } |
| BENCHMARK(BM_DenseThreadRanges)->Arg(1)->DenseThreadRange(1, 3); |
| BENCHMARK(BM_DenseThreadRanges)->Arg(2)->DenseThreadRange(1, 4, 2); |
| BENCHMARK(BM_DenseThreadRanges)->Arg(3)->DenseThreadRange(5, 14, 3); |
| |
| BENCHMARK_MAIN(); |